Skip to main content

Antifungal Peptides with Potential Against Pathogenic Fungi

  • Chapter
  • First Online:
Recent Trends in Antifungal Agents and Antifungal Therapy

Abstract

Systemic fungal infections have increased over time due to the rise in the at-risk population, which includes immunocompromised patients, those submitted to organ transplantation or undergoing chemotherapy. Clinically available antifungals are limited since some of them have important side effects, being toxic to the host cells, and some can quell filamentous fungi, but their activity against pathogenic yeasts is not killing but controlling their multiplication. Antimicrobial peptides are multifunctional molecules expressed by several microorganisms or synthetized by different techniques. They can play a central role in infection and inflammation. Some of their other effects include chemotactic and immunomodulating activities and wound repair. Antimicrobial peptides (AMPs) can be isolated from a large variety of microorganisms, such as plants, vertebrates, insects, bacteria, and fungi. They are classified into categories according to their amino acid composition, size, and conformational structures, and naturally occurring peptides can be synthetized. Solid-phase peptide synthesis allows the use of nonproteinogenic amino acids and permits changes in structural and physicochemical properties. In these terms, peptide engineering is a useful tool to adjust features such as net charge, surface hydrophobicity, and polarity, and it may also optimize activity and overcome the limitations inherent to natural peptides. AMPs have potential applications in antifungal therapeutics in human health, and recent uses of synthetic AMPs against fungal infections are discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABP-dHC:

Antimicrobial peptide drury Hyphantria cunea

AIDS:

Acquired immune deficiency syndrome

AMPs:

Antimicrobial peptides

ATP:

Adenosine triphosphate

BMAP:

Bovine myeloid antimicrobial peptides

DNA:

Desoxyribonucleic acid

EDMC:

Electrostatically driven Monte Carlo

FDA:

US Food and Drug Administration

GPI:

Glycosylphosphatidylinositol

HIV:

Human immunodeficiency virus

hLF:

Human lactoferrin

HNP:

Human neutrophils peptides

HP:

Human defensins

MDR:

Multidrug-resistant

MPTP:

Mitochondrial permeability forming transition pores

PI:

Propidium iodate

PMAP:

Porcine myeloid antimicrobial peptide

SMAP:

Sheep myeloid antimicrobial peptide

References

  • Abdel-Wahab YH, Patterson S, Flatt PR, Conlon JM (2010) Brevinin-2-related peptide and its [D4K] analogue stimulate insulin release in vitro and improve glucose tolerance in mice fed a high fat diet. Hormone Metabol Res Horm Stoffwechselforschung Horm Metab 42(9):652–656. doi:10.1055/s-0030-1254126

    Article  CAS  Google Scholar 

  • Alekseeva L, Huet D, Femenia F, Mouyna I, Abdelouahab M, Cagna A et al (2009) Inducible expression of beta defensins by human respiratory epithelial cells exposed to Aspergillus fumigatus organisms. BMC Microbiol 9:33. doi:10.1186/1471-2180-9-33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arora R, Gupta D, Goyal J, Kaur R (2011) Voriconazole versus natamycin as primary treatment in fungal corneal ulcers. Clin Experiment Ophthalmol 39(5):434–440. doi:10.1111/j.1442-9071.2010.02473.x

    Article  PubMed  Google Scholar 

  • Baev D, Li X, Edgerton M (2001) Genetically engineered human salivary histatin genes are functional in Candida albicans: development of a new system for studying histatin candidacidal activity. Microbiology 147(Pt 12):3323–3334

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Liu S, Jiang P, Zhou L, Li J, Tang C et al (2009) Structure-dependent charge density as a determinant of antimicrobial activity of peptide analogues of defensin. Biochemistry 48(30):7229–7239. doi:10.1021/bi900670d

    Article  CAS  PubMed  Google Scholar 

  • Barbault F, Landon C, Guenneugues M, Meyer JP, Schott V, Dimarcq JL et al (2003) Solution structure of Alo-3: a new knottin-type antifungal peptide from the insect Acrocinus longimanus. Biochemistry 42(49):14434–14442. doi:10.1021/bi035400o

    Article  CAS  PubMed  Google Scholar 

  • Benincasa M, Scocchi M, Pacor S, Tossi A, Nobili D, Basaglia G et al (2006) Fungicidal activity of five cathelicidin peptides against clinically isolated yeasts. J Antimicrob Chemother 58(5):950–959. doi:10.1093/jac/dkl382

    Article  CAS  PubMed  Google Scholar 

  • Blondelle SE, Lohner K (2010) Optimization and high-throughput screening of antimicrobial peptides. Curr Pharm Des 16(28):3204–3211

    Article  CAS  PubMed  Google Scholar 

  • Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays: News Rev Mol Cell Dev Biol 28(8):799–808. doi:10.1002/bies.20441

    Article  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. doi:10.1038/nrmicro1098

    Article  CAS  PubMed  Google Scholar 

  • Carotenuto A, Malfi S, Saviello MR, Campiglia P, Gomez-Monterrey I, Mangoni ML et al (2008) A different molecular mechanism underlying antimicrobial and hemolytic actions of temporins A and L. J Med Chem 51(8):2354–2362. doi:10.1021/jm701604t

    Article  CAS  PubMed  Google Scholar 

  • Chae JH, Kurokawa K, So YI, Hwang HO, Kim MS, Park JW et al (2012) Purification and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor. Dev Comp Immunol 36(3):540–546. doi:10.1016/j.dci.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  • Charlton ST, Whetstone J, Fayinka ST, Read KD, Illum L, Davis SS (2008) Evaluation of direct transport pathways of glycine receptor antagonists and an angiotensin antagonist from the nasal cavity to the central nervous system in the rat model. Pharm Res 25(7):1531–1543. doi:10.1007/s11095-008-9550-2

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Wu S, Li X, Zhang X, Yan M (2011) [Structure, function and molecular design strategies of antibacterial peptide SMAP-29: a review]. Sheng Wu Gong Cheng Xue Bao Chin J Biotechnol 27(6):846–859

    CAS  Google Scholar 

  • Conlon JM, Sonnevend A, Patel M, Davidson C, Nielsen PF, Pal T et al (2003) Isolation of peptides of the brevinin-1 family with potent candidacidal activity from the skin secretions of the frog Rana boylii. J Pept Res 62(5):207–213

    Article  CAS  PubMed  Google Scholar 

  • Da Silva P, Jouvensal L, Lamberty M, Bulet P, Caille A, Vovelle F (2003) Solution structure of termicin, an antimicrobial peptide from the termite Pseudacanthotermes spiniger. Protein Sci: Publ Protein Soc 12(3):438–446. doi:10.1110/ps.0228303

    Article  CAS  Google Scholar 

  • Dawson RM, Liu CQ (2010) Disulphide bonds of the peptide protegrin-1 are not essential for antimicrobial activity and haemolytic activity. Int J Antimicrob Agents 36(6):579–580. doi:10.1016/j.ijantimicag.2010.08.011

    Article  CAS  PubMed  Google Scholar 

  • Dawson RM, Liu CQ (2011) Analogues of peptide SMAP-29 with comparable antimicrobial potency and reduced cytotoxicity. Int J Antimicrob Agents 37(5):432–437. doi:10.1016/j.ijantimicag.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  • Day CL, Anderson BF, Tweedie JW, Baker EN (1993) Structure of the recombinant N-terminal lobe of human lactoferrin at 2.0 A resolution. J Mol Biol 232(4):1084–1100. doi:10.1006/jmbi.1993.1462

    Article  CAS  PubMed  Google Scholar 

  • De Lucca AJ, Bland JM, Jacks TJ, Grimm C, Cleveland TE, Walsh TJ (1997) Fungicidal activity of cecropin A. Antimicrob Agents Chemother 41(2):481–483

    Google Scholar 

  • De Lucca AJ, Bland JM, Vigo CB, Jacks TJ, Peter J, Walsh TJ (2000) D-cecropin B: proteolytic resistance, lethality for pathogenic fungi and binding properties. Med Mycol 38(4):301–308

    Article  PubMed  Google Scholar 

  • De Smet K, Contreras R (2005) Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 27(18):1337–1347. doi:10.1007/s10529-005-0936-5

    Article  PubMed  CAS  Google Scholar 

  • Del Sal G, Storici P, Schneider C, Romeo D, Zanetti M (1992) cDNA cloning of the neutrophil bactericidal peptide indolicidin. Biochem Biophys Res Commun 187(1):467–472

    Article  PubMed  Google Scholar 

  • den Hertog AL, van Marle J, van Veen HA, Van’t Hof W, Bolscher JG, Veerman EC et al (2005) Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J 388(Pt 2):689–695. doi:10.1042/BJ20042099

    Google Scholar 

  • den Hertog AL, van Marle J, Veerman EC, Valentijn-Benz M, Nazmi K, Kalay H et al (2006) The human cathelicidin peptide LL-37 and truncated variants induce segregation of lipids and proteins in the plasma membrane of Candida albicans. Biol Chem 387(10–11):1495–1502. doi:10.1515/BC.2006.187

    Google Scholar 

  • Dhople V, Krukemeyer A, Ramamoorthy A (2006) The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim Biophys Acta 1758(9):1499–1512. doi:10.1016/j.bbamem.2006.07.007

    Article  CAS  PubMed  Google Scholar 

  • Driscoll J, Zuo Y, Xu T, Choi JR, Troxler RF, Oppenheim FG (1995) Functional comparison of native and recombinant human salivary histatin 1. J Dent Res 74(12):1837–1844

    Article  CAS  PubMed  Google Scholar 

  • Durr UH, Sudheendra US, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758(9):1408–1425. doi:10.1016/j.bbamem.2006.03.030

    Article  PubMed  CAS  Google Scholar 

  • Eckert R (2011) Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol 6(6):635–651. doi:10.2217/fmb.11.27

    Article  CAS  PubMed  Google Scholar 

  • Edgerton M, Koshlukova SE, Lo TE, Chrzan BG, Straubinger RM, Raj PA (1998) Candidacidal activity of salivary histatins. Identification of a histatin 5-binding protein on Candida albicans. J Biol Chem 273(32):20438–20447

    Article  CAS  PubMed  Google Scholar 

  • Fahrner RL, Dieckmann T, Harwig SS, Lehrer RI, Eisenberg D, Feigon J (1996) Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chem Biol 3(7):543–550

    Article  CAS  PubMed  Google Scholar 

  • Fanos V, Cataldi L (2001) Renal transport of antibiotics and nephrotoxicity: a review. J Chemother 13(5):461–472. doi:10.1179/joc.2001.13.5.461

    Article  CAS  PubMed  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL et al (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194. doi:10.1038/nature10947

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald DH, Coleman DC, O’Connell BC (2003) Binding, internalisation and degradation of histatin 3 in histatin-resistant derivatives of Candida albicans. FEMS Microbiol Lett 220(2):247–253

    Article  CAS  PubMed  Google Scholar 

  • Fjell CD, Hiss JA, Hancock RE, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11(1):37–51. doi:10.1038/nrd3591

    CAS  Google Scholar 

  • Fontaine T, Simenel C, Dubreucq G, Adam O, Delepierre M, Lemoine J et al (2000) Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem 275(36):27594–27607. doi:10.1074/jbc.M909975199

    CAS  PubMed  Google Scholar 

  • Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20(1):122–128. doi:10.1016/j.drudis.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  • Fox JL (2013) Antimicrobial peptides stage a comeback. Nat Biotechnol 31(5):379–382. doi:10.1038/nbt.2572

    Article  CAS  PubMed  Google Scholar 

  • Friedrich CL, Rozek A, Patrzykat A, Hancock RE (2001) Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. J Biol Chem 276(26):24015–24022. doi:10.1074/jbc.M009691200

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka T, Johnston DA, Winslow CA, de Groot MJ, Burt C, Hitchcock CA et al (2003) Genetic basis for differential activities of fluconazole and voriconazole against Candida krusei. Antimicrob Agents Chemother 47(4):1213–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrielska J, Gagos M, Gubernator J, Gruszecki WI (2006) Binding of antibiotic amphotericin B to lipid membranes: a 1H NMR study. FEBS Lett 580(11):2677–2685. doi:10.1016/j.febslet.2006.04.021

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3(9):710–720. doi:10.1038/nri1180

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (2005) Defensins and other antimicrobial peptides: a historical perspective and an update. Comb Chem High Throughput Screen 8(3):209–217

    Article  CAS  PubMed  Google Scholar 

  • Ganz T, Lehrer RI (1995) Defensins. Pharmacol Ther 66(2):191–205

    Article  CAS  PubMed  Google Scholar 

  • Garibotto FM, Garro AD, Masman MF, Rodriguez AM, Luiten PG, Raimondi M et al (2010) New small-size peptides possessing antifungal activity. Bioorg Med Chem 18(1):158–167. doi:10.1016/j.bmc.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  • Gennaro R, Zanetti M (2000) Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 55(1):31–49. doi:10.1002/1097-0282(2000)55:1<31::AID-BIP40>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  • Goraya J, Wang Y, Li Z, O’Flaherty M, Knoop FC, Platz JE et al (2000) Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur J Biochem/FEBS 267(3):894–900

    Article  CAS  Google Scholar 

  • Gupta V, Hwang BH, Lee J, Anselmo AC, Doshi N, Mitragotri S (2013) Mucoadhesive intestinal devices for oral delivery of salmon calcitonin. J Control Release: Off J Control Release Soc 172(3):753–762. doi:10.1016/j.jconrel.2013.09.004

    Article  CAS  Google Scholar 

  • Gyurko C, Lendenmann U, Troxler RF, Oppenheim FG (2000) Candida albicans mutants deficient in respiration are resistant to the small cationic salivary antimicrobial peptide histatin 5. Antimicrob Agents Chemother 44(2):348–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5(6):951–959. doi:10.1586/14787210.5.6.951

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Patrzykat A (2002) Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Targets Infect Disord 2(1):79–83

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Rozek A (2002) Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206(2):143–149

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Nijnik A, Philpott DJ (2012) Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol 10(4):243–254. doi:10.1038/nrmicro2745

    Article  CAS  PubMed  Google Scholar 

  • Hay DI (1975) Fractionation of human parotid salivary proteins and the isolation of an histidine-rich acidic peptide which shows high affinity for hydroxyapatite surfaces. Arch Oral Biol 20(9):553–558

    Article  CAS  PubMed  Google Scholar 

  • Helmerhorst EJ, Van’t Hof W, Veerman EC, Simoons-Smit I, Nieuw Amerongen AV (1997) Synthetic histatin analogues with broad-spectrum antimicrobial activity. Biochem J 326(Pt 1):39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmerhorst EJ, Reijnders IM, van’t Hof W, Simoons-Smit I, Veerman EC, Amerongen AV (1999a) Amphotericin B- and fluconazole-resistant Candida spp., Aspergillus fumigatus, and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides. Antimicrob Agents Chemother 43(3):702–704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Helmerhorst EJ, Breeuwer P, van’t Hof W, Walgreen-Weterings E, Oomen LC, Veerman EC et al (1999b) The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 274(11):7286–7291

    Article  CAS  PubMed  Google Scholar 

  • Helmerhorst EJ, Troxler RF, Oppenheim FG (2001) The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci U S A 98(25):14637–14642. doi:10.1073/pnas.141366998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmerhorst EJ, Murphy MP, Troxler RF, Oppenheim FG (2002) Characterization of the mitochondrial respiratory pathways in Candida albicans. Biochim Biophys Acta 1556(1):73–80

    Article  CAS  PubMed  Google Scholar 

  • Holt A, Killian JA (2010) Orientation and dynamics of transmembrane peptides: the power of simple models. Eur Biophys J: EBJ 39(4):609–621. doi:10.1007/s00249-009-0567-1

    Article  CAS  PubMed  Google Scholar 

  • Hsu CH, Chen C, Jou ML, Lee AY, Lin YC, Yu YP et al (2005) Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res 33(13):4053–4064. doi:10.1093/nar/gki725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hujakka H, Ratilainen J, Korjamo T, Lankinen H, Kuusela P, Santa H et al (2001) Synthesis and antimicrobial activity of the symmetric dimeric form of Temporin A based on 3-N, N-di(3-aminopropyl)amino propanoic acid as the branching unit. Bioorg Med Chem 9(6):1601–1607

    Article  CAS  PubMed  Google Scholar 

  • Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19(3):491–511. doi:10.1128/CMR.00056-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joly S, Maze C, McCray PB Jr, Guthmiller JM (2004) Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin Microbiol 42(3):1024–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahn A, Carey EJ, Blair JE (2014) Universal fungal prophylaxis and risk of coccidioidomycosis in liver transplant recipients living in an endemic area. Liver Transplant: Off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc. doi:10.1002/lt.24055

    Google Scholar 

  • Kaminski DM (2014) Recent progress in the study of the interactions of amphotericin B with cholesterol and ergosterol in lipid environments. Eur Biophys J: EBJ 43(10–11):453–467. doi:10.1007/s00249-014-0983-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaspar AA, Reichert JM (2013) Future directions for peptide therapeutics development. Drug Discov Today 18(17–18):807–817. doi:10.1016/j.drudis.2013.05.011

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh K, Dowd S (2004) Histatins: antimicrobial peptides with therapeutic potential. J Pharm Pharmacol 56(3):285–289. doi:10.1211/0022357022971

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Lee YT, Lee YJ, Chung JH, Lee BL, Choi BS et al (1998) Bacterial expression of tenecin 3, an insect antifungal protein isolated from Tenebrio molitor, and its efficient purification. Mol Cells 8(6):786–789

    CAS  PubMed  Google Scholar 

  • Kim DH, Lee DG, Kim KL, Lee Y (2001) Internalization of tenecin 3 by a fungal cellular process is essential for its fungicidal effect on Candida albicans. Eur J Biochem/FEBS 268(16):4449–4458

    Article  CAS  Google Scholar 

  • Knappe D, Henklein P, Hoffmann R, Hilpert K (2010) Easy strategy to protect antimicrobial peptides from fast degradation in serum. Antimicrob Agents Chemother 54(9):4003–4005. doi:10.1128/AAC.00300-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosciuczuk EM, Lisowski P, Jarczak J, Strzalkowska N, Jozwik A, Horbanczuk J et al (2012) Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep 39(12):10957–10970. doi:10.1007/s11033-012-1997-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshlukova SE, Lloyd TL, Araujo MW, Edgerton M (1999) Salivary histatin 5 induces non-lytic release of ATP from Candida albicans leading to cell death. J Biol Chem 274(27):18872–18879

    Article  CAS  PubMed  Google Scholar 

  • Koshlukova SE, Araujo MW, Baev D, Edgerton M (2000) Released ATP is an extracellular cytotoxic mediator in salivary histatin 5-induced killing of Candida albicans. Infect Immun 68(12):6848–6856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Chadha S, Saraswat D, Bajwa JS, Li RA, Conti HR et al (2011) Histatin 5 uptake by Candida albicans utilizes polyamine transporters Dur3 and Dur31 proteins. J Biol Chem 286(51):43748–43758. doi:10.1074/jbc.M111.311175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon MY, Hong SY, Lee KH (1998) Structure-activity analysis of brevinin 1E amide, an antimicrobial peptide from Rana esculenta. Biochim Biophys Acta 1387(1–2):239–248

    CAS  PubMed  Google Scholar 

  • Ladokhin AS, White SH (2001) ‘Detergent-like’ permeabilization of anionic lipid vesicles by melittin. Biochim Biophys Acta 1514(2):253–260

    Article  CAS  PubMed  Google Scholar 

  • Lakshminarayanan R, Liu S, Li J, Nandhakumar M, Aung TT, Goh E et al (2014) Synthetic multivalent antifungal peptides effective against fungi. PLoS One 9(2):e87730. doi:10.1371/journal.pone.0087730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamberty M, Zachary D, Lanot R, Bordereau C, Robert A, Hoffmann JA et al (2001) Insect immunity. Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J Biol Chem 276(6):4085–4092. doi:10.1074/jbc.M002998200

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Moon HJ, Kurata S, Natori S, Lee BL (1995) Purification and cDNA cloning of an antifungal protein from the hemolymph of Holotrichia diomphalia larvae. Biol Pharm Bull 18(8):1049–1052

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Kim DH, Park Y, Kim HK, Kim HN, Shin YK et al (2001) Fungicidal effect of antimicrobial peptide, PMAP-23, isolated from porcine myeloid against Candida albicans. Biochem Biophys Res Commun 282(2):570–574. doi:10.1006/bbrc.2001.4602

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Kim PI, Park Y, Park SC, Woo ER, Hahm KS (2002a) Antifungal mechanism of SMAP-29 (1–18) isolated from sheep myeloid mRNA against Trichosporon beigelii. Biochem Biophys Res Commun 295(3):591–596

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Kim PI, Park Y, Woo ER, Choi JS, Choi CH et al (2002b) Design of novel peptide analogs with potent fungicidal activity, based on PMAP-23 antimicrobial peptide isolated from porcine myeloid. Biochem Biophys Res Commun 293(1):231–238. doi:10.1016/S0006-291X(02)00222-X

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Kim HK, Kim SA, Park Y, Park SC, Jang SH et al (2003) Fungicidal effect of indolicidin and its interaction with phospholipid membranes. Biochem Biophys Res Commun 305(2):305–310

    Article  CAS  PubMed  Google Scholar 

  • Legrand D, Pierce A, Elass E, Carpentier M, Mariller C, Mazurier J (2008) Lactoferrin structure and functions. Adv Exp Med Biol 606:163–194. doi:10.1007/978-0-387-74087-4_6

    Article  CAS  PubMed  Google Scholar 

  • Lehrer RI, Ganz T, Szklarek D, Selsted ME (1988) Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest 81(6):1829–1835. doi:10.1172/JCI113527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levay PF, Viljoen M (1995) Lactoferrin: a general review. Haematologica 80(3):252–267

    CAS  PubMed  Google Scholar 

  • Li XS, Sun JN, Okamoto-Shibayama K, Edgerton M (2006) Candida albicans cell wall ssa proteins bind and facilitate import of salivary histatin 5 required for toxicity. J Biol Chem 281(32):22453–22463. doi:10.1074/jbc.M604064200

    Article  CAS  PubMed  Google Scholar 

  • Lim K, Chua RR, Ho B, Tambyah PA, Hadinoto K, Leong SS (2015) Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties. Acta Biomater 15:127–138. doi:10.1016/j.actbio.2014.12.015

    Article  CAS  PubMed  Google Scholar 

  • Liu AY, Destoumieux D, Wong AV, Park CH, Valore EV, Liu L et al (2002) Human beta-defensin-2 production in keratinocytes is regulated by interleukin-1, bacteria, and the state of differentiation. J Invest Dermatol 118(2):275–281. doi:10.1046/j.0022-202x.2001.01651.x

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Garcia B, Lee PH, Yamasaki K, Gallo RL (2005) Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J Invest Dermatol 125(1):108–115. doi:10.1111/j.0022-202X.2005.23713.x

    Article  CAS  PubMed  Google Scholar 

  • Lupetti A, Paulusma-Annema A, Welling MM, Senesi S, van Dissel JT, Nibbering PH (2000) Candidacidal activities of human lactoferrin peptides derived from the N terminus. Antimicrob Agents Chemother 44(12):3257–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangoni ML, Rinaldi AC, Di Giulio A, Mignogna G, Bozzi A, Barra D et al (2000) Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin. Eur J Biochem/FEBS 267(5):1447–1454

    Article  CAS  Google Scholar 

  • Marenah L, Flatt PR, Orr DF, McClean S, Shaw C, Abdel-Wahab YH (2004) Brevinin-1 and multiple insulin-releasing peptides in the skin of the frog Rana palustris. J Endocrinol 181(2):347–354

    Article  CAS  PubMed  Google Scholar 

  • Martinez J, Temesgen Z (2006) Opportunistic infections in patients with HIV and AIDS. Fungal and parasitic infections. J Med Liban Liban Med J 54(2):84–90

    Google Scholar 

  • Marukutira T, Huprikar S, Azie N, Quan SP, Meier-Kriesche HU, Horn DL (2014) Clinical characteristics and outcomes in 303 HIV-infected patients with invasive fungal infections: data from the Prospective Antifungal Therapy Alliance registry, a multicenter, observational study. Hiv/Aids 6:39–47. doi:10.2147/HIV.S53910

    PubMed  PubMed Central  Google Scholar 

  • Masman MF, Rodriguez AM, Raimondi M, Zacchino SA, Luiten PG, Somlai C et al (2009) Penetratin and derivatives acting as antifungal agents. Eur J Med Chem 44(1):212–228. doi:10.1016/j.ejmech.2008.02.019

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788(8):1687–1692. doi:10.1016/j.bbamem.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  • Maurya IK, Pathak S, Sharma M, Sanwal H, Chaudhary P, Tupe S et al (2011) Antifungal activity of novel synthetic peptides by accumulation of reactive oxygen species (ROS) and disruption of cell wall against Candida albicans. Peptides 32(8):1732–1740. doi:10.1016/j.peptides.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  • McNeil MM, Nash SL, Hajjeh RA, Phelan MA, Conn LA, Plikaytis BD et al (2001) Trends in mortality due to invasive mycotic diseases in the United States, 1980–1997. Clin Infect Dis: Off Publ Infect Dis Soc Am 33(5):641–647. doi:10.1086/322606

    Article  CAS  Google Scholar 

  • Milletti F (2012) Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17(15–16):850–860, doi:http://dx.doi.org/10.1016/j.drudis.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  • Moore A (2003) The big and small of drug discovery. EMBO Rep 4(2):114–117. doi:10.1038/sj.embor.embor748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morikawa N, Hagiwara K, Nakajima T (1992) Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem Biophys Res Commun 189(1):184–190

    Article  CAS  PubMed  Google Scholar 

  • Murakami Y, Nagata H, Shizukuishi S, Nakashima K, Okawa T, Takigawa M et al (1994) Histatin as a synergistic stimulator with epidermal growth factor of rabbit chondrocyte proliferation. Biochem Biophys Res Commun 198(1):274–280. doi:10.1006/bbrc.1994.1038

    Article  CAS  PubMed  Google Scholar 

  • Neville F, Ivankin A, Konovalov O, Gidalevitz D (2010) A comparative study on the interactions of SMAP-29 with lipid monolayers. Biochim Biophys Acta 1798(5):851–860. doi:10.1016/j.bbamem.2009.09.017

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LT, Schibli DJ, Vogel HJ (2005) Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin. J Pept Sci: Off Publ Eur Pept Soc 11(7):379–389. doi:10.1002/psc.629

    Article  CAS  Google Scholar 

  • Nguyen LT, Chau JK, Perry NA, de Boer L, Zaat SA, Vogel HJ (2010) Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS One 5(9):e12684. doi:10.1371/journal.pone.0012684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29(9):464–472, doi:http://dx.doi.org/10.1016/j.tibtech.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  • Novkovic M, Simunic J, Bojovic V, Tossi A, Juretic D (2012) DADP: the database of anuran defense peptides. Bioinformatics 28(10):1406–1407. doi:10.1093/bioinformatics/bts141

    Article  CAS  PubMed  Google Scholar 

  • Oppenheim FG, Yang YC, Diamond RD, Hyslop D, Offner GD, Troxler RF (1986) The primary structure and functional characterization of the neutral histidine-rich polypeptide from human parotid secretion. J Biol Chem 261(3):1177–1182

    CAS  PubMed  Google Scholar 

  • Oppenheim JJ, Biragyn A, Kwak LW, Yang D (2003) Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann Rheum Dis 62(Suppl 2):ii17–ii21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH (2010) An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 9(9):719–727. doi:10.1038/nrd3074

    Article  CAS  PubMed  Google Scholar 

  • Otvos L Jr, Wade JD (2014) Current challenges in peptide-based drug discovery. Front Chem 2:62. doi:10.3389/fchem.2014.00062

    PubMed  PubMed Central  Google Scholar 

  • Oudhoff MJ, Blaauboer ME, Nazmi K, Scheres N, Bolscher JG, Veerman EC (2010) The role of salivary histatin and the human cathelicidin LL-37 in wound healing and innate immunity. Biol Chem 391(5):541–548. doi:10.1515/BC.2010.057

    Article  CAS  PubMed  Google Scholar 

  • Pal T, Abraham B, Sonnevend A, Jumaa P, Conlon JM (2006) Brevinin-1BYa: a naturally occurring peptide from frog skin with broad-spectrum antibacterial and antifungal properties. Int J Antimicrob Agents 27(6):525–529. doi:10.1016/j.ijantimicag.2006.01.010

    Article  CAS  PubMed  Google Scholar 

  • Park SH, Kim HE, Kim CM, Yun HJ, Choi EC, Lee BJ (2002a) Role of proline, cysteine and a disulphide bridge in the structure and activity of the anti-microbial peptide gaegurin 5. Biochem J 368(Pt 1):171–182. doi:10.1042/BJ20020385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park K, Oh D, Shin SY, Hahm KS, Kim Y (2002b) Structural studies of porcine myeloid antibacterial peptide PMAP-23 and its analogues in DPC micelles by NMR spectroscopy. Biochem Biophys Res Commun 290(1):204–212. doi:10.1006/bbrc.2001.6173

    Article  CAS  PubMed  Google Scholar 

  • Pena OM, Afacan N, Pistolic J, Chen C, Madera L, Falsafi R et al (2013) Synthetic cationic peptide IDR-1018 modulates human macrophage differentiation. PLoS One 8(1):e52449. doi:10.1371/journal.pone.0052449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4(7):529–536. doi:10.1038/nrmicro1441

    Article  CAS  PubMed  Google Scholar 

  • Raj PA, Dentino AR (2002) Current status of defensins and their role in innate and adaptive immunity. FEMS Microbiol Lett 206(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Raj PA, Marcus E, Sukumaran DK (1998) Structure of human salivary histatin 5 in aqueous and nonaqueous solutions. Biopolymers 45(1):51–67. doi:10.1002/(sici)1097-0282(199801)45:1<51::aid-bip5>3.0.co;2-y

    Article  CAS  PubMed  Google Scholar 

  • Riciluca KC, Sayegh RS, Melo RL, Silva PI Jr (2012) Rondonin an antifungal peptide from spider (Acanthoscurria rondoniae) haemolymph. Results Immunol 2:66–71. doi:10.1016/j.rinim.2012.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risso A, Braidot E, Sordano MC, Vianello A, Macri F, Skerlavaj B et al (2002) BMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition pore. Mol Cell Biol 22(6):1926–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Cerdeira C, Arenas R, Moreno-Coutino G, Vasquez E, Fernandez R, Chang P (2014) Systemic fungal infections in patients with human immunodeficiency virus. Actas Dermosifiliogr 105(1):5–17. doi:10.1016/j.ad.2012.06.017

    Article  CAS  PubMed  Google Scholar 

  • Rollins-Smith LA, Carey C, Conlon JM, Reinert LK, Doersam JK, Bergman T et al (2003) Activities of temporin family peptides against the chytrid fungus (Batrachochytrium dendrobatidis) associated with global amphibian declines. Antimicrob Agents Chemother 47(3):1157–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothstein DM, Spacciapoli P, Tran LT, Xu T, Roberts FD, Dalla Serra M et al (2001) Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob Agents Chemother 45(5):1367–1373. doi:10.1128/aac.45.5.1367-1373.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roversi D, Luca V, Aureli S, Park Y, Mangoni ML, Stella L (2014) How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23. ACS Chem Biol 9(9):2003–2007. doi:10.1021/cb500426r

    Article  CAS  PubMed  Google Scholar 

  • Ryu JS, Cho AY, Seo SW, Min H (2014) Engineering bioactive peptide-based therapeutic molecules. Methods Mol Biol 1088:35–50. doi:10.1007/978-1-62703-673-3_3

    Article  CAS  PubMed  Google Scholar 

  • Sabatini LM, Azen EA (1989) Histatins, a family of salivary histidine-rich proteins, are encoded by at least two loci (HIS1 and HIS2). Biochem Biophys Res Commun 160(2):495–502

    Article  CAS  PubMed  Google Scholar 

  • Sachdeva V, Zhou Y, Banga AK (2013) In vivo transdermal delivery of leuprolide using microneedles and iontophoresis. Curr Pharm Biotechnol 14(2):180–193

    CAS  PubMed  Google Scholar 

  • Saravanan R, Joshi M, Mohanram H, Bhunia A, Mangoni ML, Bhattacharjya S (2013) NMR structure of temporin-1 ta in lipopolysaccharide micelles: mechanistic insight into inactivation by outer membrane. PLoS One 8(9):e72718. doi:10.1371/journal.pone.0072718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savelyeva A, Ghavami S, Davoodpour P, Asoodeh A, Los MJ (2014) An overview of Brevinin superfamily: structure, function and clinical perspectives. Adv Exp Med Biol 818:197–212. doi:10.1007/978-1-4471-6458-6_10

    Article  CAS  PubMed  Google Scholar 

  • Schoffelmeer EA, Klis FM, Sietsma JH, Cornelissen BJ (1999) The cell wall of Fusarium oxysporum. Fungal Genet Biol: FG & B 27(2–3):275–282. doi:10.1006/fgbi.1999.1153

    Article  CAS  Google Scholar 

  • Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6(6):551–557. doi:10.1038/ni1206

    Article  CAS  PubMed  Google Scholar 

  • Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 267(7):4292–4295

    CAS  PubMed  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462(1–2):55–70

    Article  CAS  PubMed  Google Scholar 

  • Shimamura M, Yamamoto Y, Ashino H, Oikawa T, Hazato T, Tsuda H et al (2004) Bovine lactoferrin inhibits tumor-induced angiogenesis. Int J Cancer J Int Cancer 111(1):111–116. doi:10.1002/ijc.20187

    Article  CAS  Google Scholar 

  • Shin SY, Park EJ, Yang ST, Jung HJ, Eom SH, Song WK et al (2001) Structure-activity analysis of SMAP-29, a sheep leukocytes-derived antimicrobial peptide. Biochem Biophys Res Commun 285(4):1046–1051. doi:10.1006/bbrc.2001.5280

    Article  CAS  PubMed  Google Scholar 

  • Simmaco M, Mignogna G, Canofeni S, Miele R, Mangoni ML, Barra D (1996) Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur J Biochem/FEBS 242(3):788–792

    Article  CAS  Google Scholar 

  • Situ H, Balasubramanian SV, Bobek LA (2000) Role of alpha-helical conformation of histatin-5 in candidacidal activity examined by proline variants. Biochim Biophys Acta 1475(3):377–382

    Article  CAS  PubMed  Google Scholar 

  • Skerlavaj B, Benincasa M, Risso A, Zanetti M, Gennaro R (1999) SMAP-29: a potent antibacterial and antifungal peptide from sheep leukocytes. FEBS Lett 463(1–2):58–62

    Article  CAS  PubMed  Google Scholar 

  • Steckbeck JD, Deslouches B, Montelaro RC (2014) Antimicrobial peptides: new drugs for bad bugs? Expert Opin Biol Ther 14(1):11–14. doi:10.1517/14712598.2013.844227

    Article  CAS  PubMed  Google Scholar 

  • Steiner H, Andreu D, Merrifield RB (1988) Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects. Biochim Biophys Acta 939(2):260–266

    Article  CAS  PubMed  Google Scholar 

  • Steinstraesser L, Kraneburg U, Jacobsen F, Al-Benna S (2011) Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology 216(3):322–333, doi:http://dx.doi.org/10.1016/j.imbio.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  • Steinstraesser L, Hirsch T, Schulte M, Kueckelhaus M, Jacobsen F, Mersch EA et al (2012) Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One 7(8):e39373. doi:10.1371/journal.pone.0039373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suarez-Carmona M, Hubert P, Delvenne P, Herfs M (2014) Defensins: “Simple” antimicrobial peptides or broad-spectrum molecules? Cytokine Growth Factor Rev. doi:10.1016/j.cytogfr.2014.12.005

    PubMed  Google Scholar 

  • Sugiyama K, Suzuki Y, Furuta H (1985) Isolation and characterization of histamine-releasing peptides from human parotid saliva. Life Sci 37(5):475–480

    Article  CAS  PubMed  Google Scholar 

  • Tack BF, Sawai MV, Kearney WR, Robertson AD, Sherman MA, Wang W et al (2002) SMAP-29 has two LPS-binding sites and a central hinge. Eur J Biochem/FEBS 269(4):1181–1189

    Article  CAS  Google Scholar 

  • Takahashi D, Shukla SK, Prakash O, Zhang G (2010) Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie 92(9):1236–1241, doi:http://dx.doi.org/10.1016/j.biochi.2010.02.023

    Article  CAS  PubMed  Google Scholar 

  • Tanida T, Okamoto T, Ueta E, Yamamoto T, Osaki T (2006) Antimicrobial peptides enhance the candidacidal activity of antifungal drugs by promoting the efflux of ATP from Candida cells. J Antimicrob Chemother 57(1):94–103. doi:10.1093/jac/dki402

    Article  CAS  PubMed  Google Scholar 

  • Theis T, Stahl U (2004) Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci: CMLS 61(4):437–455. doi:10.1007/s00018-003-3231-4

    Article  CAS  PubMed  Google Scholar 

  • Tielens AG, Rotte C, van Hellemond JJ, Martin W (2002) Mitochondria as we don’t know them. Trends Biochem Sci 27(11):564–572

    Article  CAS  PubMed  Google Scholar 

  • Tsai H, Bobek LA (1997) Human salivary histatin-5 exerts potent fungicidal activity against Cryptococcus neoformans. Biochim Biophys Acta (BBA) Gen Subj 1336(3):367–369, doi:http://dx.doi.org/10.1016/S0304-4165(97)00076-7

    Article  CAS  Google Scholar 

  • van der Weerden NL, Bleackley MR, Anderson MA (2013) Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci: CMLS 70(19):3545–3570. doi:10.1007/s00018-013-1260-1

    Article  PubMed  CAS  Google Scholar 

  • Viejo-Diaz M, Andres MT, Perez-Gil J, Sanchez M, Fierro JF (2003) Potassium efflux induced by a new lactoferrin-derived peptide mimicking the effect of native human lactoferrin on the bacterial cytoplasmic membrane. Biochem Biokhim 68(2):217–227

    Article  CAS  Google Scholar 

  • Viejo-Diaz M, Andres MT, Fierro JF (2004) Effects of human lactoferrin on the cytoplasmic membrane of Candida albicans cells related with its candidacidal activity. FEMS Immunol Med Microbiol 42(2):181–185. doi:10.1016/j.femsim.2004.04.005

    Article  CAS  PubMed  Google Scholar 

  • Wade D, Silberring J, Soliymani R, Heikkinen S, Kilpelainen I, Lankinen H et al (2000) Antibacterial activities of temporin A analogs. FEBS Lett 479(1–2):6–9

    Article  CAS  PubMed  Google Scholar 

  • Wang G (2008) Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 283(47):32637–32643. doi:10.1074/jbc.M805533200

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Nan YH, Yang ST, Kang SW, Kim Y, Park IS et al (2010) Cell selectivity and anti-inflammatory activity of a Leu/Lys-rich alpha-helical model antimicrobial peptide and its diastereomeric peptides. Peptides 31(7):1251–1261. doi:10.1016/j.peptides.2010.03.032

    Article  PubMed  CAS  Google Scholar 

  • Ward PP, Paz E, Conneely OM (2005) Multifunctional roles of lactoferrin: a critical overview. Cell Mol Life Sci: CMLS 62(22):2540–2548. doi:10.1007/s00018-005-5369-8

    Article  CAS  PubMed  Google Scholar 

  • Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis: Off Publ Infect Dis Soc Am 39(3):309–317. doi:10.1086/421946

    Article  Google Scholar 

  • Wong JH, Ye XJ, Ng TB (2013) Cathelicidins: peptides with antimicrobial, immunomodulatory, anti-inflammatory, angiogenic, anticancer and procancer activities. Curr Protein Pept Sci 14(6):504–514

    Article  CAS  PubMed  Google Scholar 

  • Wong-Beringer A, Jacobs RA, Guglielmo BJ (1998) Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis: Off Publ Infect Dis Soc Am 27(3):603–618

    Article  CAS  Google Scholar 

  • Wunder D, Dong J, Baev D, Edgerton M (2004) Human salivary histatin 5 fungicidal action does not induce programmed cell death pathways in Candida albicans. Antimicrob Agents Chemother 48(1):110–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Lai R (2015) The chemistry and biological activities of peptides from amphibian skin secretions. Chem Rev 115(4):1760–1846. doi:10.1021/cr4006704

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Ambudkar I, Yamagishi H, Swaim W, Walsh TJ, O’Connell BC (1999) Histatin 3-mediated killing of Candida albicans: effect of extracellular salt concentration on binding and internalization. Antimicrob Agents Chemother 43(9):2256–2262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Jung, H., Kim J (2009) Solution structure of BMAP-27. doi:10.2210/pdb2ket/pdb

  • Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81(3):1475–1485. doi:10.1016/S0006-3495(01)75802-X

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55. doi:10.1124/pr.55.1.2

    Article  CAS  PubMed  Google Scholar 

  • Yount NY, Bayer AS, Xiong YQ, Yeaman MR (2006) Advances in antimicrobial peptide immunobiology. Biopolymers 84(5):435–458. doi:10.1002/bip.20543

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Chai X, Wang Y, Cao Y, Zhang J, Wu Q et al (2014) Triazole derivatives with improved in vitro antifungal activity over azole drugs. Drug Des Devel Ther 8:383–390. doi:10.2147/DDDT.S58680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7(2):179–196

    CAS  PubMed  Google Scholar 

  • Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395. doi:10.1038/415389a

    Article  CAS  PubMed  Google Scholar 

  • Zhai B, Zhou H, Yang L, Zhang J, Jung K, Giam CZ et al (2010) Polymyxin B, in combination with fluconazole, exerts a potent fungicidal effect. J Antimicrob Chemother 65(5):931–938. doi:10.1093/jac/dkq046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Movahedi A, Xu J, Wang M, Wu X, Xu C et al (2015) In vitro production and antifungal activity of peptide ABP-dHC-cecropin A. J Biotechnol 199C:47–54. doi:10.1016/j.jbiotec.2015.02.018

    Article  CAS  Google Scholar 

  • Zhao L, Tolbert WD, Ericksen B, Zhan C, Wu X, Yuan W et al (2013) Single, double and quadruple alanine substitutions at oligomeric interfaces identify hydrophobicity as the key determinant of human neutrophil alpha defensin HNP1 function. PLoS One 8(11):e78937. doi:10.1371/journal.pone.0078937

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octávio L. Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Freitas, C.G., Franco, O.L. (2016). Antifungal Peptides with Potential Against Pathogenic Fungi. In: Basak, A., Chakraborty, R., Mandal, S. (eds) Recent Trends in Antifungal Agents and Antifungal Therapy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2782-3_3

Download citation

Publish with us

Policies and ethics