Lipopeptides: Status and Strategies to Control Fungal Infection

  • Piyush Baindara
  • Suresh Korpole


Global food security is become central focus, specifically because of threatening plant diseases caused by fungal phyto-pathogens and massive economic losses thereof. In the context of bio-control of fungal phyto-pathogens, lipopeptides produced by Bacillus sp. have been studied well. The three families of Bacillus lipopeptides are surfactin, iturins and fengycins, confirmed for their antagonistic activities against various fungal phyto-pathogens. In recent past lipopeptides produced by Pseudomonas sp. has also proven effective bio-control agents, specifically against fungal phyto-pathogens. On other hand echinocandins are novel class of antifungal lipopeptides produced by various Aspergillus sp., used successfully in treatment of serious fungal infections and currently in clinical trials. Here we summarized all available information and data of lipopeptides in focus of their use as bio-control agent for plant protection as well as in treatment of fungal diseases in human caused by different pathogenic fungi.


Late Blight Biocontrol Agent Invasive Aspergillosis Hydroxy Fatty Acid Cyclic Lipopeptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abruzzo GK, Flattery AM, Gill CJ, Kong L, Smith JG, Pikounis VB, Balkovec JM, Bouffard AF, Dropinski JF, Rosen H, Kropp H, Bartizal K (1997) Evaluation of the echinocandin antifungal MK-0991 (L-743,872): efficacies in mouse models of disseminated aspergillosis, candidiasis, and cryptococcosis. Antimicrob Agents Chemother 41:2333–2338PubMedPubMedCentralGoogle Scholar
  2. Abruzzo GK, Gill CJ, Flattery AM, Kong L, Leighton C, Smith JG, Pikounis VB, Bartizal K, Rosen H (2000) Efficacy of the echinocandin caspofungin against disseminated aspergillosis and candidiasis in cyclophosphamide-induced immunosuppressed mice. Antimicrob Agents Chemother 44:2310–2318PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akpa E, Jacques P, Wathelet B, Paquot M, Fuchs R, Budzikiewicz H, Thonart P (2001) Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl Biochem Biotechnol 91–93:551–561PubMedCrossRefGoogle Scholar
  4. Alvarez F, Castro M, Príncipe A, Borioli G, Fischer S, Mori G, Jofré E (2012) The plant-associated Bacillus amyloliquefaciens strains MEP 218 and ARP 23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol 112:159–174PubMedCrossRefGoogle Scholar
  5. Andes DR, Diekema DJ, Pfaller MA, Marchillo K, Bohrmueller J (2008) In vivo pharmacodynamic target investigation for micafungin against Candida albicans and C. glabrata in a neutropenic murine candidiasis model. Antimicrob Agents Chemother 52:3497–3503PubMedPubMedCentralCrossRefGoogle Scholar
  6. Andolfi A, Cimmino A, Lo Cantore P, Iacobellis NS, Evidente A (2008) Bioactive and structural metabolites of Pseudomonas and Burkholderia species causal agents of cultivated mushrooms diseases. Perspect Med Chem 2008:81–112Google Scholar
  7. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494PubMedCrossRefGoogle Scholar
  8. Arnusch CJ, Ulm H, Josten M, Shadkchan Y, Osherov N, Sahl HG, Shai Y (2012) Ultrashort peptide bioconjugates are exclusively antifungal agents and synergize with cyclodextrin and amphotericin B. Antimicrob Agents Chemother 56:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bachmann SP, Patterson TF, López-Ribot JL (2002) In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance. J Clin Microbiol 40:2228–2230PubMedPubMedCentralCrossRefGoogle Scholar
  10. Ballio A, Bossa F, Collina A, Gallo M, Iacobellis NS, Paci M, Pucci P, Scaloni A, Segre A, Simmaco M (1990) Structure of syringotoxin, a bioactive metabolite of Pseudomonas syringae pv. syringae. FEBS Lett 269:377–380PubMedCrossRefGoogle Scholar
  11. Ballio A, Bossa F, Di Giorgio D, Ferranti P, Paci M, Pucci P, Scaloni A, Segre A, Strobel GA (1994) Novel bioactive lipodepsipeptides from Pseudomonas syringae: the pseudomycins. FEBS Lett 355:96–100PubMedCrossRefGoogle Scholar
  12. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444PubMedCrossRefGoogle Scholar
  13. Barchiesi F, Schimizzi AM, Fothergill AW, Scalise G, Rinaldi MG (1999) In vitro activity of the new echinocandin antifungal, MK-0991, against common and uncommon clinical isolates of Candida species. Eur J Clin Microbiol Infect Dis 18:302–304PubMedGoogle Scholar
  14. Barrett D (2002) From natural products to clinically useful antifungals. Biochim Biophys Acta – Mol Basis Dis 1587:224–233CrossRefGoogle Scholar
  15. Bassarello C, Lazzaroni S, Bifulco G, Lo Cantore P, Iacobellis NS, Riccio R, Gomez-Paloma L, Evidente A, Tolaasins A-E (2004) Five new lipodepsipeptides produced by Pseudomonas tolaasii. J Nat Prod 67:811–816PubMedCrossRefGoogle Scholar
  16. Benz VF, Knüsel F, Nüesch J, Treichler H, Voser W, Nyfeler R, Keller-Schierlein W (1974) Echinocandin B, ein neuartiges polypeptid-antibioticum aus Aspergillus nidulans var. echinulatus: Isolierung und bausteune. Helv Chim Acta 57:2459–2477CrossRefGoogle Scholar
  17. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486PubMedCrossRefGoogle Scholar
  18. Boeck LD, Fukuda DS, Abbott BJ, Debono M (1989) Deacylation of echinocandin B by Actinoplanes utahensis. J Antibiot (Tokyo) 42:382–388CrossRefGoogle Scholar
  19. Boman HG (1998) Gene-encoded peptide antibiotics and the concept of innate immunity: an update review. Scand J Immunol 48:15–25PubMedCrossRefGoogle Scholar
  20. Bonmatin J-M, Laprévote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556PubMedCrossRefGoogle Scholar
  21. Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266PubMedCrossRefGoogle Scholar
  22. Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control of plant diseases. In: Pesticides in the modern world – pesticides use and management. InTech, Croatia, pp 273–303Google Scholar
  23. Chabrol A, Cuzin L, Huguet F, Alvarez M, Verdeil X, Linas MD, Cassaing S, Giron J, Tetu L, Attal M, Récher C (2010) Prophylaxis of invasive aspergillosis with voriconazole or caspofungin during building work in patients with acute leukemia. Haematologica 95:996–1003PubMedCrossRefGoogle Scholar
  24. Chandrasekar PH, Cutright JL, Manavathu EK (2004) Efficacy of voriconazole plus amphotericin B or micafungin in a guinea-pig model of invasive pulmonary aspergillosis. Clin Microbiol Infect 10:925–928PubMedCrossRefGoogle Scholar
  25. Chen C, Belanger RR, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Pathol 56:13–23CrossRefGoogle Scholar
  26. Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37PubMedCrossRefGoogle Scholar
  27. Cho K-H, Kim S-T, Kim Y-K (2007) Purification of a pore-forming peptide toxin, tolaasin, produced by Pseudomonas tolaasii 6264. J Biochem Mol Biol 40:113–118PubMedCrossRefGoogle Scholar
  28. Cho KH, Wang HS, Kim YK (2010) Temperature-dependent hemolytic activity of membrane pore-forming peptide toxin, tolaasin. J Pept Sci 16:85–90PubMedCrossRefGoogle Scholar
  29. Cochrane SA, Vederas JC (2014) Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev 36:4–31Google Scholar
  30. Coraiola M, Lo Cantore P, Lazzaroni S, Evidente A, Iacobellis NS, Dalla Serra M (2006) WLIP and tolaasin I, lipodepsipeptides from Pseudomonas reactans and Pseudomonas tolaasii, permeabilise model membranes. Biochim Biophys Acta – Biomembr 1758:1713–1722CrossRefGoogle Scholar
  31. Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moënne-Loccoz Y (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48:505–512PubMedCrossRefGoogle Scholar
  32. De Bruijn I, De Kock MJD, De Waard P, Van Beek TA, Raaijmakers JM (2008) Massetolide A biosynthesis in Pseudomonas fluorescens. J Bacteriol 190:2777–2789PubMedCrossRefGoogle Scholar
  33. De Faria AF, Stéfani D, Vaz BG, Silva ÍS, Garcia JS, Eberlin MN, Grossman MJ, Alves OL, Durrant LR (2011) Purification and structural characterization of fengycin homologues produced by Bacillus subtilis LSFM-05 grown on raw glycerol. J Ind Microbiol Biotechnol 38:863–871PubMedCrossRefGoogle Scholar
  34. De Pauw BE, Donnelly JP (2007) Prophylaxis and aspergillosis – has the principle been proven? N Engl J Med 356:409–411PubMedCrossRefGoogle Scholar
  35. De Wet N, Llanos-Cuentas A, Suleiman J, Baraldi E, Krantz EF, Della Negra M, Diekmann-Berndt H (2004) A randomized, double-blind, parallel-group, dose-response study of micafungin compared with fluconazole for the treatment of esophageal candidiasis in HIV-positive patients. Clin Infect Dis 39:842–849PubMedCrossRefGoogle Scholar
  36. Debois D, Jourdan E, Smargiasso N, Thonart P, De Pauw E, Ongena M (2014) Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Anal Chem 86:4431–4438PubMedCrossRefGoogle Scholar
  37. Debono M, Abbott BJ, Fukuda DS, Barnhart M, Willard KE, Molloy RM, Michel KH, Turner JR, Butler TF, Hunt AH (1989) Synthesis of new analogs of echinocandin B by enzymatic deacylation and chemical reacylation of the echinocandin B peptide: synthesis of the antifungal agent cilofungin (LY121019). J Antibiot (Tokyo) 42:389–397CrossRefGoogle Scholar
  38. Debono M, Turner WW, LaGrandeur L, Burkhardt FJ, Nissen JS, Nichols KK, Rodriguez MJ, Zweifel MJ, Zeckner DJ, Gordee RS, Tang J, Parr TR (1995) Semisynthetic chemical modification of the antifungal lipopeptide echinocandin B (ECB): structure-activity studies of the lipophilic and geometric parameters of polyarylated acyl analogs of ECB. J Med Chem 38:3271–3281PubMedCrossRefGoogle Scholar
  39. Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142–1151PubMedCrossRefGoogle Scholar
  40. Denning DW, Marr KA, Lau WM, Facklam DP, Ratanatharathorn V, Becker C, Ullmann AJ, Seibel NL, Flynn PM, van Burik JAH, Buell DN, Patterson TF (2006) Micafungin (FK463), alone or in combination with other systemic antifungal agents, for the treatment of acute invasive aspergillosis. J Infect 53:337–349PubMedCrossRefGoogle Scholar
  41. Diekema DJ, Petroelje B, Messer SA, Hollis RJ, Pfaller MA (2005) Activities of available and investigational antifungal agents against Rhodotorula species. J Clin Microbiol 43:476–478PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dietel K, Beator B, Budiharjo A, Fan B, Borriss R (2013) Bacterial traits involved in colonization of Arabidopsis thaliana roots by Bacillus amyloliquefaciens FZB42. Plant Pathol J 29:59–66PubMedPubMedCentralCrossRefGoogle Scholar
  43. Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24:1073–1109PubMedCrossRefGoogle Scholar
  44. Douglas CM (2001) Fungal beta(1,3)-D-glucan synthesis. Med Mycol 39(Suppl 1):55–66PubMedCrossRefGoogle Scholar
  45. Douglas CM (2006) Understanding the microbiology of the Aspergillus cell wall and the efficacy of caspofungin. Med Mycol 44:95–99CrossRefGoogle Scholar
  46. Emiroglu M (2011) Micafungin use in children. Expert Rev Anti Infect Ther 9:821–834PubMedCrossRefGoogle Scholar
  47. Eshita SM, Roberto NH, Beale JM, Mamiya BM, Workman RF (1995) Bacillomycin Lc, a new antibiotic of the iturin group: isolations, structures, and antifungal activities of the congeners. J Antibiot (Tokyo) 48:1240–1247CrossRefGoogle Scholar
  48. Fortún J, Martín-Dávila P, Montejo M, Muñoz P, Cisneros JM, Ramos A, Aragón C, Blanes M, San Juan R, Gavaldá J, Llinares P (2009) Prophylaxis with caspofungin for invasive fungal infections in high-risk liver transplant recipients. Transplantation 87:424–435PubMedCrossRefGoogle Scholar
  49. Franco OL (2011) Peptide promiscuity: an evolutionary concept for plant defense. FEBS Lett 585:995–1000PubMedCrossRefGoogle Scholar
  50. Fujie A, Iwamoto T, Sato B, Muramatsu H, Kasahara C, Furuta T, Hori Y, Hino M, Hashimoto S (2001) FR131535, a novel water-soluble echinocandin-like lipopeptide: synthesis and biological properties. Bioorg Med Chem Lett 11:399–402PubMedCrossRefGoogle Scholar
  51. Fzb S, Koumoutsi A, Chen X, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus. J Bacteriol 186:1084–1096CrossRefGoogle Scholar
  52. Galonić DP, Barr EW, Walsh CT, Bollinger JM, Krebs C (2007) Two interconverting Fe(IV) intermediates in aliphatic chlorination by the halogenase CytC3. Nat Chem Biol 3:113–116PubMedCrossRefGoogle Scholar
  53. George J, Reboli AC (2012) Anidulafungin: when and how? The clinician’s view. Mycoses 55:36–44PubMedCrossRefGoogle Scholar
  54. Georgopapadakou NH (1997) Antifungals targeted to the cell wall. Expert Opin Investig Drugs 6:147–150PubMedCrossRefGoogle Scholar
  55. Georgopapadakou NH (2001) Update on antifungals targeted to the cell wall: focus on beta-1,3-glucan synthase inhibitors. Expert Opin Investig Drugs 10:269–280PubMedCrossRefGoogle Scholar
  56. Grangemard I, Bonmatin JM, Bernillon J, Das BC, Peypoux F (1999) Lichenysins G, a novel family of lipopeptide biosurfactants from Bacillus licheniformis IM 1307: production, isolation and structural evaluation by NMR and mass spectrometry. J Antibiot (Tokyo) 52:363–373CrossRefGoogle Scholar
  57. Grangemard I, Wallach J, Maget-Dana R, Peypoux F (2001) Lichenysin: a more efficient cation chelator than surfactin. Appl Biochem Biotechnol 90:199–210PubMedCrossRefGoogle Scholar
  58. Graybill JR, Najvar LK, Luther MF, Fothergill AW (1997a) Treatment of murine disseminated candidiasis with L-743,872. Antimicrob Agents Chemother 41:1775–1777PubMedPubMedCentralGoogle Scholar
  59. Graybill JR, Bocanegra R, Luther M, Fothergill A, Rinaldi MJ (1997b) Treatment of murine Candida krusei or Candida glabrata infection with L- 743,872. Antimicrob Agents Chemother 41:1937–1939PubMedPubMedCentralGoogle Scholar
  60. Groetzner J, Kaczmarek I, Wittwer T, Strauch J, Meiser B, Wahlers T, Daebritz S, Reichart B (2008) Caspofungin as first-line therapy for the treatment of invasive aspergillosis after thoracic organ transplantation. J Heart Lung Transplant 27:1–6PubMedCrossRefGoogle Scholar
  61. Groll AH, Walsh TJ (2001) Caspofungin: pharmacology, safety and therapeutic potential in superficial and invasive fungal infections. Expert Opin Investig Drugs 10:1545–1558PubMedCrossRefGoogle Scholar
  62. Groll AH, Mickiene D, Petraitis V, Petraitiene R, Ibrahim KH, Piscitelli SC, Bekersky I, Walsh TJ (2001) Compartmental pharmacokinetics and tissue distribution of the antifungal echinocandin lipopeptide micafungin (FK463) in rabbits. Antimicrob Agents Chemother 45:3322–3327PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hachem R, Hanna H, Kontoyiannis D, Jiang Y, Raad I (2008) The changing epidemiology of invasive candidiasis: Candida glabrata and candida krusei as the leading causes of candidemia in hematologic malignancy. Cancer 112:2493–2499PubMedCrossRefGoogle Scholar
  64. Hansen M, Thrane C, Olsson S, Sørensen J, Srensen J (2000) Confocal imaging of living fungal hyphae challenged with the fungal antagonist viscosinamide. Mycologia 92:216–221CrossRefGoogle Scholar
  65. Harrison L, Teplow DB, Rinaldi M, Strobel G (1991) Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity. J Gen Microbiol 137:2857–2865PubMedCrossRefGoogle Scholar
  66. Hashimoto S (2009) Micafungin: a sulfated echinocandin. J Antibiot (Tokyo) 62:27–35CrossRefGoogle Scholar
  67. Herbrecht R, Maertens J, Baila L, Aoun M, Heinz W, Martino R, Schwartz S, Ullmann AJ, Meert L, Paesmans M, Marchetti O, Akan H, Ameye L, Shivaprakash M, Viscoli C (2010) Caspofungin first-line therapy for invasive aspergillosis in allogeneic hematopoietic stem cell transplant patients: an European Organisation for Research and Treatment of Cancer study. Bone Marrow Transplant 45:1227–1233PubMedCrossRefGoogle Scholar
  68. Higginbotham SJ, Murphy CD (2010) Identification and characterisation of a Streptomyces sp. isolate exhibiting activity against methicillin-resistant Staphylococcus aureus. Microbiol Res 165:82–86PubMedCrossRefGoogle Scholar
  69. Hiramatsu Y, Maeda Y, Fujii N, Saito T, Nawa Y, Hara M, Yano T, Asakura S, Sunami K, Tabayashi T, Miyata A, Matsuoka KI, Shinagawa K, Ikeda K, Matsuo K, Tanimoto M (2009) Use of micafungin versus fluconazole for antifungal prophylaxis in neutropenic patients receiving hematopoietic stem cell transplantation. Int J Hematol 88:588–595CrossRefGoogle Scholar
  70. Hobbs M, Perfect J, Durack D (1988) Evaluation of in vitro antifungal activity of LY121019. Eur J Clin Microbiol Infect Dis 7:77–80PubMedCrossRefGoogle Scholar
  71. Horowitz S, Griffin WM (1991) Structural analysis of Bacillus licheniformis 86 surfactant. J Ind Microbiol 7:45–52PubMedCrossRefGoogle Scholar
  72. Jacobsen BJ, Zidack NK, Larson BJ (2004) The role of bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology 94:1272–1275PubMedCrossRefGoogle Scholar
  73. Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. In: Biosurfactants. Springer, Berlin, pp 57–92Google Scholar
  74. Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441PubMedCrossRefGoogle Scholar
  75. Jones TSG (1949) Chemical evidence for the multiplicity of the antibiotics produced by Bacillus polymyxa. Ann N Y Acad Sci 51:909–916PubMedCrossRefGoogle Scholar
  76. Journet M, Cai D, Dimichele LM, Hughes DL, Larsen RD, Verhoeven TR, Reider PJ (1999) Semisynthesis of an antifungal lipopeptide echinocandin. J Org Chem 64:2411–2417CrossRefGoogle Scholar
  77. Kartsonis N, Killar J, Mixson L, Hoe CM, Sable C, Bartizal K, Motyl M (2005a) Caspofungin susceptibility testing of isolates from patients with esophageal candidiasis or invasive candidiasis: relationship of MIC to treatment outcome. Antimicrob Agents Chemother 49:3616–3623PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kartsonis NA, Saah AJ, Lipka CJ, Taylor AF, Sable CA (2005b) Salvage therapy with caspofungin for invasive aspergillosis: results from the caspofungin compassionate use study. J Infect 50:196–205PubMedCrossRefGoogle Scholar
  79. Kauffman CA (2005) Candiduria. Clin Infect Dis 41(Suppl 6):S371–S376PubMedCrossRefGoogle Scholar
  80. Keating GM, Figgitt DP (2003) Caspofungin: a review of its use in oesophageal candidiasis, invasive candidiasis and invasive aspergillosis. Drugs 63:2235–2263PubMedCrossRefGoogle Scholar
  81. Kim PI, Ryu J, Kim YH, Chi YT (2010) Production of biosurfactant lipopeptides iturin A, fengycin, and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145PubMedGoogle Scholar
  82. Kim HJ, Choi HS, Yang SY, Kim IS, Yamaguchi T, Sohng JK, Park SK, Kim JC, Lee CH, Gardener BM, Kim YC (2014) Both extracellular chitinase and a new cyclic lipopeptide, chromobactomycin, contribute to the biocontrol activity of Chromobacterium sp. C61. Mol. Plant Pathol 15:122–132CrossRefGoogle Scholar
  83. Kinsella K, Schulthess CP, Morris TF, Stuart JD (2009) Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biol Biochem 41:374–379CrossRefGoogle Scholar
  84. Király L, Hafez YM, Fodor J, Király Z (2008) Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J Gen Virol 89:799–808PubMedCrossRefGoogle Scholar
  85. Kohno S, Masaoka T, Yamaguchi H, Mori T, Urabe A, Ito A, Niki Y, Ikemoto H (2004) A multicenter, open-label clinical study of micafungin (FK463) in the treatment of deep-seated mycosis in Japan. Scand J Infect Dis 36:372–379PubMedCrossRefGoogle Scholar
  86. Kohno S, Izumikawa K, Yoshida M, Takesue Y, Oka S, Kamei K, Miyazaki Y, Yoshinari T, Kartsonis NA, Niki Y (2013) A double-blind comparative study of the safety and efficacy of caspofungin versus micafungin in the treatment of candidiasis and aspergillosis. Eur J Clin Microbiol Infect Dis 32:387–397PubMedCrossRefGoogle Scholar
  87. Kontoyiannis DP, Ratanatharathorn V, Young JA, Raymond J, Laverdière M, Denning DW, Patterson TF, Facklam D, Kovanda L, Arnold L, Lau W, Buell D, Marr KA (2009) Micafungin alone or in combination with other systemic antifungal therapies in hematopoietic stem cell transplant recipients with invasive aspergillosis: short communication. Transpl Infect Dis 11:89–93PubMedCrossRefGoogle Scholar
  88. Kurokawa N, Ohfune Y (1993) Synthetic studies on antifungal cyclic-peptides, echinocandins – stereoselective total synthesis of echinocandin-d via a novel peptide coupling. Tetrahedron 49:6195–6222CrossRefGoogle Scholar
  89. Kurtz MB, Heath IB, Marrinan J, Dreikorn S, Onishi J, Douglas C (1994) Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)-??-D-glucan synthase. Antimicrob Agents Chemother 38:1480–1489PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lagrotteria D, Rotstein C, Lee CH (2007) Treatment of candiduria with micafungin: a case series. Can J Infect Dis Med Microbiol 18:149–150PubMedPubMedCentralGoogle Scholar
  91. Larkin RP, Tavantzis S (2013) Use of biocontrol organisms and compost amendments for improved control of soilborne diseases and increased potato production. Am J Potato Res 90:261–270CrossRefGoogle Scholar
  92. Laverdiere M, Hoban D, Restieri C, Habel F (2002) In vitro activity of three new triazoles and one echinocandin against Candida bloodstream isolates from cancer patients. J Antimicrob Chemother 50:119–123PubMedCrossRefGoogle Scholar
  93. Lee SC, Kim SH, Park IH, Chung SY, Subhosh Chandra M, Choi YL (2010) Isolation, purification, and characterization of novel fengycin S from bacillus amyloliquefaciens LSC04 degrading-crude oil. Biotechnol Bioproc Eng 15:246–253CrossRefGoogle Scholar
  94. Liu J, Liu M, Wang J, Yao JM, Pan RR, Yu ZL (2005) Enhancement of the Gibberella zeae growth inhibitory lipopeptides from a Bacillus subtilis mutant by ion beam implantation. Appl Microbiol Biotechnol 69:223–228PubMedCrossRefGoogle Scholar
  95. Liu XY, Yang SZ, Mu BZ (2008) Isolation and characterization of a C12-lipopeptide produced by Bacillus subtilis HSO 121. J Pept Sci 14:864–875PubMedCrossRefGoogle Scholar
  96. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefGoogle Scholar
  97. Madureira A, Bergeron A, Lacroix C, Robin M, Rocha V, de Latour RP, Ferry C, Devergie A, Lapalu J, Gluckman E, Socié G, Ghannoum M, Ribaud P (2007) Breakthrough invasive aspergillosis in allogeneic haematopoietic stem cell transplant recipients treated with caspofungin. Int J Antimicrob Agents 30:551–554PubMedCrossRefGoogle Scholar
  98. Maertens J, Raad I, Petrikkos G, Boogaerts M, Selleslag D, Petersen FB, Sable CA, Kartsonis NA, Ngai A, Taylor A, Patterson TF, Denning DW, Walsh TJ (2004) Efficacy and safety of caspofungin for treatment of invasive aspergillosis in patients refractory to or intolerant of conventional antifungal therapy. Clin Infect Dis: Off Publ Infect Dis Soc Am 39:1563–1571Google Scholar
  99. Makovitzki A, Viterbo A, Brotman Y, Chet I, Shai Y (2007) Inhibition of fungal and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides. Appl Environ Microbiol 73:6629–6636PubMedPubMedCentralCrossRefGoogle Scholar
  100. Mandal SM, Barbosa AEAD, Franco OL (2013) Lipopeptides in microbial infection control: scope and reality for industry. Biotechnol Adv 31:338–345PubMedCrossRefGoogle Scholar
  101. Marco F, Pfaller MA, Messer SA, Jones RN (1998) Activity of MK-0991 (l-743,872), a new echinocandin, compared with those of LY303366 and four other antifungal agents tested against blood stream isolates of Candida spp. Diagn Microbiol Infect Dis 32:33–37PubMedCrossRefGoogle Scholar
  102. Mariné M, Serena C, Pastor J, Quindós G, Carrillo AJ, Guarro J (2007) In vitro activity of micafungin combined with itraconazole against Candida spp. Int J Antimicrob Agents 30:463–465PubMedCrossRefGoogle Scholar
  103. Marr KA, Seidel K, Slavin MA, Bowden RA, Schoch HG, Flowers ME, Corey L, Boeckh M (2000) Prolonged fluconazole prophylaxis is associated with persistent protection against candidiasis-related death in allogeneic marrow transplant recipients: long-term follow-up of a randomized, placebo-controlled trial. Blood 96:2055–2061PubMedGoogle Scholar
  104. Matsumoto Y, Dogru M, Goto E, Fujishima H, Tsubota K (2005) Successful topical application of a new antifungal agent, micafungin, in the treatment of refractory fungal corneal ulcers: report of three cases and literature review. Cornea 24:748–753PubMedCrossRefGoogle Scholar
  105. Mátyus E, Blaskó K, Fidy J, Tieleman DP (2008) Structure and dynamics of the antifungal molecules Syringotoxin-B and Syringopeptin-25A from molecular dynamics simulation. Eur Biophys J 37:495–502PubMedCrossRefGoogle Scholar
  106. Mazzola M, De Bruijn I, Cohen MF, Raaijmakers JM (2009) Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Appl Environ Microbiol 75:6804–6811PubMedPubMedCentralCrossRefGoogle Scholar
  107. McSpadden Gardener BB (2004) Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94:1252–1258PubMedCrossRefGoogle Scholar
  108. Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O’Grady NP, Raad II, Rijnders BJA, Sherertz RJ, Warren DK (2009) Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 49:1–45PubMedPubMedCentralCrossRefGoogle Scholar
  109. Messik F, Oberthür M (2013) Total synthesis of the antifungal agent echinocandin c. Angew Chem Int Ed Engl 52:5871–5875PubMedCrossRefGoogle Scholar
  110. Mikamo H, Sato Y, Tamaya T (2000) In vitro antifungal activity of FK463, a new water-soluble echinocandin-like lipopeptide. J Antimicrob Chemother 46:485–487PubMedCrossRefGoogle Scholar
  111. Molinaro A, Bedini E, Ferrara R, Lanzetta R, Parrilli M, Evidente A, Lo Cantore P, Iacobellis NS (2003) Structural determination of the O-specific chain of the lipopolysaccharide from the mushrooms pathogenic bacterium Pseudomonas tolaasii. Carbohydr Res 338:1251–1257PubMedCrossRefGoogle Scholar
  112. Moquet F, Mamoun M, Olivier JM (1996) Pseudomonas tolaasii and tolaasin: comparison of symptom induction on a wide range of Agaricus bisporus strains. FEMS Microbiol Lett 142:99–103CrossRefGoogle Scholar
  113. Mora-Duarte J, Betts R, Rotstein C, Colombo AL, Thompson-Moya L, Smietana J, Lupinacci R, Sable C, Kartsonis N, Perfect J (2002) Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med 347:2020–2029PubMedCrossRefGoogle Scholar
  114. Moretti S, Bozza S, Massi-Benedetti C, Prezioso L, Rossetti E, Romani L, Aversa F, Pitzurra L (2014) An immunomodulatory activity of micafungin in preclinical aspergillosis. J Antimicrob Chemother 69:1065–1074PubMedCrossRefGoogle Scholar
  115. Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure-function relationship of lipopeptide biosurfactants. Biochim Biophys Acta – Mol Cell Biol Lipids 1488:211–218CrossRefGoogle Scholar
  116. Moyne AL, Shelby R, Cleveland TE, Tuzun S (2001) Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90:622–629PubMedCrossRefGoogle Scholar
  117. Nakai T, Uno J, Otomo K, Ikeda F, Tawara S, Goto T, Nishimura K, Miyaji M (2002) In vitro activity of FK463, a novel lipopeptide antifungal agent, against a variety of clinically important molds. Chemotherapy 48:78–81PubMedCrossRefGoogle Scholar
  118. Naruse N, Tenmyo O, Kobaru S, Kamei H, Miyaki T, Konishi M, Oki T (1990) Pumilacidin, a complex of new antiviral antibiotics. Production, isolation, chemical properties, structure and biological activity. J Antibiot (Tokyo) 43:267–280CrossRefGoogle Scholar
  119. Ngai AL, Bourque MR, Lupinacci RJ, Strohmaier KM, Kartsonis NA (2011) Overview of safety experience with caspofungin in clinical trials conducted over the first 15 years: a brief report. Int J Antimicrob Agents 38:540–544PubMedCrossRefGoogle Scholar
  120. Nielsen TH, Sørensen J (2003) Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl Environ Microbiol 69:861–868PubMedPubMedCentralCrossRefGoogle Scholar
  121. Nielsen TH, Christophersen C, Anthoni U, Sørensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 87:80–90PubMedCrossRefGoogle Scholar
  122. Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sørensen J (2000) Structure, production characteristics and fun gel antagonism of tensin – a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001PubMedCrossRefGoogle Scholar
  123. Nihorimbere V, Fickers P, Thonart P, Ongena M (2009) Ecological fitness of Bacillus subtilis BGS3 regarding production of the surfactin lipopeptide in the rhizosphere. Environ Microbiol Rep 1:124–130PubMedCrossRefGoogle Scholar
  124. Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, Ongena M (2012) Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol 79:176–191PubMedCrossRefGoogle Scholar
  125. Nishiyama Y, Uchida K, Yamaguchi H (2002) Morphological changes of Candida albicans induced by micafungin (FK463), a water-soluble echinocandin-like lipopeptide. J Electron Microsc (Tokyo) 51:247–255CrossRefGoogle Scholar
  126. Niwa T, Yokota Y, Tokunaga A, Yamato Y, Kagayama A, Fujiwara T, Hatakeyama J, Anezaki M, Ohtsuka Y, Takagi A (2004) Tissue distribution after intravenous dosing of micafungin, an antifungal drug, to rats. Biol Pharm Bull 27:1154–1156PubMedCrossRefGoogle Scholar
  127. Nutkins JC, Mortishire-Smith RJ, Packman LC, Brodey CL, Rainey PB, Johnstone K, Williams DH (1991) Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogen, Pseudomonas tolaasii Paine. J Am Chem Soc 113:2621–2627CrossRefGoogle Scholar
  128. Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38PubMedCrossRefGoogle Scholar
  129. Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, Douglas C, Abruzzo G, Flattery A, Kong L, Cabello A, Vicente F, Pelaez F, Diez MT, Martin I, Bills G, Giacobbe R, Dombrowski A, Schwartz R, Morris S, Harris G, Tsipouras A, Wilson K, Kurtz MB (2000) Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 44:368–377PubMedPubMedCentralCrossRefGoogle Scholar
  130. Ostrosky-Zeichner L, Rex JH, Pappas PG, Hamill RJ, Larsen RA, Horowitz HW, Powderly WG, Hyslop N, Kauffman CA, Cleary J, Mangino JE, Lee J (2003) Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States. Antimicrob Agents Chemother 47:3149–3154PubMedPubMedCentralCrossRefGoogle Scholar
  131. Ota S, Tanaka J, Kahata K, Toubai T, Kondo K, Mori A, Toyoshima N, Musashi M, Asaka M, Imamura M (2004) Successful micafungin (FK463) treatment of invasive pulmonary aspergillosis in a patient with acute lymphoblastic leukemia in a phase II study. Int J Hematol 79:390–393PubMedCrossRefGoogle Scholar
  132. Pal KK, McSpadden Gardener B (2006) Biological control of plant pathogens. Plant Health Instr 2:1117–1142Google Scholar
  133. Pedras MSC, Ismaila N, Quail JW, Boyetchko SM (2003) Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the biocontrol bacterium Pseudomonas fluorescens. Phytochemistry 62:1105–1114PubMedCrossRefGoogle Scholar
  134. Pérez-García A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193PubMedCrossRefGoogle Scholar
  135. Petraitis V, Petraitiene R, Groll AH, Roussillon K, Hemmings M, Lyman CA, Sein T, Bacher J, Bekersky I, Walsh TJ (2002) Comparative antifungal activities and plasma pharmacokinetics of micafungin (FK463) against disseminated candidiasis and invasive pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother 46:1857–1869PubMedPubMedCentralCrossRefGoogle Scholar
  136. Pettengell K, Mynhardt J, Kluyts T, Lau W, Facklam D, Buell D, Baraldi E, Botes ME, Kluyts T, Malan DM, Elizabeth P, Mynhardt J, Pettengell K, Ross D, Smego RA, Soni P, Van Der Westhuizen IP, Marais C, Webber C, Lau W, Facklam D, Buell D (2004) Successful treatment of oesophageal candidiasis by micafungin: a novel systemic antifungal agent. Aliment Pharmacol Ther 20:475–481PubMedCrossRefGoogle Scholar
  137. Peypoux F, Besson F, Michel G, Delcambe L (1981) Structure of bacillomycin D, a new antibiotic of the iturin group. Eur J Biochem 118:323–327PubMedCrossRefGoogle Scholar
  138. Peypoux F, Pommier MT, Das BC, Besson F, Delcambe L, Michel G (1984) Structures of bacillomycin D and bacillomycin L peptidolipid antibiotics from Bacillus subtilis. J Antibiot (Tokyo) 37:1600–1604CrossRefGoogle Scholar
  139. Peypoux F, Marion D, Maget-Dana R, Ptak M, Das BC, Michel G (1985) Structure of bacillomycin F, a new peptidolipid antibiotic of the iturin group. Eur J Biochem 153:335–340PubMedCrossRefGoogle Scholar
  140. Peypoux F, Pommier MT, Marion D, Ptak M, Das BC, Michel G (1986) Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J Antibiot (Tokyo) 39:636–641CrossRefGoogle Scholar
  141. Pfaller MA, Marco F, Messer SA, Jones RN (1998) In vitro activity of two echinocandin derivatives, LY303366 and MK-0991 (L-743,792), against clinical isolates of Aspergillus, Fusarium, Rhizopus, and other filamentous fungi. Diagn Microbiol Infect Dis 30:251–255PubMedCrossRefGoogle Scholar
  142. Powles MA, Liberator P, Anderson J, Karkhanis Y, Dropinski JF, Bouffard FA, Balkovec JM, Fujioka H, Aikawa M, Mcfadden D, Schmatz D (1998) Efficacy of MK-991 (L-743,872), a semisynthetic pneumocandin, in murine models of Pneumocystis carinii. Antimicrob Agents Chemother 42:1985–1989PubMedPubMedCentralGoogle Scholar
  143. Raaijmakers JM, de Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062PubMedCrossRefGoogle Scholar
  144. Rainey P, Brodey C, Johnstone K (1991) Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii. Physiol Mol Plant 39:57–70CrossRefGoogle Scholar
  145. Rao M, Wei W, Ge M, Chen D, Sheng X (2013) A new antibacterial lipopeptide found by UPLC-MS from an actinomycete Streptomyces sp. HCCB10043. Nat Prod Res 27:2190–2195PubMedCrossRefGoogle Scholar
  146. Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–553PubMedCrossRefGoogle Scholar
  147. Robbel L, Marahiel MA (2010) Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. J Biol Chem 285:27501–27508PubMedPubMedCentralCrossRefGoogle Scholar
  148. Rodriguez MJ, Vasudevan V, Jamison JA, Borromeo PS, Turner WW (1999) The synthesis of water soluble prodrugs analogs of echinocandin B. Bioorg Med Chem Lett 9:1863–1868PubMedCrossRefGoogle Scholar
  149. Romero D, De Vicente A, Olmos JL, Dávila JC, Pérez-García A (2007a) Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. J Appl Microbiol 103:969–976PubMedCrossRefGoogle Scholar
  150. Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening J-W, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A (2007b) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440PubMedCrossRefGoogle Scholar
  151. Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2002) Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: Bacillomycin L, plipastatin, and surfactin. Extremophiles 6:499–506PubMedCrossRefGoogle Scholar
  152. Rückert C, Blom J, Chen X, Reva O, Borriss R (2011) Genome sequence of B. amyloliquefaciens type strain DSM7T reveals differences to plant-associated B. amyloliquefaciens FZB42. J Biotechnol 155:78–85PubMedCrossRefGoogle Scholar
  153. Segre A, Bachmann RC, Ballio A, Bossa F, Grgurina I, Iacobellis NS, Marino G, Pucci P, Simmaco M, Takemoto JY (1989) The structure of syringomycins A1, E and G. FEBS Lett 255:27–31PubMedCrossRefGoogle Scholar
  154. Shamala N, Row TNG, Venkatesan K (1976) Crystal and molecular structure of allo-4-hydroxy-L-proline dihydrate. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem B32:3267–3270Google Scholar
  155. Sionov E, Mendlovic S, Segal E (2006) Efficacy of amphotericin B or amphotericin B-intralipid in combination with caspofungin against experimental aspergillosis. J Infect 53:131–139PubMedCrossRefGoogle Scholar
  156. Sobel JD, Kauffman CA, McKinsey D, Zervos M, Vazquez JA, Karchmer AW, Lee J, Thomas C, Panzer H, Dismukes WE (2000) Candiduria: a randomized, double-blind study of treatment with fluconazole and placebo. The National Institute of Allergy and Infectious Diseases (NIAID) Mycoses Study Group. Clin Infect Dis 30:19–24PubMedCrossRefGoogle Scholar
  157. Soler-Rivas C, Arpin N (1999) The effects of tolaasin, the toxin produced by Pseudomonas tolaasii on tyrosinase activities and the induction of browning in Agaricus bisporus fruiting. Mol Plant 55:21–28Google Scholar
  158. Song Y-C, Chou A-H, Homhuan A, Huang M-H, Chiang S-K, Shen K-Y, Chuang P-W, Leng C-H, Tao M-H, Chong P, Liu S-J (2011) Presentation of lipopeptide by dendritic cells induces anti-tumor responses via an endocytosis-independent pathway in vivo. J Leukoc Biol 90:323–332PubMedCrossRefGoogle Scholar
  159. Song YC, Liu HH, Chen IH, Chen HW, Chong P, Leng CH, Liu SJ (2014) A purified recombinant lipopeptide as adjuvant for cancer immunotherapy. Biomed Res Int 2014:349783PubMedPubMedCentralGoogle Scholar
  160. Sørensen D, Nielsen TH, Christophersen C, Sørensen J, Gajhede M (2001) Cyclic lipoundecapeptide amphisin from Pseudomonas sp. strain DSS73. Acta Crystallogr C Cryst Struct Commun 57:1123–1124CrossRefGoogle Scholar
  161. Spadaro D, Gullino ML (2005) Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot 24:601–613CrossRefGoogle Scholar
  162. Spreghini E, Orlando F, Sanguinetti M, Posteraro B, Giannini D, Manso E, Barchiesia F (2012) Comparative effects of micafungin, caspofungin, and anidulafungin against a difficult-to-treat fungal opportunistic pathogen, Candida glabrata. Antimicrob Agents Chemother 56:1215–1222PubMedPubMedCentralCrossRefGoogle Scholar
  163. Stachelhaus T, Schneider A, Marahiel MA (1995) Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269:69–72PubMedCrossRefGoogle Scholar
  164. Sucher AJ, Chahine EB, Balcer HE (2009) Echinocandins: the newest class of antifungals. Ann Pharmacother 43:1647–1657PubMedCrossRefGoogle Scholar
  165. Sun X, Zeckner DJ, Current WL, Boyer R, McMillian C, Yumibe N, Chen SH (2001) N-acyloxymethyl carbamate linked prodrugs of pseudomycins are novel antifungal agents. Bioorg Med Chem Lett 11:1875–1879PubMedCrossRefGoogle Scholar
  166. Tareq FS, Lee MA, Lee HS, Lee YJ, Lee JS, Hasan CM, Islam MT, Shin HJ (2014) Gageotetrins A-C, noncytotoxic antimicrobial linear lipopeptides from a marine bacterium bacillus subtilis. Org Lett 16:928–931PubMedCrossRefGoogle Scholar
  167. Tawara S, Ikeda F, Maki K, Morishita Y, Otomo K, Teratani N, Goto T, Tomishima M, Ohki H, Yamada A, Kawabata K, Takasugi H, Sakane K, Tanaka H, Matsumoto F, Kuwahara S (2000) In vitro activities of a new lipopeptide antifungal agent, FK463, against a variety of clinically important fungi. Antimicrob Agents Chemother 44:57–62PubMedPubMedCentralCrossRefGoogle Scholar
  168. Tendulkar SR, Saikumari YK, Patel V, Raghotama S, Munshi TK, Balaram P, Chattoo BB (2007) Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J Appl Microbiol 103:2331–2339PubMedCrossRefGoogle Scholar
  169. Tenoux I, Besson F, Michel G (1991) Studies on the antifungal antibiotics: bacillomycin D and bacillomycin D methylester. Microbios 67:187–193PubMedGoogle Scholar
  170. Thrane C, Olsson S, Harder Nielsen T, Sørensen J (1999) Vital fluorescent stains for detection of stress in Pythium ultimum and Rhizoctonia solani challenged with viscosinamide from Pseudomonas fluorescens DR54. FEMS Microbiol Ecol 30:11–23CrossRefGoogle Scholar
  171. Thrane C, Harder Nielsen T, Neiendam Nielsen M, Sørensen J, Olsson S (2000) Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol Ecol 33:139–146PubMedCrossRefGoogle Scholar
  172. Tóth V, Nagy CT, Pócsi I, Emri T (2012) The echinocandin B producer fungus Aspergillus nidulans var. roseus ATCC 58397 does not possess innate resistance against its lipopeptide antimycotic. Appl Microbiol Biotechnol 95:113–122PubMedCrossRefGoogle Scholar
  173. Tran H, Ficke A, Asiimwe T, Höfte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide a in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742PubMedCrossRefGoogle Scholar
  174. Tsan P, Volpon L, Besson F, Lancelin JM (2007) Structure and dynamics of surfactin studied by NMR in micellar media. J Am Chem Soc 129:1968–1977PubMedCrossRefGoogle Scholar
  175. Uchida K, Nishiyama Y, Yokota N, Yamaguchi H (2000) In vitro antifungal activity of a novel lipopeptide antifungal agent, FK463, against various fungal pathogens. J Antibiot (Tokyo) 53:1175–1181CrossRefGoogle Scholar
  176. Ullmann AJ, Cornely OA, Donnelly JP, Akova M, Arendrup MC, Arikan-Akdagli S, Bassetti M, Bille J, Calandra T, Castagnola E, Garbino J, Groll AH, Herbrecht R, Hope WW, Jensen HE, Kullberg BJ, Lass-Flörl C, Lortholary O, Meersseman W, Petrikkos G, Richardson MD, Roilides E, Verweij PE, Viscoli C, Cuenca-Estrella M (2012) ESCMID guideline for the diagnosis and management of Candida diseases 2012: developing European guidelines in clinical microbiology and infectious diseases. Clin Microbiol Infect 18:1–8PubMedCrossRefGoogle Scholar
  177. Van Burik J-AH, Ratanatharathorn V, Stepan DE, Miller CB, Lipton JH, Vesole DH, Bunin N, Wall DA, Hiemenz JW, Satoi Y, Lee JM, Walsh TJ (2004) Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation. Clin Infect Dis 39:1407–1416PubMedCrossRefGoogle Scholar
  178. Vanittanakom N, Loeffler W (1986) Fengycin – a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot (Tokyo) XXXIX:888–901CrossRefGoogle Scholar
  179. Vazquez JA, Lynch M, Boikov D, Sobel JD (1997) In vitro activity of a new pneumocandin antifungal, L-743,872, against azole-susceptible and -resistant Candida species. Antimicrob Agents Chemother 41:1612–1614PubMedPubMedCentralGoogle Scholar
  180. Vicente MF, Basilio A, Cabello A, Peláez F (2003) Microbial natural products as a source of antifungals. Clin Microbiol Infect 9:15–32PubMedCrossRefGoogle Scholar
  181. Wiederhold NP, Cota JM, Frei CR (2008) Micafungin in the treatment of invasive candidiasis and invasive aspergillosis. Infect Drug Resist 1:63–77PubMedGoogle Scholar
  182. Wilson Quail J, Ismail N, Soledade M, Pedras C, Boyetchko SM (2002) Pseudophomins A and B, a class of cyclic lipodepsipeptides isolated from a Pseudomonas species. Acta Crystallogr C Cryst Struct Commun 58:o268–o271CrossRefGoogle Scholar
  183. Yang P, Sun Z x, Liu S y, Lu H x, Zhou Y, Sun M (2013) Combining antagonistic endophytic bacteria in different growth stages of cotton for control of Verticillium wilt. Crop Prot 47:17–23CrossRefGoogle Scholar
  184. Yaryura PM, León M, Correa OS, Kerber NL, Pucheu NL, García AF (2008) Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by Bacillus amyloliquefaciens BNM339. Curr Microbiol 56:625–632PubMedCrossRefGoogle Scholar
  185. Yokote T, Akioka T, Oka S, Fujisaka T, Yamano T, Hara S, Tsuji M, Hanafusa T (2004) Successful treatment with micafungin of invasive pulmonary aspergillosis in acute myeloid leukemia, with renal failure due to amphotericin B therapy. Ann Hematol 83:64–66PubMedCrossRefGoogle Scholar
  186. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395PubMedCrossRefGoogle Scholar
  187. Zhang JC, Dai JY, Fan J, Wu XP (2006) The treatment of pneumocystis Carinii pneumonia with caspofungin in elderly patients: a case report and literature review. Zhonghua Jie He He Hu Xi Za Zhi 29:463–465PubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.MTCC and Gene BankCSIR-Institute of Microbial TechnologyChandigarhIndia

Personalised recommendations