Advertisement

Synthetic Compounds for Antifungal Chemotherapy

  • Rupa Pegu
  • Rohan Borah
  • Sanjay Pratihar
Chapter

Abstract

Systemic fungal infections are major problems in phytopathology and infections caused by fungal species and to treat this various antimicrobial agents have been applied clinically, which is known as antifungal chemotherapy. Amongst various natural antifungal drugs, few are currently used in clinical practice to treat essentially systemic fungal infections because of their low spectrum of activity, toxicity and immunosuppressive nature. These limitation open up a market for new synthetic antifungal drugs or structural modifications of inactive molecules, which will provide a broad spectrum of activity with less toxicity. In this chapter, synthetic compounds for antifungal chemotherapy including various derivatives of azole, fluoropyrimidine, thiocarbamate, allyamines, morpholine, carabrol ester and carboline along with their mechanism, broad spectrum of activity, advantages and limitations have been discussed.

Keywords

Antifungal Activity Antifungal Agent Invasive Fungal Infection Antifungal Drug Cryptococcus Neoformans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andriole VT (1998) Current and future therapy of invasive fungal infections. Curr Clin Top Infect Dis 18:19–36PubMedGoogle Scholar
  2. Andriole VT (1999) Current and future antifungal therapy: new targets for antifungal agents. J Antimicrob Chemother 44:151–162CrossRefPubMedGoogle Scholar
  3. Borelli C, Klövekorn G, Ernst T-M, Bödeker R-H, Korting HC, Neumeister C et al (2007) Comparative study of 2% sertaconazole solution and cream formulations in patients with tinea corporis, tinea pedis interdigitalis, or a corresponding candidosis. Am J Clin Dermatol 8(6):371–378CrossRefPubMedGoogle Scholar
  4. Bossche HV (1997) Mechanisms of antifungal resistance. Rev Iberoam Micol 14:44–49Google Scholar
  5. Bueno JG, Martinez C, Zapata B, Sanclemente G, Gallego M, Mesa AC et al (2009) In vitro activity of fluconazole, itraconazole, voriconazole and terbinafine against fungi causing onychomycosis. Clin Exp Dermatol 35(6):658–663CrossRefPubMedGoogle Scholar
  6. Cao R, Peng W, Wang Z, Xu A et al (2007) β-Carboline alkaloids: biochemical and pharmacological functions. Curr Med Chem 14:479–500CrossRefPubMedGoogle Scholar
  7. Carrillo-Munoz AJ (2006) Antifungal agents: mode of action in yeast cells. Rev Esp Quimioter 19(2):130–139PubMedGoogle Scholar
  8. Chauhana K, Sharmaa M, Singhb P, Kumarc V, Shuklab PK, Siddiqic MI, Chauhan PMS et al (2012) Discovery of a new class of dithiocarbamates and rhodanine scaffolds as potent antifungal agents: synthesis, biology and molecular docking. Med ChemComm 3(9):1104–1110Google Scholar
  9. Cuenca-Estrella M, Gomez-Lopez A, Mellado E, Garcia-Effron G, Rodriguez-Tudela JL et al (2004) In vitro activities of ravuconazole and four other antifungal agents against fluconazole-resistant or -susceptible clinical yeast isolates. Antimicrob Agents Chemother 48(8):3107–3111CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dismukes WE et al (2000) Introduction to antifungal drugs. Clin Infec Dis 30:653–657CrossRefGoogle Scholar
  11. El Hage S, Lajoie B, Feuillolay C, Roques C, Baziard G et al (2011) Arch Pharm Chem Life Sci 11:402–410CrossRefGoogle Scholar
  12. Feng JT, Wang H, Ren SX, He J, Liu Y, Zhang X et al (2012) Synthesis and antifungal activities of carabrol ester derivatives. J Agric Food Chem 60:3817–3823CrossRefPubMedGoogle Scholar
  13. Garcia-Effron G, Gomez-Lopez A, Mellado E, Monzon A, Rodriguez-Tudela JL, Cuenca-Estrella M et al (2004) In vitro activity of terbinafine against medically important non-dermatophyte species of filamentous fungi. J Antimicrob Chemother 53:1086–1089CrossRefPubMedGoogle Scholar
  14. Gellerman G, Pariente N, Paz, Shnaiderman A, Yarden O (2009) Synthesis and antifungal activity of β-trifluoroalkyl aminovinyl ketone derivatives. J Agric Food Chem 57:8303–8307CrossRefPubMedGoogle Scholar
  15. Georgopoulos A, Petranyi G, Mieth H, Drews J (1981) In vitro activity of naftifine, a new antifungal agent. Antimicrob Agents Chemother 19:386–389CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gomez-Lopez A, Mellado E, Garcia-Effron G, Rodriguez-Tudela JL, Cuenca-Estrella M et al (2004) In vitro activities of ravuconazole and four other antifungal agents against fluconazole-resistant or -susceptible clinical yeast isolates. Antimicrob Agents Chemother 8:3107–3111Google Scholar
  17. Guarro J, Alves SH, Gene J, Grazziotin NA, Mazzuco R, Dalmagro C, Capilla J, Zaror L, Mayayo E et al (2003) Two cases of subcutaneous infection due to Phaeoacremonium spp. J Clin Microbiol 41(3):1332–1336CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jevons S, Gymer GE, Brammer KW, Cox DA, Leeming MRG et al (1979) Antifungal activity of tioconazole (UK-20,349), a new imidazole derivative. Antimicrob Agents Chemother 15(4):597–602CrossRefPubMedPubMedCentralGoogle Scholar
  19. Koga H, Nanjoh Y, Kaneda H, Yamaguchi H, Tsuboic R et al (2006) Short-term therapy with luliconazole, a novel topical antifungal imidazole, in guinea pig models of tinea corporis and tinea pedis. Antimicrob Agents Chemother 56(6):3138–3143CrossRefGoogle Scholar
  20. Loevenhart AS (1926) Future chemotherapy. Ind Eng Chem 18(12):1268–1272CrossRefGoogle Scholar
  21. Marcireau C, Guilloton M, Karst F (1990) In vivo effects of fenpropimorph on the yeast Saccharomyces cerevisiae and determination of the molecular basis of the antifungal property. Antimicrob Agents Chemother 34(6):989–993CrossRefPubMedPubMedCentralGoogle Scholar
  22. Meerpoel L, Heeres J, Back LJJ, Van der Veken LJE, Hendrickx R, Corens D, Groot AD, Leurs S, Vander Eycken L, Weerts J, Luyts P, Van Gerven F, Woestenborghs FAA, Van Breda A, Oris M, van Dorsselaer P, Willemsens GHM, Bellens D, Marichal PJ MG, Vanden Bossche HF, OddsPro FC et al (2010) Synthesis and in vitro and in vivo antifungal activity of the hydroxy metabolites of saperconazole. Chem Med Chem 5(5):757–769CrossRefPubMedGoogle Scholar
  23. Niwano Y, Tabuchi T, Kanai K, Hamaguchi H, Uchida K, Yamaguchi H et al (1995) Short-term topical therapy of experimental tinea pedis in guinea pigs with lanoconazole, a new imidazole antimycotic agent. Antimicrob Agents Chemother 39(10):2353–2355CrossRefPubMedPubMedCentralGoogle Scholar
  24. Northey EH (1943) Chemical side of chemotherapy. Ind Eng Chem 35(8):829–836CrossRefGoogle Scholar
  25. Pelletier R, Peter J, Antin C, Gonzalez C, Wood L, Walsh TJ et al (2000) Emergence of resistance of candida albicans to clotrimazole in human immunodeficiency virus-infected children: in vitro and clinical correlations. J Clin Microbiol 38(4):1563–1568PubMedPubMedCentralGoogle Scholar
  26. Petranyi G, Meingassner JG, Mieth H et al (1987) Antifungal activity of the allylamine derivative terbinafine in vitro. Antimicrob Agents Chemother 31:1365–1368CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pfaller MA, Boyken L, Hollis RJ, Kroeger J, Messer SA, Tendolkar S, Diekema DJ et al (2011) Wild-type MIC distributions and epidemiological cutoff values for posaconazole and voriconazole and Candida spp. as determined by 24-hour CLSI broth microdilution. J Clin Microbiol 49(2):630–637CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rani N, Sharma A, Gupta GK, Singh R et al (2013) Imidazoles as potential antifungal agents: a review. Mini-Reviews in Med Chem 13:1626–1655CrossRefGoogle Scholar
  29. Ryder NS (1989) Effect of allylamine antimycotic agents on fungal sterol biosynthesis measured by sterol side-chain methylation. J Gen Microbiol 131(1):595–1602Google Scholar
  30. Ryder NS, Dupont MC (1985) Inhibition of squalene epoxidase by allylamine antimycotic compounds. Biochem 230:765–770CrossRefGoogle Scholar
  31. Ryder NS, Frank I, Dupont MC et al (1986) Ergosterol biosynthesis inhibition by the thiocarbamate antifungal agents tolnaftate and tolciclate. Antimicrob Agents Chemother 29:858–860CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sahin GO, Akova M et al (2005) Emerging and life-threatening fungal pathogens in the immunocompromised host. Uropeanoncology Rev:1–5Google Scholar
  33. Shalini K, Kumar N, Drabu S, Sharma PK et al (2011) Advances in synthetic approach to and antifungal activity of triazoles. Beilstein J Org Chem 7:668–677CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sheehan DJ, Hitchcock CA, Sibley CM (1999) Current and emerging azole antifungal agents. Clin Microbiol Rev 12:40–79PubMedPubMedCentralGoogle Scholar
  35. Spellberg B, Powers JH, Brass EP, Miller LG, Edwards J et al (2004) Trends in antimicrobial drug development: implications for the future. Antimicrob Res Dev 38:1279–1286Google Scholar
  36. Vandeputte P, Ferrari S, Coste AT et al (2011) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012:1–26CrossRefGoogle Scholar
  37. Wang HQ, Zhou WP, Wang YY, Lin CR (2008) Synthesis and antifungal activities of novel 5-Amino-6-arylamino-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one derivatives. J Agric Food Chem 56:7321–7325CrossRefPubMedGoogle Scholar
  38. Wang S, Wang Y, Liu W, Liu N, Zhang Y, Dong G, Liu Y, Li Y, He Z, Miao Z, Yao J, Li J, Zhang W, Sheng C et al (2014) Novel carboline derivatives as potent antifungal lead compounds: design, synthesis, and biological evaluation. ACS Med Chem Lett 5:506–511CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of Chemical SciencesTezpur UniversityNapaamIndia

Personalised recommendations