Advertisement

Effect of Bioinoculants on the Quality of Crops

  • Elisa Bona
  • Guido Lingua
  • Valeria Todeschini
Chapter

Abstract

Soil microorganisms like arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) are known to positively affect plant health, growth, and nutrition. Their use was often suggested in order to reduce the input of chemicals in agriculture. Recently, it has been observed that AMF and PGPR can also affect some quality features of various crops. In this chapter we review the literature concerning the effects of soil microbes, focusing on AMF and PGPR as the most common plant-associated microorganisms, on the quality of crops. Such effects were considered according to commercial and agronomic plant categories. Current limitations of the available information and some possible future developments have been indicated.

Keywords

Arbuscular Mycorrhizal Fungus Cocoa Butter Faba Bean Rosmarinic Acid Juglans Regia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

To the memory of my friend Horst Vierheilig, who first prompted me to write this review, sitting by a swimming pool in Marrakech, in 2010. It was originally meant to be submitted to a journal. Then, several things happened, delaying, hampering, and stopping this work. In 2014 I was invited by Raffaella Balestrini to submit a chapter for the present book, and I immediately thought about this topic. Once more, I would not have been able to complete this chapter if it had not been for my fellow authors Elisa and Valeria.

References

  1. Abaid-Ullah M, Hassan M, Jamil M, Brader G, Kausar M, Shah N, Sessitsch A, Yusuf Hafeez F (2015) Plant growth promoting rhizobacteria: an alternate way to improve yield and quality of wheat (Triticum aestivum). Int J Agric Biol 17:51–60Google Scholar
  2. Abbas S (2013) The influence of biostimulants on the growth and on the biochemical composition of Vicia faba cv. Giza 3 beans. Rom Biotechnol Lett 18:8061–8068Google Scholar
  3. Abdel-Razzak H, El-Sharkawy G (2013) Effect of biofertilizer and humic applications on growth, yield, quality and storability of two garlic (Allium sativum L.) cultivars. Asian J Crop Sci 5:48–64CrossRefGoogle Scholar
  4. Albrechtova J, Latr A, Nedorost L, Nedorost L, Pokluda R, Posta K, Vosatka M (2012) Dual inoculation with mycorrhizal and saprotrophic fungi applicable in sustainable cultivation improves the yield and nutritive value of onion. Sci World J 2012:374091CrossRefGoogle Scholar
  5. Al-Fraihat AH, Al-Dalain SYA, Al-Rawashdeh ZB (2011) Effect of organic and biofertilizers on growth, herb yield and volatile oil of marjoram plant grown in Ajloun region, Jordan. J Med Plants Res 5:2822–2833Google Scholar
  6. Al-Karaki GN, Clark RB (1999) Mycorrhizal influence on protein and lipid of durum wheat grown at different soil phosphorus levels. Mycorrhiza 9:97–101CrossRefGoogle Scholar
  7. Anderson R, Liberta A, Dickman L (1984) Interaction of vascular plants and vesicular-arbuscular mycorrhizal fungi across a soil moisture-nutrient gradient. Oecologia 64:111–117CrossRefGoogle Scholar
  8. Arango M, Ruscitti M, Ronco M, Beltrano J (2012) Mycorrhizal fungi inoculation and phosphorus fertilizer on growth, essential oil production and nutrient uptake in peppermint (Mentha piperita L.). Bras J Med Plants 14:692–699CrossRefGoogle Scholar
  9. Attia M, Ahmed M, El-Sonbaty M (2009) Use of biotechnologies to increase growth, productivity and fruit quality of Maghrabi banana under different rates of phosphorus. World J Agric Sci 5:211–220Google Scholar
  10. Awasthi A, Bharti N, Nair N, Singh R, Shukla AK, Gupta MM, Darokar MP, Kalra A (2011) Synergistic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Appl Soil Ecol 49:125–130CrossRefGoogle Scholar
  11. Azcón R, Ambrosano E, Charest C (2003) Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Sci 165:1137–1145CrossRefGoogle Scholar
  12. Bagyalakshmi B, Ponmurugan P, Marimuthu S (2012) Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). Afr J Agric Res 7:4250–4259CrossRefGoogle Scholar
  13. Ballesteros-Almanza L, Altamirano-Hernandez J, Santoyo G, Sanchez-Yañez JM, Valencia-Cantero E, Macias-Rodriguez L, Lopez-Bucio J, Cardenas-Navarro R, Farias-Rodriguez R (2010) Effect of co-inoculation with mycorrhiza and rhizobia on the nodule trehalose content of different bean genotypes. Open Microbiol J 4:83–92PubMedPubMedCentralGoogle Scholar
  14. Banchio E, Bogino PC, Zygadlo J, Giordano W (2008) Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem Syst Ecol 36:766–771CrossRefGoogle Scholar
  15. Banchio E, Xie X, Zhang H, Paré P (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657PubMedCrossRefGoogle Scholar
  16. Baslam M, Pascual I, Sánchez-Díaz M, Erro J, García-Mina JM, Goicoechea N (2011a) Improvement of nutritional quality of greenhouse-grown lettuce by arbuscular mycorrhizal fungi is conditioned by the source of phosphorus nutrition. J Agric Food Chem 59:11129–11140PubMedCrossRefGoogle Scholar
  17. Baslam M, Garmendia I, Goicoechea N (2011b) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chem 59:5504–5515PubMedCrossRefGoogle Scholar
  18. Baslam M, Esteban R, García-Plazaola JI, Goicoechea N (2013) Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl Microbiol Biotechnol 97:3119–3128PubMedCrossRefGoogle Scholar
  19. Behara U, Rautaray S (2010) Effect of biofertilizers and chemical fertilizers on productivity and quality parameters of durum wheat (Triticum turgidum) on a Vertisol of Central India. Arch Agron Soil Sci 56:65–72CrossRefGoogle Scholar
  20. Behn O (2008) Influence of Pseudomonas fluorescens and arbuscular mycorrhiza on the growth, yield, quality and resistance of wheat infected with Gaeumannomyces graminis. J Plant Dis Prot 115:4–8CrossRefGoogle Scholar
  21. Berta G, Copetta A, Gamalero E, Bona E, Cesaro P, Scarafoni A, D’Agostino G (2014) Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field. Mycorrhiza 24:161–170PubMedCrossRefGoogle Scholar
  22. Bharti N, Baghel S, Barnawal D, Yadav A, Kalra A (2013) The greater effectiveness of Glomus mosseae and Glomus intraradices in improving productivity, oil content and tolerance of salt-stressed menthol mint (Mentha arvensis). J Sci Food Agric 93:2154–2161PubMedCrossRefGoogle Scholar
  23. Binet MN, Van Tuinen D, Deprêtre N, Koszela N, Chambon C, Gianinazzi S (2011) Arbuscular mycorrhizal fungi associated with Artemisia umbelliformis Lam, an endangered aromatic species in Southern French Alps, influence plant P and essential oil contents. Mycorrhiza 21:523–535PubMedCrossRefGoogle Scholar
  24. Bohrer K, Friese C, Amon J (2004) Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza 14:329–337PubMedCrossRefGoogle Scholar
  25. Bona E, Lingua G, Manassero P, Cantamessa S, Marsano F, Todeschini V, Copetta A, D’Agostino G, Massa N, Avidano L, Gamalero E, Berta G (2015) AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25:181–193PubMedCrossRefGoogle Scholar
  26. Borde M, Dudhane M, Jite PK (2009) Role of bioinoculant (AM fungi) increasing in growth, flavor content and yield in Allium sativum L. under field condition. Not Bot Hortic Agrobot Cluj 37:124–128Google Scholar
  27. Braunberger P, Miller MH, Peterson RL (1991) Effect of phosphorus nutrition on morphological characteristics of vesicular arbuscular mycorrhizal colonization of maize. New Phytol 119:107–113CrossRefGoogle Scholar
  28. Brown M, Bledsoe C (1996) Spatial and temporal dynamics Jaumea carnosa, a tidal saltmarsh halophyte. J Ecol 84:703–715CrossRefGoogle Scholar
  29. Caravaca F, Diaz E, Barea J, Azcón-Aguilar C, Roldán A (2003) Photosynthetic and transpiration rates of Olea europaea subsp sylvestris and Rhamnus lycioides as affected by water deficit and mycorrhiza. Biol Plant 46:637–639CrossRefGoogle Scholar
  30. Castellanos-Morales V, Villegas J, Wendelin S, Vierheilig H, Eder R, Cárdenas-Navarro R (2010) Root colonisation by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria x ananassa Duch.) at different nitrogen levels. J Sci Food Agric 90:1774–1782PubMedGoogle Scholar
  31. Castillo P, Nico A, Azcon-Aguilar C, Del Río RC, Calvet C, Jiménez-Díaz RM (2006) Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi. Plant Pathol 55:705–713CrossRefGoogle Scholar
  32. Castillo RC, Sotomayor S, Ortiz OC, Leonelli CG, Borie BF, Rubio HR (2009) Effect of arbuscular mycorrhizal fungi on an ecological crop of chili peppers (Capsicum annuum L.). Chil J Agric Res 69:79–87CrossRefGoogle Scholar
  33. Ceccarelli N, Curadi M, Martelloni L, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323CrossRefGoogle Scholar
  34. Chan WF, Li H, Wu FY, Wu SC, Wong MH (2013) Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. J Hazard Mater 262:1116–1122PubMedCrossRefGoogle Scholar
  35. Charron G, Furlan V, Bernier-Cardou M, Doyon G (2001) Response of onion plants to arbuscular mycorrhizae. Mycorrhiza 11:187–197CrossRefGoogle Scholar
  36. Chatzistathis T, Orfanoudakis M, Alifragis D, Therios I (2013) Colonization of Greek olive cultivars’ root system by arbuscular mycorrhizal fungus: root morphology, growth, and mineral nutrition of olive plants. Sci Agric 70:185–194CrossRefGoogle Scholar
  37. Chaudhary V, Kapoor R, Bhatnagar AK (2008) Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40:174–181CrossRefGoogle Scholar
  38. Chulan HA (1991) Effect of fertilizer and endomycorrhizal inoculum on growth and nutrient-uptake of cocoa (Theobroma cacao L.) seedlings. Biol Fertil Soils 11:250–254CrossRefGoogle Scholar
  39. Chung L (2006) The antioxidant properties of garlic compounds: allyl cysteine, alliin, allicin, and allyl disulfide. J Med Food 9:205–213PubMedCrossRefGoogle Scholar
  40. Citernesi A, Vitagliano C, Giovannetti M (1998) Plant growth and root system morphology of Olea europaea L. rooted cuttings as influenced by arbuscular mycorrhizas. J Hortic Sci Biotechnol 73:647–654CrossRefGoogle Scholar
  41. Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494PubMedCrossRefGoogle Scholar
  42. Copetta A, Lingua G, Bardi L, Masoero G, Berta G (2007) Influence of arbuscular mycorrhizal fungi on growth and essential oil composition in Ocimum basilicum var. Genovese. Caryologia 60:106–110CrossRefGoogle Scholar
  43. Cornejo P, Castillo C, Azcon R, Borie F (2008) Mycorrhizal effectiveness on wheat nutrient acquisition in an acidic soil from southern chile as affected by nitrogen sources. J Plant Nutr 31:1555–1569CrossRefGoogle Scholar
  44. Corzo-Martinez M, Corzo N, Villamiel M (2007) Biological properties of onion and garlic. Trends Food Sci Technol 18:609–625CrossRefGoogle Scholar
  45. Criado M, Gutierrez Boem F, Roberts I, Caputo C (2015) Post-anthesis N and P dynamics and its impact on grain yield and quality in mycorrhizal barley plants. Mycorrhiza 25:229–235PubMedCrossRefGoogle Scholar
  46. Cuvelier M, Richard H, Berset C (1996) Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J Am Oil Chem Soc 73:645–652CrossRefGoogle Scholar
  47. Darzi M, Hadi M, Rejali F (2012) Effects of the application of vermicompost and nitrogen fixing bacteria on quantity and quality of the essential oil in dill (Anethum graveolens). J Med Plants Res 6:3793–3799Google Scholar
  48. Deans S, Simpson E (2000) Antioxidants from Salvia officinalis. In: Kintzios, medicinal and aromatic plants – industrial profiles, sage the genus Salvia, vol 14, Harwood Academic Publishers, pp 185–192Google Scholar
  49. Del Amor FM, Serrano-Martínez A, Fortea MI, Leguac P, Núñez-Delicado E (2008) The effect of plant-associative bacteria (Azospirillum and Pantoea) on the fruit quality of sweet pepper under limited nitrogen supply. Sci Hortic 117:191–196CrossRefGoogle Scholar
  50. Devi MC, Reddy MN (2002) Phenolic acid metabolism of groundnut (Arachis hypogaea L.) plants inoculated with VAM fungus and Rhizobium. Plant Growth Regul 37:151–156CrossRefGoogle Scholar
  51. Dolcet-Sanjuan R, Claveria E, Camprubí A, Estaun V, Calvet C (1996) Micropropagation of walnut trees (Juglans regia L.) and response to arbuscular mycorrhizal inoculation. Agronomie 16:639–645CrossRefGoogle Scholar
  52. Eden T (1958) The development of tea culture. In: Eden T (ed) Tea. Longman, London, pp 1–4Google Scholar
  53. El Wakeil N, El Sebai T (2007) Role of biofertilizer on faba bean growth, yield, and its effect on bean aphid and the associated predators. Res J Agric Biol Sci 3:800–880Google Scholar
  54. Esitken A, Pirlak L, Turan M, Sahin F (2006) Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hortic 110:324–327CrossRefGoogle Scholar
  55. Estaun V, Camprubi A, Calvet C, Pinochet J (2003) Nursery and field response of olive trees inoculated with two arbuscular mycorrhizal fungi, Glomus intraradices and Glomus mosseae. J Am Soc Hortic Sci 128:767–775Google Scholar
  56. Evans W (1996) Trease and Evans’ pharmacognosy. WB Sounders Company, London, p 48Google Scholar
  57. FAOSTAT (2010) http://faostat.fao.org
  58. Farahani HA, Lebaschi MH, Hamidi A (2008) Effects of arbuscular mycorrhizal fungi, phosphorus and water stress on quantity and quality characteristics of coriander. J Adv Nat Appl Sci 2:55–59Google Scholar
  59. Freitas MSM, Martins MA, Vieira IJC (2004) Produção e qualidade de óleos essenciais de Mentha arvensis em resposta à inoculação de fungos micorrízicos arbusculares. Pesqui Agrop Bras 39:887–894Google Scholar
  60. García-Fraile P, Carro L, Robledo M, Ramírez-Bahena MH, Flores-Félix JD, Fernández MT, Mateos PF, Rivas R, Igual JM, Martínez-Molina E, Peix A, Velázquez E (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7:e38122. doi: 10.1371/journal.pone.0038122 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Geneva MP, Stancheva IV, Boychinova MM, Mincheva NH, Yonova PA (2010) Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J Sci Food Agric 90:696–702PubMedGoogle Scholar
  62. Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (2002) Mycorrhiza technology in agriculture: from genes to bioproducts. Birkhäuser Verlag, BaselCrossRefGoogle Scholar
  63. Giovannetti M, Avio L, Barale R, Boychinova MM, Mincheva NH, Yonova PA (2012) Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Br J Nutr 107:242–251PubMedCrossRefGoogle Scholar
  64. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:963401. doi: 10.6064/2012/963401 Google Scholar
  65. Griffiths G, Trueman L, Crowthder T, Thomas B, Smith B (2002) Onions- a global benefit to health. Phytother Res 16:603–615PubMedCrossRefGoogle Scholar
  66. Gupta ML, Prasad A, Ram M, Kumar S (2002) Effect of the vesicular arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions. Bioresour Technol 81:77–79PubMedCrossRefGoogle Scholar
  67. Hamaoui B, Abbadi J, Burdman S, Rashid A, Sarig S, Okon Y (2001) Effects of inoculation with Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie 21:553–560CrossRefGoogle Scholar
  68. Harris J, Cottrell S, Plummer S, Lloyd D (2001) Antimicrobial properties of Allium sativum (garlic). Appl Microbiol Biotechnol 57:282–286PubMedCrossRefGoogle Scholar
  69. Hawkins H, George E (1997) Hydroponic culture of the mycorrhizal fungus Glomus mosseae with Linum usitatissimum L., Sorghum bicolor L. and Triticum aestivum L. Plant Soil 196:143–149CrossRefGoogle Scholar
  70. Hewedy M (2011) Associative effect of the rhizobacteria Streptomyces chibaensis and commercial biofertilizers on the growth, yield and nutritional value of Vicia faba. J Am Sci 7:552–559Google Scholar
  71. Jirovetz L, Bichbauer G, Shafi M, Kaniampady M (2003) Chemotaxonomical analysis of the essential oil aroma compounds of four different Ocimum species from Southern India. Eur Food Res Technol 217:120–124CrossRefGoogle Scholar
  72. Jurkiewicz A, Ryszka P, Anielska T, Waligórski P, Białońska D, Góralska K, Tsimilli-Michael M, Turnau K (2010) Optimization of culture conditions of Arnica montana L.: effects of mycorrhizal fungi and competing plants. Mycorrhiza 20:293–306PubMedCrossRefGoogle Scholar
  73. Kallio H, Hakala M, Pelkkikangas A, Lapvetelainen A (2000) Sugars and acids of strawberry varieties. Eur Food Res Technol 212:81–85CrossRefGoogle Scholar
  74. Kapoor R, Giri B, Mukerji KG (2002a) Mycorrhization of coriander (Coriandrum sativum L) to enhance the concentration and quality of essential oil. J Sci Food Agric 82:339–342CrossRefGoogle Scholar
  75. Kapoor R, Giri B, Mukerji KG (2002b) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463CrossRefGoogle Scholar
  76. Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol 93:307–311PubMedCrossRefGoogle Scholar
  77. Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587PubMedCrossRefGoogle Scholar
  78. Karagiannidis N, Hadjisavva-Zinoviadi S (1998) The mycorrhizal fungus Glomus mosseae enhances growth, yield and chemical composition of a durum wheat variety in 10 different soils. Nutr Cycle Agroecosyst 52:1–7CrossRefGoogle Scholar
  79. Karagiannidis N, Thomidis T, Panou-Filotheou E (2011) Effects of Glomus lamellosum on growth, essential oil production and nutrients uptake in selected medicinal plants. J Agric Sci 4:137–144Google Scholar
  80. Karlsen A, Retterstol L, Laake P, Paur I, Bøhn SK, Sandvik L, Blomhoff R (2007) Anthocyanins inhibit nuclear factor-k B activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J Nutr 137:1951–1954PubMedGoogle Scholar
  81. Kaume L, Howard LR, Devareddy L (2012) The blackberry fruit: a review on its composition and chemistry, metabolism and bioavailability, and health benefits. J Agric Food Chem 60:5716–5727PubMedCrossRefGoogle Scholar
  82. Kaya C, Ashraf M, Sonmez O, Aydemira S, Levent Tuna A, Cullu MA (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6CrossRefGoogle Scholar
  83. Khan A (1974) Occurrence of mycorrhizas in halophytes, hidrophytes and xerophytes, and of endogone spores in adjacent soils. J Gen Microbiol 81:7–14CrossRefGoogle Scholar
  84. Khan M, Zaidi A (2007) Synergistic effects of the inoculation with plant growth-promoting rhizobacteria and an arbuscular mycorrhizal fungus on the performance of wheat. Turk J Agric 31:355–362Google Scholar
  85. Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446PubMedCrossRefGoogle Scholar
  86. Krikorian R, Shidler M, Nash TA, Kalt W, Vinqvist-Tymchuk MR, Shukitt-Hale B, Joseph JA (2010) Blueberry supplementation improves memory in older adults. J Agric Food Chem 58:3996–4000PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kumar A, Sharma K, Gera R (2011) Arbuscular mycorrhizae (Glomus mosseae) symbiosis for increasing the yield and quality of wheat (Triticum aestivum). Indian J Agric Sci 81:478–480Google Scholar
  88. Kumari A, Singh O, Kumar R, Singh AK, Singh R (2010) Effect of integrated nutrient management on yield and quality of dwarf pea (Pisum sativum L.). Veg Sci 37:149–152Google Scholar
  89. Lee M, Chauhan P, Yim WJ, Lee GJ, Kim YS, Park KW, Sa TM (2011) Foliar colonization and growth promotion of red pepper (Capsicum annuum L.) by Methylobacterium oryzae CBMB20. J Appl Biol Chem 54:120–125CrossRefGoogle Scholar
  90. Lenin M, Selvakumar G, Thamizhiniyan P, Rajendiran R (2010) Growth and biochemical changes of vegetable seedlings induced by arbuscular mycorrhizal fungus. J Exp Sci 1:27–31Google Scholar
  91. Li S, Hartland S (1996) A new industrial process for extracting cocoa butter and xanthines with supercritical carbon dioxide. J Am Oil Chem Soc 73:423–429CrossRefGoogle Scholar
  92. Li H, Ye ZH, Chan WF, Chen XW, Wu FY, Wu SC, Wong MH (2011) Can arbuscular mycorrhizal fungi improve grain yield, as uptake and tolerance of rice grown under aerobic conditions? Environ Pollut 159:2537–2545PubMedCrossRefGoogle Scholar
  93. Likar M, Bukovnik U, Kreft I, Chrungoo NK, Regvar M (2008) Mycorrhizal status and diversity of fungal endophytes in roots of common buckwheat (Fagopyrum esculentum) and tartary buckwheat (F. tataricum). Mycorrhiza 18:309–315PubMedCrossRefGoogle Scholar
  94. Lingua G, Bona E, Manassero P, Marsano F, Todeschini V, Cantamessa C, Copetta A, D’Agostino G, Gamalero E, Berta G (2013) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization. Int J Mol Sci 14:16207–16225PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lu G, Chen G, Qi G, Gao Z (2006) Effects of arbuscular mycorrhizal fungi on the growth and fruit quality of plastic greenhouse Cucumis sativus L. J Appl Ecol 17:2352–2356Google Scholar
  96. Mahmoud AWM, Hassan AZA (2013) Response of fennel plants to organic biofertilizer in replacement of chemical fertilization. Topclass J Agric Res 1:29–35Google Scholar
  97. Maleki V, Ardakani MR, Rejali F, Taherpour AA (2013) Physiological responses of sweet basil (Ocimum basilicum L.) to triple inoculation with Azotobacter, Azospirillum, Glomus intraradices and foliar application of citric acid. Ann Biol Res 4:62–71Google Scholar
  98. Mamatha G, Bagyaraj DJ, Jaganath S (2002) Inoculation of field-established mulberry and papaya with arbuscular mycorrhizal fungi and a mycorrhiza helper bacterium. Mycorrhiza 12:313–316PubMedCrossRefGoogle Scholar
  99. Mandyal P, Kaushal R, Sharma K, Kaushal M (2012) Evaluation of native PGPR isolates in bell pepper for enhanced growth, yield and fruit quality. Int J Farm Sci 2:28–35Google Scholar
  100. Mechri B, Attia F, Tekaya M, Cheheb H, Hammami M (2014) Colonization of olive trees (Olea europaea L.) with the arbuscular mycorrhizal fungus Glomus sp modified the glycolipids biosynthesis and resulted in accumulation of unsaturated fatty acids. J Plant Physiol 171:1217–1220PubMedCrossRefGoogle Scholar
  101. Mena-Violante HG, Ocampo-Jiménez O, Dendooven L, Martínez-Soto G, González-Castañeda J, Davies FT Jr, Olalde-Portugal V (2006) Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Mycorrhiza 16:261–267PubMedCrossRefGoogle Scholar
  102. Midrarullah AB, Mirza M (2014) Response of rice to inoculation with plant growth promoting rhizobacteria in control lab environment and field experiment. Pak J Bot 46:1121–1124Google Scholar
  103. Mirabelli C, Pierandrei F, Rea E (2009) Effect of arbuscular mycorrhizal fungi on micropropagated hazelnut (Corylus avellana L.) plants. Acta Hortic 812:467–472CrossRefGoogle Scholar
  104. Mogren L, Caspersen S, Olsson M, Gertsson U (2008) Organically fertilized onions (Allium cepa L.): effects of the fertilizer placement method on quercetin content and soil nitrogen dynamics. J Agric Food Chem 56:361–367PubMedCrossRefGoogle Scholar
  105. Mondal TK, Bhattacharya a, Laxmikumaran M, Singh Ahuja P (2004) Recent advances of tea (Camellia sinensis) biotechnology. Plant Cell Tissue Organ Cult 76:195–254CrossRefGoogle Scholar
  106. Montero-Calasanz MC, Santamaria C, Albareda M, Daza A, Duan J, Glick BR, Camacho M (2013) Alternative rooting induction of semi-hardwood olive cuttings by several auxin-producing bacteria for organic agriculture systems. Span J Agric Res 11:146–154CrossRefGoogle Scholar
  107. Morone-Fortunato I, Avato P (2008) Plant development and synthesis of essential oils in micropropagated and mycorrhiza inoculated plants of Origanum vulgare L. ssp. hirtum (Link) Ietswaart. Plant Cell Tissue Organ Cult 93:139–149CrossRefGoogle Scholar
  108. Nautiyal C, Govindarajan R, Lavania M, Pushpangadan P (2008) Novel mechanism of modulating natural antioxidants in functional foods: involvement of plant growth promoting rhizobacteria NRRL B-30488. J Agric Food Chem 56:4474–4481PubMedCrossRefGoogle Scholar
  109. Nell M, Vötsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franz C, Novaka J (2009) Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). J Sci Food Agric 89:1090–1096CrossRefGoogle Scholar
  110. Nell M, Wawrosch C, Steinkellner S, Vierheilig H, Kopp B, Lössl A, Franz C, Novak J, Zitterl-Eglseer K (2010) Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L. Planta Med 76:393–398PubMedCrossRefGoogle Scholar
  111. Nzanza B, Marais D, Soundy P (2012) Yield and nutrient content of tomato (Solanum lycopersicum L.) as influenced by Trichoderma harzianum and Glomus mosseae inoculation. Sci Hortic 144:55–59CrossRefGoogle Scholar
  112. Oliveira MS, Campos MAS, Silva FSB (2014) Arbuscular mycorrhizal fungi and vermicompost to maximize the production of foliar biomolecules in Passiflora alata Curtis seedlings. J Sci Food Agric. doi: 10.1002/jsfa.6767 Google Scholar
  113. Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111:38–43CrossRefGoogle Scholar
  114. Ortas I (2010) Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Span J Agric Res 8:116–122CrossRefGoogle Scholar
  115. Palencia P, Martinez F, Weiland C (2013) Effect of arbuscular mycorrhizal fungi on quality of strawberry fruit in soilless growing system. Acta Hortic 1013:493–498CrossRefGoogle Scholar
  116. Palenzuela J, Azcon-Aguilar C, Figueroa D, Caravaca F, Roldán A, Barea JM (2002) Effects of mycorrhizal inoculation of shrubs from Mediterranean ecosystems and composted residue application on transplant performance and mycorrhizal developments in a desertified soil. Biol Fertil Soils 36:170–175CrossRefGoogle Scholar
  117. Pastorello E, Farioli L, Pravettoni V, Scibilia J, Conti A, Fortunato D, Borgonovo L, Bonomi S, Primavesi L, Ballmer-Weber B (2009) Maize food allergy: lipid-transfer proteins, endochitinases, and alphazein precursor are relevant maize allergens in double-blind placebo controlled maize-challenge-positive patients. Anal Bioanal Chem 395:93–102PubMedCrossRefGoogle Scholar
  118. Perez G, Olias R, Espada J, Olías JM, Sanz C (1997) Rapid determination of sugars, nonvolatile acids, and ascorbic acid in strawberry and other fruits. J Agric Food Chem 45:3545–3549CrossRefGoogle Scholar
  119. Perner H, Rohn S, Driemel G, Batt N, Schwarz D, Kroh LW, George E (2008) Effect of nitrogen species supply and mycorrhizal colonization on organo sulfur and phenolic compounds in onions. J Agric Food Chem 56:3538–3545PubMedCrossRefGoogle Scholar
  120. Pešaković M, Karaklajić-Stajić Ž, Milenković S, Mitrović O (2013) Biofertilizer affecting yield related characteristics of strawberry (Fragaria×ananassa Duch.) and soil micro-organisms. Sci Hortic 150:238–243CrossRefGoogle Scholar
  121. Price K, Rhodes M (1997) Analysis of the major flavonol glycosides present in four varieties of onion (Allium cepa) and changes in composition resulting from autolysis. J Sci Food Agric 74:331–339CrossRefGoogle Scholar
  122. Raju P, Clark R, Ellis J, Maranville J (1990) Effects of species of VA-mycorrhizal fungi on growth and mineral uptake of sorghum at different temperatures. Plant Soil 121:165–170CrossRefGoogle Scholar
  123. Ramos-Solano B, Garcia-Villaraco A, Gutierrez-Mañero FJ, Lucas JA, Bonilla A, Garcia-Seco D (2014) Annual changes in bioactive contents and production in field-grown blackberry after inoculation with Pseudomonas fluorescens. Plant Physiol Biochem 74:1–8PubMedCrossRefGoogle Scholar
  124. Rosen CJ, Fritz VA, Gardner GM, Hecht SS, Carmella SG, Kenney PM (2005) Cabbage yield and glucosinolate concentrations as affected by nitrogen and sulfur fertility. HortScience 40:1493–1498Google Scholar
  125. Roshanpour N, Darzi MT, Haj M, Hadi S (2014) Effects of plant growth promoter bacteria on biomass and yield of basil (Ocimum basilicum L.). Int J Adv Biol Biomed Res 2:2077–2085Google Scholar
  126. Rydlová J, Püschel D, Sudová R, Gryndler M, Mikanová O, Vosátka M (2011) Interaction of arbuscular mycorrhizal fungi and rhizobia: Effects on flax yield in spoil-bank clay. J Plant Nutr Soil Sci 174:128–134CrossRefGoogle Scholar
  127. Sajedi N a, Ardakani MR, Rejali F, Mohabbati F, Miransari M (2010) Yield and yield components of hybrid corn (Zea mays L.) as affected by mycorrhizal symbiosis and zinc sulfate under drought stress. Physiol Mol Biol Plants 16:343–351PubMedPubMedCentralCrossRefGoogle Scholar
  128. Salvioli A, Zouari I, Chalot M, Bonfante P (2012) The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit. BMC Plant Biol 12:44PubMedPubMedCentralCrossRefGoogle Scholar
  129. Sbrana C, Avio L, Giovannetti M (2014) Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals. Electrophoresis 35:1535–1546PubMedCrossRefGoogle Scholar
  130. Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and genera. The Royal Botanic Garden/Botanische Staatssammlung Munich/Oregon State University, Edinburgh/Munich/Oregon. ISBN-13: 978-1466388048; ISBN-10: 1466388048Google Scholar
  131. Schulz H (2004) Application in analysis of coffee, tea, cocoa, tobacco, spices, medicinal and aromatic plants, and related products. In: Roberts C, Workman J Jr, Reeves J (eds) Near-infrared spectroscopy in agriculture, Agronomy Monograph No. 44. American Society of Agronomy/Crop Science of America/Soil Science Society of America, Madison, pp 345–376Google Scholar
  132. Schwarz D, Welter S, George E (2011) Impact of arbuscular mycorrhizal fungi on the allergenic potential of tomato. Mycorrhiza 21:341–349PubMedCrossRefGoogle Scholar
  133. Secilia J, Bagyaraj D (1994) Selection of efficient vesicular–arbuscular mycorrhizal fungi for wetland rice-a preliminary screen. Mycorrhiza 4:265–268CrossRefGoogle Scholar
  134. Sharif M, Sarir M, Muhammad D, Shafi M (2011) Response to different crops to arbuscular mycorrhiza fungal inoculation in phosphorus deficient soil. Commun Soil Sci Plant Anal 42:2299–2309CrossRefGoogle Scholar
  135. Silva V, Alves P, de Oliveira R, de Jesus R, do Bonfim CL, Gross E (2014) Influence of arbuscular mycorrhizal fungi on growth, mineral composition and production of essential oil in Mentha x piperita L. var. citrata (Ehrh.) Briq. under two phosphorus levels. J Med Plants Res 8:1321–1332CrossRefGoogle Scholar
  136. Simon J, Quinn J, Murray R (1990) Basil: a source of essential oils. In: Janick J, Simon J (eds) Advances in new crops. Timber Press, Portland, pp 484–489Google Scholar
  137. Sinclair G, Charest C, Dalpé Y, Khanizadeh S (2014) Influence of colonization by arbuscular mycorrhizal fungi on three strawberry cultivars under salty conditions. Agric Food Sci 23:146–158Google Scholar
  138. Singh S, Pandey A, Kumar B, Palni LMS (2010) Enhancement in growth and quality parameters of tea [Camellia sinensis (L.) O. Kuntze] through inoculation with arbuscular mycorrhizal fungi in an acid soil. Biol Fertil Soils 46:427–433CrossRefGoogle Scholar
  139. Sirichaiwetchakul S, Sirithorn P, Manakasem Y (2011) Arbuscular mycorrhizal fungi on growth, fruit yield, and quality of cherry tomato under glasshouse conditions. Suranaree J Sci Technol 18:273–280Google Scholar
  140. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, New YorkGoogle Scholar
  141. Solaiman M, Hirata H (1997) Responses of directly seeded wetland rice to arbuscular mycorrhizal inoculation. J Plant Nutr 20:1479–1487CrossRefGoogle Scholar
  142. Subramanian K, Balakrishnan N, Senthil N (2013) Mycorrhizal symbiosis to increase the grain micronutrient content in maize. Aust J Crop Sci 7:900–910Google Scholar
  143. Toussaint J, Kraml M, Nell M, Smith SE, Smith FA, Steinkellner S, Schmiderer C, Vierheilig H, Novak J (2008) Effect of Glomus mosseae on concentrations of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with Fusarium oxysporum f. sp. basilici. Plant Pathol 57:1109–1116CrossRefGoogle Scholar
  144. Turner S, Amon J, Schneble R, Friese C (2000) Mycorrhizal fungi associated with plants in ground-water fed wetlands. Wetlands 20:200–204CrossRefGoogle Scholar
  145. Ulrichs C, Fischer G, Büttner C, Mewis I (2008) Comparison of lycopene, b -carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF). Agron Colomb 26:40–46Google Scholar
  146. Urcelay C, Acho J, Joffre R (2011) Fungal root symbionts and their relationship with fine root proportion in native plants from the Bolivian Andean highlands above 3,700 m elevation. Mycorrhiza 21:323–330PubMedCrossRefGoogle Scholar
  147. Verginer M, Leitner E, Berg G (2010) Production of volatile metabolites by grape-associated microorganisms. J Agric Food Chem 58:8344–8350PubMedCrossRefGoogle Scholar
  148. Verma R, Maurya BR (2013) Effect of bio-organics and fertilizers on yield and nutrient uptake by cabbage. Ann Plant Soil Res 15:35–38Google Scholar
  149. Verma RS, Rahman L, Verma RK, Chauhan A, Yadav AK, Singh A (2010) Essential oil composition of menthol mint (Mentha arvensis) and peppermint (Mentha piperita) cultivars at different stages of plant growth from Kumaon region of Western Himalaya. Open Access J Med Aromat Plants 1:13–18Google Scholar
  150. Wang FY, Tong RJ, Shi ZY, Xu XF, He XH (2011) Inoculations with arbuscular mycorrhizal fungi increase vegetable yields and decrease phoxim concentrations in carrot and green onion and their soils. PLoS ONE 6:e16949. doi: 10.1371/journal.pone.0016949 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Yadegari M, Rahmani H (2010) Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and Plant Growth Promoting Rhizobacteria (PGPR) on yield and yield components. Afr J Agric Res 5:792–799Google Scholar
  152. Yildirim E (2011) Promotion of broccoli by plant growth promoting rhizobacteria. Hortic Sci 46:932–936Google Scholar
  153. Yooyongwech S, Phaukinsang N, Cha-um S, Supaibulwatana K (2013) Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regul 69:285–293CrossRefGoogle Scholar
  154. Zeng Y, Guo LP, Chen BD, Hao ZP, Wang JY, Huang LQ, Yang G, Cui XM, Yang L, Wu ZX, Chen ML, Zhang Y (2013) Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza 23:253–266PubMedCrossRefGoogle Scholar
  155. Zhu Y, Smith F, Smith S (2003) Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Mycorrhiza 13:93–100PubMedCrossRefGoogle Scholar
  156. Zitterl-Eglseer K, Nell M, Lamien-Meda A, Steinkellner S, Wawrosch C, Kopp B, Zitterl W, Vierheilig H, Novak J (2015) Effects of root colonization by symbiotic arbuscular mycorrhizal fungi on the yield of pharmacologically active compounds in Angelica archangelica L. Acta Physiol Plant 37:21CrossRefGoogle Scholar
  157. Zolfaghari M, Nazeri V, Sefidkon F, Rejali F (2012) Effect of arbuscular mycorrhizal fungi on plant growth and essential oil content and composition of Ocimum basilicum L. Iran J Plant Physiol 3:643–650Google Scholar
  158. Zouari I, Salvioli A, Chialva M, Novero M, Miozzi L, Tenore GC, Bagnaresi P, Bonfante P (2014) From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. BMC Genomics 15:221PubMedPubMedCentralCrossRefGoogle Scholar
  159. Zubek S, Mielcarek S, Turnau K (2012) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Dipartimento di Scienze e Innovazione TecnologicaUniversità del Piemonte Orientale “A. Avogadro”AlessandriaItaly

Personalised recommendations