Skip to main content

Fungi Fights Fungi: Tip-off in Antifungal Chemotherapy

  • Chapter
  • First Online:
Recent Trends in Antifungal Agents and Antifungal Therapy

Abstract

Fungal infections have taken a new spectrum due to the increased incidence of multi-drug resistant fungal pathogens. Freedom of choice for drugs to treat fungal infections is also narrow because of lesser probability of discovering drugs that would bypass affecting human cells and target fungal cells producing fewer side effects in patients. An approach has gained prominence in research is to look for bioactive antifungal compounds from natural sources and discover new classes of antifungals to control the recent emergence of fungal infections. Most of antifungal drugs are originated from fungi. A conservative estimate of total number of fungal species on this planet would exceed 106 if taken into account the ones yet to be discovered from diverse habitats ranging from forest land to marine ecosystem. While attempting to summarize the status of reported fungi-derived antifungal compounds discovered since ancient times, the subset of such compounds were found to be anticancer too. Antifungal compounds with the promise of inducing challenge to rediscover the new effective molecules from drug prototype are also discussed.

Anupam Roy and Santi M. Mandal are equally contributed in literature survey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham WR, Arfmann H (1990) 12,13-Dihydroxy-fumitremorgin C from Aspergillus fumigatus. Phytochemistry 29:1025–1026

    Article  CAS  Google Scholar 

  • Akihiko F (2007) Discovery of micafungin (FK463): a novel antifungal drug derived from a natural product lead. Pure Appl Chem 79(4):603–614. doi:10.1351/pac200779040603 © IUPAC

  • Alfatafta AA, Gloer JB, Scott JA et al (1994) Apiosporamide, a new antifungal agent from the coprophilous fungus Apiospora montagnei. Nat Prod 57:1696–1702

    Article  CAS  Google Scholar 

  • Anke T, Oberwinkler F, Steglich W et al (1977) The strobilurins–new antibiotics from the basidiomycete Strobilurus tenacellus (Pers. ex Fr.) Sing. J Antibiot 30:806–810

    Article  CAS  PubMed  Google Scholar 

  • Anke T, Besl H, Mocek U et al (1983) Antibiotics from basidiomycetes. XVIII. Strobilurin C and oudemansin B, two new antifungal metabolites from Xerula species (agaricales). J Antibiot 36:661–666

    Article  CAS  PubMed  Google Scholar 

  • Arai T, Mikami Y, Fukushima K et al (1973) A new antibiotic, leucinostatin, derived from Penicillium lilacinum. J Antibiot 26:157–161

    Article  CAS  PubMed  Google Scholar 

  • Araujo OE, Flowers FP, King MK (1990) Griseofulvin: a new look at an old drug. DICP. Ann Pharmacother 24:851–854

    CAS  Google Scholar 

  • Aytoun RSC, Mcwilliam RW (1957) Mutants of the genus Penicillium. British Patent 788,118

    Google Scholar 

  • Balba H (2007) Review of strobilurin fungicide chemicals. J Environ Sci Health B 42:441–451

    Article  CAS  PubMed  Google Scholar 

  • Balkovec JM, Hughes DL, Masurekar PS et al (2014) Discovery and development of first in class antifungal caspofungin (CANCIDAS®) – a case study. Nat Prod Rep 31:15–34

    Article  CAS  PubMed  Google Scholar 

  • Baroni A, de Luca A, de Filippis A et al (2009) 3-O-methylfunicone, a metabolite of Penicillium pinophilum, inhibits proliferation of human melanoma cells by causing G(2) + M arrest and inducing apoptosis. Cell Prolif 42:541–553

    Article  CAS  PubMed  Google Scholar 

  • Bartlett DW, Clough JM, Godwin JR (2002) The strobilurin fungicides. Pest Manag Sci 58:649–662

    Article  CAS  PubMed  Google Scholar 

  • Benz F, Knüsel F, Nüesch J et al (1974) Stoffwechselprodukte von Mikroorganismen 143. Mitteilung. Echinocandin B, ein neuartiges Polypeptid- Antibioticum aus Aspergillus nidulans var. echinulatus: Isolierung und Bausteine. Helv Chim Acta 57:2459–2477

    Article  CAS  Google Scholar 

  • Bergstrom JD, Dufresne C, Bills GF et al (1995) Discovery, biosynthesis, and mechanism of action of the zaragozic acids: potent inhibitors of squalene synthase. Annu Rev Microbiol 49:607–639

    Article  CAS  PubMed  Google Scholar 

  • Betina V, Nemec P, Dobias J et al (1962) Cyanein, a new antibiotic from Penicillium cyaneum. Folia Biol 7:353–357

    CAS  Google Scholar 

  • Bills GF, Gloer JB (2013) Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Curr Opin Microbiol 16:549–565. doi:10.1016/j.mib.2013.08.001. Epub 2013 Aug 23

    Article  CAS  PubMed  Google Scholar 

  • Bills GF, Platas G, Peláez F et al (1999) Reclassification of a pneumocandin-producing anamorph, Glarea lozoyensis gen. et sp. nov., previously identified as Zalerion arboricola. Mycol Res 103:179–192

    Article  CAS  Google Scholar 

  • Boeck LD, Fukuda DS, Abott BJ et al (1989) Deacylation of echinocandin B by Actinoplanes utahensis. J Antibiot 42:382

    Article  CAS  PubMed  Google Scholar 

  • Borthwick AD (2012) 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 112:3641–3716

    Article  CAS  PubMed  Google Scholar 

  • Brian PW (1949) Studies on the biological activity of griseofulvin. Ann Bot – London, N.S. XIII 49: 59–77

    Google Scholar 

  • Brian PW, Curtis PJ (1946) A substance causing abnormal development offungal hyphae produced by Penicillium janczewskii Zal. I. Biological assay, production and isolation of ‘curling factor’. Trans Br Mycol Soc 29:173–187

    Article  CAS  Google Scholar 

  • Brian PW, Curtis PJ (1949) A substance causing abnormal development offungal hyphae produced by Penicillium janczewskii Zal. III. Identity of ‘curling factor’ with griseofulvin. Trans Br Mycol Soc 32:30–33

    Article  CAS  Google Scholar 

  • Brian PW, Curtis PJ (1955) Production of griseofulvin by penicillium raistrickii. Trans Br Mycol Soc 38:305–308

    Article  Google Scholar 

  • Buommino E, Boccellino M, de Filippis A et al (2007) 3-O-methylfunicone produced by Penicillium pinophilum affects cell motility of breast cancer cells, downregulating avb5 integrin and inhibiting metalloproteinase-9 secretion. Mol Carcinog 46:930–940

    Article  CAS  PubMed  Google Scholar 

  • Butchko RA, Adams TH (1999) Aspergillus nidulans mutants defective in stc gene cluster regulation. Genetics 153:715–720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai S, Sun S, Zhou H et al (2011) Prenylated polyhydroxy-pterphenyls from Aspergillus taichungensis ZHN-7-07. J Nat Prod 75:1106–1110

    Article  CAS  Google Scholar 

  • Chamilos G, Lewis RE, Dimitrios P et al (2006) Lovastatin has significant activity against zygomycetes and interacts synergistically with voriconazole. Antimicrob Agents Chemother 50:96–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che Y, Gloer JB (2002) Decipinin A and decipienolides A and B: new bioactive metabolites from the coprophilous fungus Podospora decipiens. J Nat Prod 65:916–919

    Article  CAS  PubMed  Google Scholar 

  • Che Y, Swenson DC, Gloer JB et al (2001) Pseudodestruxins A and B: new cyclic depsipeptides from the coprophilous fungus Nigrosabulum globosum. J Nat Prod 64:555–558

    Article  CAS  PubMed  Google Scholar 

  • Clark B, Capon RJ, Lacey E et al (2005) Gymnoascolides A-C: aromatic butenolides from an Australian isolate of the soil ascomycete Gymnoascus reessii. J Nat Prod 6:1226–1230

    Article  CAS  Google Scholar 

  • Clarke SM, Mckenzie M (1967) Penicillium sclerotigenum: a new source of Griseofulvin. Nature 213:504–505. doi:10.1038/213504b0

    Article  CAS  PubMed  Google Scholar 

  • Crosse R, McWillium R (1964) Some relations between chemical structure and antifungal effects of griseofulvin analogues. J Gen Microbiol 34:51

    Article  CAS  PubMed  Google Scholar 

  • Danishefsky S, Etheredge SJ (1978) Synthesis of dl-epigriseofulvin. J Org Chem 43:4604

    Article  CAS  Google Scholar 

  • Danishefsky S, Singh RK, Gammill RE (1978) Diels-Alder reactions of 1,1-dimethoxy-3-trimethylsilyloxy-1,3-butadiene. J Org Chem 43:379

    Article  CAS  Google Scholar 

  • Danishefsky S, Yan CF, Singh RK et al (1979) Derivatives of 1-methoxy-3-trimethylsilyloxy-1,3-butadiene for Diels-Alder reactions. J Am Chem Soc 101:7001–7008

    Article  CAS  Google Scholar 

  • Dave WB, John MC, Chris RAG (2001) Understanding the strobilurin fungicides. Pestic Outlook 12:143–148

    Article  CAS  Google Scholar 

  • David M, Geoffrey DR (1980) 21st century guidebook to fungi 2011 G. Schramm, Dissertation, Universität Bonn

    Google Scholar 

  • Debono M, Abbott BJ, Turner JR et al (1988) Synthesis and evaluation of LY121019, a member of a series of semisynthetic analogues of the antifungal lipopeptide echinocandin B. Acad Sci 544:152–167

    Article  CAS  Google Scholar 

  • Debono M, Abbott BJ, Fukuda DS et al (1989) Synthesis of new analogs of echinocandin B by enzymatic deacylation and chemical reacylation of the echinocandin B peptide: synthesis of the antifungal agent cilofungin (LY121019). J Antibiot (Tokyo) 42:389–397

    Article  CAS  Google Scholar 

  • Debono M, Turner WW, LaGrandeur L et al (1995) Semisynthetic chemical modification of the antifungal lipopeptide echinocandin B (ECB): structure-activity studies of the lipophilic and geometric parameters of polyarylated acyl analogs of ECB. J Med Chem 38:3271–3281

    Article  CAS  PubMed  Google Scholar 

  • Delgado L, De Croos PZ, Lu MC et al (1992) Structure modification and biological activity of some griseofulvin derivatives. Gaoxiong Yi Xue Ke Xue Za Zhi 8:632–639

    CAS  PubMed  Google Scholar 

  • Dolores F, Juan AT, Antonio DV (2010) Chapter 10: The QoI fungicides, the rise and fall of a successful class of agricultural fungicides. In: Agricultural and biological sciences “Fungicides”, book edited by Odile Carisse, ISBN 978-953-307-266-1, Published: December 14, 2010 under CC BY-NC-SA 3.0 license

    Google Scholar 

  • Dong N, Li X, Wang F (2013) Asymmetric Michael-aldol tandem reaction of 2-substituted benzofuran-3-ones and enones: a facile synthesis ofgriseofulvin analogues. Org Lett 15:4896–4899. doi:10.1021/ol402346c. Epub 2013 Sep 3

    Article  CAS  PubMed  Google Scholar 

  • Emri T, Majoros L, Tóth V et al (2013) Echinocandins: production and applications. Appl Microbiol Biotechnol 97:3267–3284. doi:10.1007/s00253-013-4761-9. Epub 2013 Mar 6. Review

    Article  CAS  PubMed  Google Scholar 

  • Fields TL, Newman H (1970) 5′-diazogriseofulvin. J Med Chem 13:1242–1243

    Article  CAS  PubMed  Google Scholar 

  • Finefield JM, Frisvad JC, Sherman DH et al (2012) Fungal origins of the bicyclo[2.2.2]diazaoctane ring system of prenylated indole alkaloids. J Nat Prod 75:812–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer LJ, Riegelman S (1967) Absorption and activity of some derivatives of Griseofulvin. J Pharm Sci 56(4):469–476

    Article  CAS  PubMed  Google Scholar 

  • Fredenhagen A, Kuhn A, Peter HH et al (1990a) Strobilurins F, G and H, three new antifungal metabolites from Bolinea lutea. I. Fermentation, isolation and biological activity. J Antibiot 43:655–660

    Article  CAS  PubMed  Google Scholar 

  • Fredenhagen A, Hug P, Peter HH et al (1990b) Strobilurins F.G. Three new antifungal metabolites from Bolinea lutea. II. Structure determination. J Antibiot 43:661–667

    Article  CAS  PubMed  Google Scholar 

  • Frisvad JC, Smedsgaard J, Larsen TO et al (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  • Fujie A, Iwamoto T, Sato B et al (2001) FR131535, a novel water-soluble echinocandin-like lipopeptide: synthesis and biological properties. Bioorg Med Chem Lett 11:399–402

    Article  CAS  PubMed  Google Scholar 

  • Gamble WR, Gloer JB, Scott JA et al (1995) Polytolypin, a new antifungal triterpenoid from the coprophilous fungus Polytolypa hystricis. J Nat Prod 58:1983–1986

    Article  CAS  PubMed  Google Scholar 

  • Geiser DM, Klich MA, Frisvad JC et al (2007) The current status of species recognition and identification in Aspergillus. Stud Mycol 59:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghisalberti EL, Narbey MJ (1990) Metabolites of Aspergillus terreus antagonistic towards the take-all fungus. J Nat Prod 53:520–522

    Article  CAS  Google Scholar 

  • Grove JF, McGowan JC (1947) Identity of griseofulvin and ‘curling-factor’. Nature 160:574–574. doi:10.1038/160574a0

    Article  CAS  Google Scholar 

  • Grove JF, Ismay D, Macmillan J, Mulholland TPC et al (1951) The structure of griseofulvin. Chem Ind 11:219–220

    Google Scholar 

  • Grove JF, Macmillan J, Mulholland TPC et al (1952) Griseofulvin I. J Chem Soc 27:3949–3958

    Article  Google Scholar 

  • Hawser S, Borgonovi M, Markus A et al (1999) Mulundocandin, an echinocandin-like lipopeptide antifungal agent: biological activities in vitro. J Antibiot (Tokyo) 52:305–310

    Article  CAS  Google Scholar 

  • Hector RF (2005) An overview of antifungal drugs and their use for treatment of deep and superficial mycoses in animals. Clin Tech Small Anim Pract 20:240–249

    Article  PubMed  Google Scholar 

  • Hein SM, Gloer JB, Koster B et al (1998) Arugosin F: a new antifungal metabolite from the coprophilous fungus Ascodesmis sphaerospora. J Nat Prod 61(12):1566–1567

    Article  CAS  PubMed  Google Scholar 

  • Hein SM, Gloer JB, Koster B et al (2001) Bombardolides: new antifungal and antibacterial gamma-lactones from the coprophilous fungus Bombardioidea anartia. J Nat Prod 64:809–812

    Article  CAS  PubMed  Google Scholar 

  • Hino M, Fujie A, Iwamoto T et al (2001) Chemical diversity in lipopeptide antifungal antibiotics. J Ind Microbiol Biotechnol 27:157–162

    Article  CAS  PubMed  Google Scholar 

  • Hodges RL, Hodges DW, Goggans K et al (1994) Genetic modification of an echinocandin B-producing strain of Aspergillus nidulans to produce mutants blocked in sterigmatocystin biosynthesis. J Ind Microbiol 13:372–381

    Article  CAS  PubMed  Google Scholar 

  • Hodges RL, Kelkar HS, Xuei X et al (2000) Characterization of an echinocandin B producing strain blocked for sterigmatocystin biosynthesis reveals atranslocation in the stcW gene of the aflatoxin biosynthetic pathway. J Ind Microbiol Biotechnol 25:333–341

    Article  CAS  PubMed  Google Scholar 

  • Huber FM, Gottlieb D (1968) The mechanism of action of griseofulvin. Can J Microbiol 14:111–118. PMID: 5689440 [PubMed - indexed for MEDLINE]

    Google Scholar 

  • Hubert S, Wolfgang S (1999) Strobilurins: evolution of a new class of active substances. Angew Chem Int Ed 38:1328–1349

    Article  Google Scholar 

  • Iwamoto T, Sakamoto K, Yamashita M et al (1993) Abstract 33rd ICAAC, No.F37, New Orleans, USA

    Google Scholar 

  • Iwamoto T, Fujie A, Sakamoto K et al (1994) WF11899A, B and C, novel antifungal lipopeptides, I: taxonomy, fermentation, isolation and physico-chemical properties. J Antibiot 47:1084–1091

    Article  CAS  PubMed  Google Scholar 

  • Jamison JA, Zeckner DJ (1997) The synthesis and antifungal activity of N alkylated analogs of echinocandin B. J Antibiot (Tokyo) 50:562–566

    Article  CAS  Google Scholar 

  • Kanasaki R, Abe F, Kobayashi M et al (2006a) FR220897 and FR220899, novel antifungal lipopeptides from Coleophoma empetri no. 14573. J Antibiot 59:149–157

    Article  CAS  PubMed  Google Scholar 

  • Kanasaki R, Kobayashi M, Fujine K et al (2006b) FR227673 and FR190293, novel antifungal lipopeptides from Chalara sp. No. 22210 and Tolypocladium parasiticum No. 16616. J Antibiot 59:158–167

    Article  CAS  PubMed  Google Scholar 

  • Kanasaki R, Sakamoto K, Hashimoto M et al (2006c) FR209602 and related compounds, novel antifungal lipopeptides from Coleophoma crateriformis no.738. I. Taxonomy, fermentation, isolation and physico-chemical properties. J Antibiot 59:137–144

    Article  CAS  PubMed  Google Scholar 

  • Kanda M, Tsuboi M, Sakamoto K et al (2009) Improvement of FR901379 production by mutant selection and medium optimization. J Biosci Bioeng 107:530–534. doi:10.1016/j.jbiosc.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  • Kanda M, Yamamoto E, Hayashi A et al (2010) Scale-up fermentation of echinocandin type antibiotic FR901379. J Biosci Bioeng 109:138–144. doi:10.1016/j.jbiosc.2009.07.019. Epub 2009 Aug 27

    Article  CAS  PubMed  Google Scholar 

  • Kawada M, Inoue H, Ohba SI et al (2010) Leucinostatin A inhibits prostate cancer growth through reduction of insulin-like growth factor-I expression in prostate stromal cells. Int J Cancer 126:810–818

    CAS  PubMed  Google Scholar 

  • Keller NP, Turner G (2005) Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  CAS  PubMed  Google Scholar 

  • Keller-Juslén C, Kuhn M, Loosli HR et al (1976) Struktur des cyclopeptid-antibiotikums sl 7810 (= echinocandinb). Tetrahedron Lett 17:4147–4150.2

    Article  Google Scholar 

  • Ko BS, Oritani T (1990) Synthesis and biological activities of griseofulvin analogs. Agric Biol Chem 54:2199–2204

    CAS  PubMed  Google Scholar 

  • Kommmunarskaya AD (1969) Abramson VS. Manufacture of griseofulvin free of toxic by products. Fr. Pat. 1 1969; 565–661

    Google Scholar 

  • Kommmunarskaya AD (1970) Sulfur-35 induced variation in Penicillium nigricans producing griseofulvin. Antibiotiki 15:216–220

    Google Scholar 

  • Krizsán K, Bencsik O, Nyilasi I et al (2010) Effect of the sesterterpene-type metabolites, ophiobolins A and B, on zygomycetes fungi. FEMS Microbiol Lett 313:135–140

    Article  PubMed  CAS  Google Scholar 

  • Kurtz MB, Rex JH (2001) Glucan synthase inhibitors as antifungal agents. Adv Protein Chem 56:423–475

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova TA, Smetanina OF, Afiyatullov SS et al (2001) The identification of fusidic acid, a steroidal antibiotic from marine isolate of the fungus Stilbella aciculosa. Biochem Syst Ecol 29:873–874

    Article  CAS  PubMed  Google Scholar 

  • Lee KK, Gloer JB, Scott JA et al (1995) Petriellin A: a novel antifungal depsipeptide from the coprophilous fungus Petriella sordida. J Org Chem 60:5384–5385

    Article  CAS  Google Scholar 

  • Lehr NA, Meffert A, Antelo L et al (2006) Antiamoebins, myrocin B and the basis of antifungal antibiosis in the coprophilous fungus Stilbella erythrocephala (syn. S. fimetaria). FEMS Microbiol Ecol 55:105–112

    Article  CAS  PubMed  Google Scholar 

  • Li E, Clark AM, Rotella DP et al (1995) Microbial metabolites of ophiobolin A and antimicrobial evaluation of ophiobolins. J Nat Prod 58:74–81

    Article  CAS  PubMed  Google Scholar 

  • Li E, Jiang L, Guo L et al (2008) Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Med Chem 16:7894–7899. Epub 2008 Jul 30

    Article  CAS  Google Scholar 

  • Lisa JG, Philip M, Larry L et al (1999) LY303366 exhibits rapid and potent fungicidal activity in flow cytometric assays of yeast viability. Antimicrob Agents Chemother 43:830–835

    Google Scholar 

  • Lóránd T, Kocsis B (2007) Recent advances in antifungal agents. Mini Rev Med Chem 7:900–911

    Article  PubMed  Google Scholar 

  • Louise AW, Neil ARG (2010) Fungal echinocandin resistance. Fungal Genet Biol 47: 117–126. doi:10.1016/j.fgb.2009.09.003. PMCID: PMC2812698

    Google Scholar 

  • Macías-Rubalcava ML, Hernández-Bautista BE, González JM, Anaya AL (2008) Naphthoquinone spiroketal with allelochemical activity from the newly discovered endophytic fungus Edenia gomezpompae. Phytochemistry 69:1185–1196. Epub 2008 Jan 29

    Article  PubMed  CAS  Google Scholar 

  • Macreadie IG, Johnson G, Schlosser T et al (2006) Growth inhibition of Candidaspecies and Aspergillus fumigatus by statins. FEMS Microbiol Lett 262:9–13

    Article  CAS  PubMed  Google Scholar 

  • Magdalena J, Monika OJ, Grzegorz J et al (2013) New bioactive fungal molecules with high antioxidant and antimicrobial capacity isolated from Cerrena unicolor idiophasic cultures. BioMed Res Int 2013:497492

    Google Scholar 

  • Mandala SM, Thornton RA, Frommer BR et al (1995) The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. Producing organism, fermentation, isolation, and biological activity. J Antibiot (Tokyo) 48:349–356

    Article  CAS  Google Scholar 

  • Mizoguchi J, Saito T, Mizuno K et al (1977) On the mode of action of a new antifungal antibiotic, Aculeacin A: inhibition of cell wall synthesis in Saccharomyces cerevisiae. J Antibiot 30:308–313

    Article  CAS  PubMed  Google Scholar 

  • Mizuno K, Yagi A, Satoi S et al (1977a) Studies on aculeacin. I. Isolation and characterization of aculeacin A. J Antibiot 30:297–302

    Article  CAS  PubMed  Google Scholar 

  • Mizuno K, Yagi A, Satoi S et al (1977b) Studies on aculeacin. I. Isolation and characterization of aculeacin A. J Antibiot (Tokyo) 30:297–302

    Article  CAS  Google Scholar 

  • Morris MI, Villmann M (2006a) Echinocandins in the management of invasive fungal infections, Part 1. Am J Health Syst Pharm 63:1693–1703. doi:10.2146/ajhp050464.p1

    Article  CAS  PubMed  Google Scholar 

  • Morris MI, Villmann M (2006b) Echinocandins in the management of invasive fungal infections, Part 2. Am J Health Syst Pharm 63:1813–1820

    Article  CAS  PubMed  Google Scholar 

  • Morris SA, Schwartz RE, Sesin DF et al (1994) Pneumocandin D0, a new antifungal agent and potent inhibitor of Pneumocystis carinii. J Antibiot 47:755–764

    Article  CAS  PubMed  Google Scholar 

  • Mudur SV, Gloer JB (2006) Sporminarins A and B: antifungal metabolites from a fungicolous isolate of Sporormiella minimoides. J Antibiot 59:500–506

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay T, Roy K, Bhat RG et al (1992) Deoxymulundocandin-a new echinocandin type antifungal antibiotic. J Antibiot 45:618–623

    Article  CAS  PubMed  Google Scholar 

  • Mulder MP, Kruijtzer JA, Breukink EJ et al (2011) Synthesis and evaluation of novel macrocyclic antifungal peptides. Bioorg Med Chem 19:6505–6517. doi:10.1016/j.bmc.2011.08.034. Epub 2011 Aug 22

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Hirota A (1982) Terrecyclic acid A, a new antibiotic from Aspergillus terreus. I. Taxonomy, production, and chemical and biological properties. J Antibiot 35:778–782

    Article  CAS  PubMed  Google Scholar 

  • Niedens BR, Parker SR, Stierle DB et al (2013) First fungal aromatic L-amino acid decarboxylase from a paclitaxel-producing Penicillium raistrickii. Mycologia 91:619–626. 140, 141

    Google Scholar 

  • Nobel HM, Langley D, Sidebottom PJ et al (1991) An echinocandin from an endophytic Cryptosporiopsis sp. and Pezicula sp. in Pinus sylvestris and Fagus sylvatica. Mycol Res 95:1439–1440

    Article  Google Scholar 

  • Nyfeler R, Keller SW (1974) Metabolites of microorganisms, 143: echinocandin B, a novel polypeptide-antibiotic from Aspergillus nidulans var echinulatus—isolation and structural components. Helv Chim Acta 57:2459–2477

    Article  CAS  PubMed  Google Scholar 

  • Odds FC (2001) Sordarin antifungal agents. Expert Opin Ther Pat 11:283–294

    Article  Google Scholar 

  • OH GS, Hong KH, OH H et al (2001) 4-Acetyl-12,13-epoxyl-9-trichothecene-3,15-diol isolated from the fruiting bodies of Iaria japonica YASUDA induces apoptosis of human leukemia cells (HL-60). Biol Pharm Bull 24:785–789

    Article  CAS  PubMed  Google Scholar 

  • Oxford AE, Raistrick H (1939) Griseofulvin, C17H17O6Cl, a metabolic product of Penicillium griseofulvum Dierckx. Biochem J 33:240–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan ZZ, Zhu YJ, Yu XJ et al (2012) Synthesis of 4′-thiosemicarbazonegriseofulvin and its effects on the control of enzymatic browning and postharvest disease of fruits. J Agric Food Chem 60:10784–10788. doi:10.1021/jf302356x. Epub 2012 Oct 18

    Article  CAS  PubMed  Google Scholar 

  • Petraitiene R, Petraitis V et al (1999) Antifungal activity of LY303366, a novel Echinocandin B, in experimental disseminated Candidiasis in rabbits. Antimicrob Agents Chemother 43:2148–2155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petit KE, Mondeguer F, Roquebert MF, Biard JF, Pouchus YF (2004) Detection of griseofulvin in a marine strain of Penicillium waksmanii by ion trap mass spectrometry. J Microbiol Methods 58:59–65

    Article  CAS  PubMed  Google Scholar 

  • Qiao J, Kontoyiannis DP, Wan Z, Li R et al (2007) Antifungal activity of statins against Aspergillus species. Med Mycol 45:589–593

    Article  CAS  PubMed  Google Scholar 

  • Raistrick H, Smith G (1935) LXXI. Studies in the biochemistry of micro-organisms. XLII. The metabolic products of Aspergillus terreus Thom. A new mould metabolic product-terrein. Biochem J 29:606–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridderbusch DC, Weber RW, Anke T et al (2004) Tulasnein and podospirone from the coprophilous xylariaceous fungus Podosordaria tulasnei. Naturforsch C 59:379–383

    CAS  Google Scholar 

  • Rønnest MH, Raab MS, Anderhub S et al (2012) Disparate SAR data of griseofulvin analogues for the dermatophytes Trichophyton mentagrophytes, T. rubrum, and MDA-MB-231 cancer cells. J Med Chem 55:652–660. Epub 2012 Jan 17

    Article  PubMed  CAS  Google Scholar 

  • Roy K, Mukhopadhyay T, Reddy GC et al (1987) Mulundocandin, a new lipopeptide antibiotic. I. Taxonomy, fermentation, isolation and characterization. J Antibiot 40:275–280

    Article  CAS  PubMed  Google Scholar 

  • Satoi S, Yagi A, Asano K et al (1977) Studies on aculeacin. II. Isolation and characterization of aculeacins B, C, D, E, F and G. J Antibiot 30:303–307

    Article  CAS  PubMed  Google Scholar 

  • Sauter H, Ammermann E (1996) Strobilurins- from natural products to a new class of fungicides. In: Copping LG (ed) Crop protection agents from nature: natural products and analogues. Royal Society of Chemistry, Cambridge, pp 50–81

    Google Scholar 

  • Schmidt LE, Gloer JB (2007) Solanapyrone analogues from a Hawaiian fungicolous fungus. J Nat Prod 70:1317–1320. Epub 2007 Jul 31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schramm G, Steglich W, Anke T, Oberwinkler F (1978) Antibiotics from basidiomycetes, III. Strobilurin A and B, antifungal metabolites from Strobilurus tenacellus. Chem Ber 111:2779–2784

    Article  CAS  Google Scholar 

  • Schwartz RE, Giacobbe RA, Bland JA et al (1989) L- 671,329, a new antifungal agent. I. Fermentation and isolation. J Antibiot 42:163–167

    Article  CAS  PubMed  Google Scholar 

  • Schwartz RE, Sesin DF, Joshua H et al (1992) Pneumocandins from Zalerion arboricola. Discovery and isolation I. J Antibiot 45:1853–1866

    Article  CAS  PubMed  Google Scholar 

  • Seya H, Nozawa K, Nakajima S et al (1986) Studies on fungal products. Part 8. Isolation and structure of emestrin, a novel antifungal macrocyclic epidithiodioxopiperazine from Emericella striata. X-Ray molecular structure of emestrin. J Chem Soc Perk T 1 1986:109–116

    Article  Google Scholar 

  • Singleton V, Bohonos N et al (1958) Decumbin, a new compound from a species of Penicillium. Nature 181:1072–1073

    Article  CAS  PubMed  Google Scholar 

  • Soman AG, Gloer JB, Koster B et al (1999) Sporovexins A-C and a new preussomerin analog: antibacterial and antifungal metabolites from the coprophilous fungus Sporormiella vexans. J Nat Prod 62:659–661

    Article  CAS  PubMed  Google Scholar 

  • Songgang W, Yunshen B (1983) Study on the characterstics of Penicillium patulum strains with high ability of producing griseofulvin. Weishengwuxue Tongbao 10:204–206

    Google Scholar 

  • Strobel GA, Miller RV, Martinez-Miller C et al (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Sun HF, Li XM, Meng L et al (2012) Asperolides A-C, tetranorlabdane diterpenoids from the et al. marine alga-derived endophytic fungus Aspergillus wentii EN-48. J Nat Prod 75:148–152

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi Y, Tomozane H, Misumi K et al (1997a) Syntheses and antifungal activity of dl-griseofulvin and its congeners. II. Chem Pharm Bull (Tokyo) 45:327–332

    Article  CAS  Google Scholar 

  • Takeuchi Y, Watanabe I, Misumi K et al (1997b) Syntheses and antifungal activity of dl-griseofulvin and it congeners. III. Chem Pharm Bull (Tokyo) 45:2011–2015

    Article  CAS  Google Scholar 

  • Tomishima M, Ohki H, Yamada A et al (2008a) Novel echinocandin antifungals. Part 1: Novel side-chain analogs of the natural product FR901379. Bioorg Med Chem Lett 18:1474–1477. doi:10.1016/j.bmcl.2007.12.062. Epub 2007 Dec 28

    Article  CAS  PubMed  Google Scholar 

  • Tomishima M, Ohki H, Yamada A et al (2008b) Novel echinocandin antifungals. Part 2: Optimization of the side chain of the natural productFR901379. Discovery of micafungin. Bioorg Med Chem Lett 18:2886–2890. doi:10.1016/j.bmcl.2008.03.093. Epub 2008 Apr 8. PMID:18424132[PubMed - indexed for MEDLINE]

    Google Scholar 

  • Tomozane H, Takeuchi Y, Choshi T et al (1990) Syntheses and antifungal activities of dl-griseofulvin and its congeners. I. Chem Pharm Bull (Tokyo) 38:925–929

    Article  CAS  Google Scholar 

  • Traber R, Keller-Juslén C, Loosli HR et al (1979) Cyclopeptid-Antibiotika aus Aspergillus-Arten. Struktur der Echinocandine C und D. Helv Chim Acta 62:1252–1267

    Article  CAS  Google Scholar 

  • Tscherter H, Dreyfuss MM (1982) New metabolites. Processes for their production and their use. Internat. Patent Appl PCT/EP8/ 00121

    Google Scholar 

  • Turner WW, Rodriguez MJ (1996) Recent advances in medicinal chemistry of antifungal agent. Curr Pharm Des 2:209–224

    CAS  Google Scholar 

  • Ueda S, Shibata T, Ito K et al (2011a) Cloning and expression of the FR901379 acylase gene from Streptomyces sp. no. 6907. J Antibiot (Tokyo) 64:169–175. doi:10.1038/ja.2010.151. Epub 2010 Dec 1

    Article  CAS  Google Scholar 

  • Ueda S, Kinoshita M, Tanaka F et al (2011b) Strain selection and scale-up fermentation for FR901379 acylase production by Streptomyces sp. no. 6907. J Biosci Bioeng 112:409–414. doi:10.1016/j.jbiosc.2011.06.002. Epub 2011 Jul 12

    Article  CAS  PubMed  Google Scholar 

  • Visalakchi S, Muthumary J (2010) Taxol (anticancer drug) producing endophytic fungi: an overview. Int J Pharm Bio Sci 1:1–9

    Google Scholar 

  • Vladimir VZ, Leonid VK (1998) Natural compounds of the strobilurin series and their synthetic analogues as cell respiration inhibitors. Russ Chem Rev 67:535. doi:10.1070/RC1998v067n06ABEH000426

    Article  Google Scholar 

  • Wang Y, Gloer JB, Scott JA et al (1993) Appenolides A-C: three new antifungal furanones from the coprophilous fungus Podospora appendiculata. J Nat Prod 56:341–344

    Article  CAS  PubMed  Google Scholar 

  • Wang HJ, Gloer JB, Scott JA et al (1995a) Coniochaetones A and B: new antifungal benzopyranones from the coprophilous fungus Coniochaeta saccardoi. Tetrahedron Lett 36:5847–5850

    Article  CAS  Google Scholar 

  • Wang Y, Gloer JB, Scott JA et al (1995b) Terezines A-D: new amino acid-derived bioactive metabolites from the coprophilous fungus Sporormiella teretispora. J Nat Prod 58:93–99

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Gloer KB, Gloer JB et al (1997) Anserinones A and B: new antifungal and antibacterial benzoquinones from the coprophilous fungus Podospora anserina. J Nat Prod 60:629–631

    Article  CAS  PubMed  Google Scholar 

  • Weber HA, Swenson DC (1992) Similins A and B: new antifungal metabolites from the coprophilous fungus Sporormiella similis. Tetrahedron Lett 33:1157–1160

    Article  CAS  Google Scholar 

  • Weber W, Anke T, Steffan B et al (1990a) Antibiotics from basidiomycetes. XXXII. Strobilurin E: a new cytostatic and antifungal (E)-beta-methoxyacrylate antibiotic from Crepidotus fulvotomentosus Peck. J Antibiot (Tokyo) 43:207–212

    Article  CAS  Google Scholar 

  • Weber W, Anke T, Bross M et al (1990b) Strobilurin D and strobilurin F: two new cytostatic and antifungal (E)-β-methoxyacrylate antibiotics from Cyphellopsis anomala (1). Planta Med 56:446–450

    Article  CAS  PubMed  Google Scholar 

  • Whyte AC, Gloer JB, Scott JA (1996) Cercophorins A-C: novel antifungal and cytotoxic metabolites from the coprophilous fungus Cercophora areolata. J Nat Prod 59:765–769

    Article  CAS  PubMed  Google Scholar 

  • Whyte AC, Gloer KB, Gloer JB et al (1997) New antifungal metabolites from the coprophilous fungus Cercophora sordarioides. Can J Chem 75:768–772

    Article  CAS  Google Scholar 

  • Woloshuk CP, Shim WB (2013) Aflatoxins, fumonisins, and trichothecenes: a convergence of knowledge. FEMS Microbiol Rev 37:94–109

    Article  CAS  PubMed  Google Scholar 

  • Wright JM (1955) The production of antibiotics in soil: ii. Production of griseofulvin by penicillium nigricans. Ann Appl Biol 43:288–296

    Article  CAS  Google Scholar 

  • Yamashita M, Matsuda M, Oohata N (2005) Study of industrial manufacturing methods for Micafungin (FK463). Seibutsu-kogaku 83:123–131

    CAS  Google Scholar 

  • Zhao S, Smith KS, Deveau AM et al (2002) Biological activity of the tryprostatins and their diastereomers on human carcinoma cell lines. J Med Chem 45:1559–1562

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Anupam Roy is thankful to CSIR, India, for providing CSIR Individual Fellowship to Anupam Roy (CSIR sanction No- 9/1103 (0001)2 k13-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Santi M. Mandal or Amit Basak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Mandal, S.M. et al. (2016). Fungi Fights Fungi: Tip-off in Antifungal Chemotherapy. In: Basak, A., Chakraborty, R., Mandal, S. (eds) Recent Trends in Antifungal Agents and Antifungal Therapy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2782-3_1

Download citation

Publish with us

Policies and ethics