Biological Potential of Arbuscular Mycorrhizal Fungi

  • Raffaella Balestrini


Microorganisms play a key role in preserving soil fertility in forest and agro-ecosystems. The exploitation of their beneficial traits represents a promising avenue for the development of more sustainable agriculture. In this chapter, attention is focused on arbuscular mycorrhizal (AM) fungi, considering the aspects that have been highlighted through the sequencing of the Rhizophagus irregularis genome and on the mechanisms involved in the nutritional exchanges that take place during their interaction with plants. Examples of the use of this group of fungi in applicative projects are also reported.


Arbuscular Mycorrhizal Mycorrhizal Fungus Fungal Community Mycorrhizal Root Sulfate Transporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdullahi R, Lihan S, Edward R (2014) Isolation of indigenous arbuscular mycorrhizal fungi and selection of host plant for inoculum production. Int J Biosci 5:116–122Google Scholar
  2. Alguacil MM, Lumini E, Roldan A, Salinas–Garcia JR, Bonfante P, Bianciotto V (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527–536CrossRefPubMedGoogle Scholar
  3. Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol 149:549–560CrossRefPubMedPubMedCentralGoogle Scholar
  4. Al-Yahyaìei MN, Oehl F, Vallino M, Lumini E, Redecker D, Wiemken A, Bonfante P (2011) Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia. Mycorrhiza 21:195–209CrossRefGoogle Scholar
  5. An GH, Kobayashi S, Enoki H, Sonobe K, Muraki M, Karasawa T et al (2010) How does arbuscular mycorrhizal colonization vary with host genotype? An example based on maize (Zea mays) germplasms. Plant Soil 327:441–453CrossRefGoogle Scholar
  6. Balestrini R, Bonfante P (2014) Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism. Front Plant Sci 5:237CrossRefPubMedPubMedCentralGoogle Scholar
  7. Balestrini R, Gomez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20:1055–1062CrossRefPubMedGoogle Scholar
  8. Balestrini R, Magurno F, Walker C, Lumini E, Bianciotto V (2010) Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop. Environ Microbiol Rep 2:594–604CrossRefPubMedGoogle Scholar
  9. Balestrini R, Lumini E, Borriello R, Bianciotto V (2015) Plant–soil biota interactions. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 4th edn. Academic Press, Elsevier, London/San Diego/OxfordGoogle Scholar
  10. Bárzana G, Aroca R, Bienert GP, Chaumont F, Ruiz-Lozano JM (2014) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant Microbe Interact 27:349–363CrossRefPubMedGoogle Scholar
  11. Belmondo S, Fiorilli V, Pérez–Tienda J, Ferrol N, Marmeisse R, Lanfranco L (2014) A dipeptide transporter from the arbuscular mycorrhizal fungus Rhizophagus irregularis is upregulated in the intraradical phase. Front Plant Sci 5:436CrossRefPubMedPubMedCentralGoogle Scholar
  12. Berruti A, Borriello R, Lumini E, Scariot V, Bianciotto V, Balestrini R (2013) Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells. Front Plant Sci 4:135CrossRefPubMedPubMedCentralGoogle Scholar
  13. Berruti A, Borriello R, Orgiazzi A, Barbera AC, Lumini E, Bianciotto V (2014) Arbuscular mycorrhizal fungi and their value for ecosystem management. In: Grillo O (ed) The dynamic balance of the planet. Intech, RijekaGoogle Scholar
  14. Borriello R, Lumini E, Girlanda M, Bonfante P, Bianciotto V (2012) Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biol Fert Soils 48:911–922CrossRefGoogle Scholar
  15. Borriello R, Berruti A, Lumini E, Della Beffa MT, Scariot V, Bianciotto V (2015) Edaphic factors trigger diverse AM fungal communities associated to exotic camellias in closely located Lake Maggiore (Italy) Sites. Mycorrhiza 25:253–265CrossRefPubMedGoogle Scholar
  16. Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. Tansley review. New Phytol 173:11–26CrossRefPubMedGoogle Scholar
  17. Calvo-Polanco M, Molina S, Zamarreño AM, García-Mina JM, Aroca R (2014) The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants. Plant Cell Physiol 55:1017–1029CrossRefPubMedGoogle Scholar
  18. Casieri L, Gallardo K, Wipf D (2012) Transcriptional response of Medicago truncatula sulfate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta 235:1431–1447CrossRefPubMedGoogle Scholar
  19. Casieri L, Ait Lahmidi N, Doidy J, Fourrey C, Migeon A, Bonneau L et al (2013) Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza 23:597–625CrossRefPubMedGoogle Scholar
  20. Ceballos I, Ruiz M, Fernández C, Peña R, Rodriguez A, Sanders IR (2013) The in vitro mass–produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS One 8:e70633CrossRefPubMedPubMedCentralGoogle Scholar
  21. Estrada B, Aroca R, Maathuis FJM, Barea JM, Ruiz-Lozano JM (2013a) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36:1771–1782CrossRefPubMedGoogle Scholar
  22. Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM (2013b) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201–202:42–51CrossRefPubMedGoogle Scholar
  23. Fiorilli V, Lanfranco L, Bonfante P (2013) The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Planta 237:1267–1277CrossRefPubMedGoogle Scholar
  24. Garcia K, Zimmermann SD (2014) The role of mycorrhizal associations in plant potassium nutrition. Front Plant Sci 5:337CrossRefPubMedPubMedCentralGoogle Scholar
  25. Giovannetti M, Turrini A, Strani P, Sbrana C, Avio L, Pietrangeli B (2006) Mycorrhizal fungi in ecotoxicological studies: soil impact of fungicides, insecticides and herbicides. Prev Today 2:47–61Google Scholar
  26. Giovannetti M, Avio L, Barale R, Ceccarelli N, Cristofani R, Iezzi A, Mignolli F, Picciarelli P, Pinto B, Reali D, Sbrana C, Scarpato R (2012a) Nutraceutical value and safety of tomato fruits produced by AM plants. Br J Nutr 107:242–251CrossRefPubMedGoogle Scholar
  27. Giovannetti M, Balestrini R, Volpe V, Guether M, Straub D, Costa A et al (2012b) Two putative–aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus. BMC Plant Biol 12:186CrossRefPubMedPubMedCentralGoogle Scholar
  28. Giovannetti M, Tolosano M, Volpe V, Kopriva S, Bonfante P (2014) Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. New Phytol 204:609–619CrossRefPubMedGoogle Scholar
  29. Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB et al (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10CrossRefPubMedPubMedCentralGoogle Scholar
  30. Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009a) A mycorrhizal–specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83CrossRefPubMedPubMedCentralGoogle Scholar
  31. Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009b) Genome–wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212CrossRefPubMedGoogle Scholar
  32. Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hart M, Ehret DL, Krumbein A, Leung C, Murch S, Turi C, Franken P (2014) Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 25:359–376CrossRefPubMedGoogle Scholar
  34. Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Kuster H (2011) Laser microdissection unravels cell–type–specific transcription in arbuscular mycorrhizal roots, including CAAT–box transcription factor gene expression correlating with fungal contact and spread. Plant Physiol 157:2023–2043CrossRefPubMedPubMedCentralGoogle Scholar
  36. IJdo M, Cranenbrouck S, Declerck S (2011) Methods for large–scale production of AM fungi: past, present, future. Mycorrhiza 21:1–16CrossRefPubMedGoogle Scholar
  37. Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209CrossRefPubMedGoogle Scholar
  38. Kobae Y, Tamura Y, Takai S, Banba M, Hata S (2010) Localized expression of arbuscular mycorrhiza–inducible ammonium transporters in soybean. Plant Cell Physiol 51:1411–1415CrossRefPubMedGoogle Scholar
  39. Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F et al (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415CrossRefPubMedGoogle Scholar
  40. Kuo A, Kohler A, Martin FM, Grigoriev IV (2014) Expanding genomics of mycorrhizal symbiosis. Front Microbiol 5:582CrossRefPubMedPubMedCentralGoogle Scholar
  41. Li T, Hu YJ, Hao ZP, Li H, Wang Y-S, Chen B-D (2013a) First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617–630CrossRefPubMedGoogle Scholar
  42. Li T, Hu YJ, Hao ZP, Li H, Chen BD (2013b) Aquaporin genes GintAQPF1 and GintAQPF2 from Glomus intraradices contribute to plant drought tolerance. Plant Signal Behav 8:e24030CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lin K, Limpens E, Zhang Z, Ivanov S, Saunders DGO, Mu D et al (2014) Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus. PLoS Genet 10:e1004078CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high–throughput sequencing of amplified markers – a user’s guide. New Phytol 199:288–299CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land–use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179PubMedGoogle Scholar
  46. Lumini E, Vallino M, Alguacil MM, Romani M, Bianciotto V (2011) Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities. Ecol Appl 21:1696–1707CrossRefPubMedGoogle Scholar
  47. Martin F, Aerts A, Ahrén D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92CrossRefPubMedGoogle Scholar
  48. Martin F, Kohler A, Murat C, Balestrini R, Coutinho P, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini et al (2010) Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038CrossRefPubMedGoogle Scholar
  49. Mazzola M (2002) Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 81:557–564CrossRefPubMedGoogle Scholar
  50. Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129CrossRefPubMedGoogle Scholar
  51. Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza–specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250CrossRefPubMedGoogle Scholar
  52. Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I et al (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430CrossRefPubMedGoogle Scholar
  53. Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A, Bonfante P, Bianciotto V (2012) Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLoS ONE 7(4), e34847. doi: 10.1371/journal.pone.0034847 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Parent C, Capelli N, Berger A, Crèvecoeur M, Dat JF (2008) An overview of plant responses to soil waterlogging. Plant Stress 2:20–27Google Scholar
  55. Paszkowski U, Kroken S, Roux C, Briggs S (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329CrossRefPubMedPubMedCentralGoogle Scholar
  56. Perez–Tienda J, Testillano PS, Balestrini R, Fiorilli V, Azcon–Aguilar C, Ferrol N (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 48:1044–1055CrossRefPubMedGoogle Scholar
  57. Rodriguez A, Sanders IR (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food. ISME J 9:1053–1061CrossRefPubMedGoogle Scholar
  58. Roy-Bolduc A, Hijri M (2011) The use of mycorrhizae to enhance phosphorus uptake: a way out the phosphorus crisis. J Biofertil Biopest 2:104Google Scholar
  59. Sbrana C, Avio L, Giovannetti M (2014) Beneficial mycorrhizal symbionts affecting the production of health–promoting phytochemicals. Electrophoresis 35:1535–1546CrossRefPubMedGoogle Scholar
  60. Schlaeppi K, Bulgarelli D (2014) The plant microbiome at work. Mol Plant-Microbe Interact 28:212–217CrossRefGoogle Scholar
  61. Sieh D, Watanabe M, Devers EA, Brueckner F, Hoefgen R, Krajinski F (2013) The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula. New Phytol 197:606–616CrossRefPubMedGoogle Scholar
  62. Smith FA, Smith SE (2011) What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant Soil 348:63–79CrossRefGoogle Scholar
  63. Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13CrossRefPubMedGoogle Scholar
  64. Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A et al (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769CrossRefPubMedGoogle Scholar
  65. Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P et al (2013) The genome of an arbuscular mycorrhizal fungus provides insights into the oldest plant symbiosis. PNAS 110:20117–20122CrossRefPubMedPubMedCentralGoogle Scholar
  66. van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423CrossRefPubMedGoogle Scholar
  67. Vosátka M, Látr A, Gianinazzi S, Albrechtová J (2012) Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis 58:29–37CrossRefGoogle Scholar
  68. Zouari I, Salvioli A, Chialva M, Novero M, Miozzi L, Tenore GC, Bagnaresi P, Bonfante P (2014) From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. BMC Genomics 15:221CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Istituto per la Protezione Sostenibile delle Piante (IPSP)Consiglio Nazionale delle Ricerche (CNR)TorinoItaly

Personalised recommendations