The Production and Potential of Biofertilizers to Improve Crop Yields

  • Didier Lesueur
  • Rosalind Deaker
  • Laetitia Herrmann
  • Lambert Bräu
  • Jan Jansa


Extensive interactions of plant roots with soil microorganisms affect plant nutrition either directly by influencing mineral nutrient availability or indirectly through enhanced uptake efficiency via plant root growth promotion. Beneficial microbial interactions with roots may be either endophytic or associative and can be symbiotic, mutualistic, or incidental in nature. The increased understanding of the role of root – or rhizosphere –associated with microbes in the nutrition and/or yield of agricultural crops in particular has resulted in promotion of their use in agricultural production as alternatives or supplements to mineral or organic fertilizers. Despite this, there is an obvious lack of market penetration of microbial inoculants. This review specifically focuses on microbial inoculants, collectively termed biofertilizers, used to improve nutrition and yields of grain, legume, oil, tuber, and other crops. A vast number of commercial biofertilizers are available worldwide; however, the quality and efficacy of many of them are not proven or tested. In the absence of efficacious biofertilizers of good and consistent quality, the dependence on the use of mineral fertilizers is not likely to decrease. Thus the availability of high-quality biofertilizers must be priority particularly in countries where crop plant production plays a key role in the economy and food security.


Arbuscular Mycorrhizal Fungus Rock Phosphate Biological Nitrogen Fixation Arbuscular Mycorrhizal Fungus Species Arbuscular Mycorrhizal Fungus Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



JJ was supported by the Fellowship of J E Purkyně, Czech Science Foundation (P504121665), Ministry of Education, Youth and Sports (LK11224), and the long-term development program RVO 61388971. LH and DL were partially supported by the “COMPRO” project funded by Bill and Melinda Gates Foundation (2009–2011).

The authors are indebted to Prof David Herridge for his useful review of the Ms and his important comments and suggestions to improve it.


  1. Abaidoo RC, Keyser HH, Singleton PW, Dashiell KE, Sanginga N (2007) Population size, distribution and symbiotic characteristics of indigenous Bradyrhizobium spp. that nodulate TGx soybean genotypes in Africa. Appl Soil Ecol 35:57–67CrossRefGoogle Scholar
  2. Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer–use efficiency. Appl Microbiol Biotechnol 85:1–12PubMedCrossRefGoogle Scholar
  3. Althabegoiti MJ, Lopez–Garcia SL, Piccinetti C, Mongiardini EJ, Perez–Gimenez J, Quelas JI, Perticari A, Lodeiro AR (2008) Strain selection for improvement of Bradyrhizobium japonicum competitiveness for nodulation of soybean. FEMS Microbiol Lett 282:115–123PubMedCrossRefGoogle Scholar
  4. Alves BJ, Boddey RM, Urquiaga S (2003) The success of BNF in soybean in Brazil. Plant Soil 252:1–9CrossRefGoogle Scholar
  5. Andrade DS, Murphy PJ, Giller KE (2002) The diversity of Phaseolus–nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil. Appl Environ Microbiol 68:4025–4034PubMedPubMedCentralCrossRefGoogle Scholar
  6. Andrews M, Cripps MG, Edwards GR (2012) The potential of beneficial microorganisms in agricultural systems. Ann Appl Biol 160:1–5CrossRefGoogle Scholar
  7. Arora NK, Khare E, Maheshwari DK (2011) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, vol 18, Microbiology monographs. Springer, BerlinGoogle Scholar
  8. Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740CrossRefGoogle Scholar
  9. Baar J (2008) From production to application of arbuscular mycorrhizal fungi in agricultural systems: requirements and needs. In: Varma A (ed) Mycorrhiza. Springer, BerlinGoogle Scholar
  10. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570PubMedCrossRefGoogle Scholar
  11. Baca BE, Elmerich C (2007) Microbial production of plant hormones. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen–fixing bacteria and cyanobacterial associations. Springer, DordrechtGoogle Scholar
  12. Bashan Y, de Bashan LE (2005) Plant growth–promoting. Encycl Soils Environ 1:103–115CrossRefGoogle Scholar
  13. Bashan Y, Hernandez JP, Leyva LA, Bacilio M (2002) Alginate microbeads as inoculant carriers for plant growth–promoting bacteria. Biol Fertil Soils 35:359–368CrossRefGoogle Scholar
  14. Bashan Y, De–Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth–promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33CrossRefGoogle Scholar
  15. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486PubMedCrossRefGoogle Scholar
  16. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. App Microbiol Biotechnol 84:11–18CrossRefGoogle Scholar
  17. Bhattacharyya PN, Jha DK (2012) Plant growth–promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350PubMedCrossRefGoogle Scholar
  18. Biró B, Köves–Péchy K, Vörös I, Takács T, Eggenberger P, Strasser RJ (2000) Interrelations between Azospirillum and Rhizobium nitrogen–fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF–free or normal soil conditions. Appl Soil Ecol 15:159–168CrossRefGoogle Scholar
  19. Boddington CL, Dodd JC (2000) The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi I. Field studies in an Indonesian ultisol. Plant Soil 218:137–144CrossRefGoogle Scholar
  20. Boerstler B, Thiéry O, Sýkorová Z, Berner A, Redecker D (2010) Diversity of mitochondrial large subunit rDNA haplotypes of Glomus intraradices in two agricultural field experiments and two semi–natural grasslands. Mol Ecol 19:1497–1511CrossRefGoogle Scholar
  21. Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem 27:683–697CrossRefGoogle Scholar
  22. Brockwell J, Gault RR, Chase DL, Hely FW, Zorin M, Corbin EJ (1980) An a appraisal of practical alternatives to legume seed inoculation: field experiments on seed bed inoculation with solid and liquid inoculants. Aust J Agric Res 31:47–60CrossRefGoogle Scholar
  23. Bünemann EK, Oberson A, Frossard E (2011) Phosphorus in action: biological processes in soil phosphorus cycling. Springer–Verlag, BerlinCrossRefGoogle Scholar
  24. Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330:192–196PubMedCrossRefGoogle Scholar
  25. Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84CrossRefGoogle Scholar
  26. Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230:21–30CrossRefGoogle Scholar
  27. Choudhary DK, Sharma KP, Gaur RK (2011) Biotechnological perspectives of microbes in agro–ecosystems. Biotechnol Lett 33:1905–1910PubMedCrossRefGoogle Scholar
  28. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth–promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  29. Compant S, Clément C, Sessitsch A (2010) Plant growth–promoting bacteria in the rhizo–and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  30. Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19:292–305CrossRefGoogle Scholar
  31. Couillerot O, Ramírez–Trujillo A, Walker V, Von Felten A, Jansa J, Maurhofer M, Défago G, Prigent–Combaret C, Comte G, Caballero–Mellado J, Moënne–Loccoz Y (2013) Comparison of prominent Azospirillum strains in AzospirillumPseudomonasGlomus consortia for promotion of maize growth. Appl Microbiol Biotechnol 97:4639–4649PubMedCrossRefGoogle Scholar
  32. da Silva MF, de Souza Antônio C, de Oliveira PJ, Xavier GR, Rumjanek NG, de Barros Soares LH, Reis VM (2012) Survival of endophytic bacteria in polymer–based inoculants and efficiency of their application to sugarcane. Plant Soil 356:231–243CrossRefGoogle Scholar
  33. Dakora FD, Chimpango SBM, Valentine AJ, Elmerich C, Newton WE (2008) Biological nitrogen fixation: towards poverty alleviation through sustainable agriculture. In: Proceedings of the 15th international nitrogen fixation congress and the 12th international conference of the African association for biological nitrogen fixation. Springer, BerlinGoogle Scholar
  34. Dalpé Y, Monreal M (2004) Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Crop Manag Online. doi: 10.1094/CM-2004-0301-09-RV Google Scholar
  35. De–Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth–promoting bacteria to reduce environmental degradation– a comprehensive evaluation. Appl Soil Ecol 61:171–189CrossRefGoogle Scholar
  36. Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology – a review. Soil Biol Biochem 36:1275–1288CrossRefGoogle Scholar
  37. Deaker R, Kecskés ML, Rose MT, Khanok–on A, Ganisan K, Tran TKC, Vu TN, Phan TC, Nguyen TH, Kennedy IR (2011) Practical methods for the quality control of inoculant biofertilisers, ACIAR monograph no 147. Australian Centre for International Agricultural Research, CanberraGoogle Scholar
  38. Denton MD, Pearce DJ, Peoples MB (2013) Nitrogen contributions from faba bean (Vicia faba L.) reliant on soil rhizobia or inoculation. Plant Soil 365:363–374CrossRefGoogle Scholar
  39. Díaz–Zorita M, Fernández–Canigia MV (2009) Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur J Soil Biol 45:3–11CrossRefGoogle Scholar
  40. Diouf D, Forestier S, Neyra M, Lesueur D (2003) Optimisation of inoculation of Leucaena leucocephala and Acacia mangium with rhizobium under greenhouse conditions. Ann For Sci 60:379–384CrossRefGoogle Scholar
  41. Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera–Gonzalez C, Caballero–Mellado J, Aguirre JF, Kapulnik Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Funct Plant Biol 28:871–879CrossRefGoogle Scholar
  42. Dodd JC, Thomson BD (1994) The screening and selection of inoculant arbuscular-mycorrhizal and ecotomycorrhizal fungi. Plant Soil 159:149–158Google Scholar
  43. Douds DD Jr, Nagahashi G, Pfeffer PE, Kayser WM, Reider C (2005) On–farm production and utilization of arbuscular mycorrhizal fungus inoculum. Can J Plant Sci 85:15–21CrossRefGoogle Scholar
  44. Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, Boschker HTS, Bodelier PLE, Whiteley AS, van Veen JA (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci 107:10938–10942PubMedPubMedCentralCrossRefGoogle Scholar
  45. Dumas M, Frossard E, Scholz RW (2011) Modeling biogeochemical processes of phosphorus for global food supply. Chemosphere 84:798–805PubMedCrossRefGoogle Scholar
  46. Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36:232–244PubMedCrossRefGoogle Scholar
  47. Ehinger MO, Croll D, Koch AM, Sanders IR (2012) Significant genetic and phenotypic changes arising from clonal growth of a single spore of an arbuscular mycorrhizal fungus over multiple generations. New Phytol 196:853–861PubMedCrossRefGoogle Scholar
  48. Faye A, Dalpé Y, Ndung’u–Magiroi K, Jefwa J, Ndoye ID, Lesueur D (2013) Evaluation of commercial arbuscular mycorrhizal inoculants on maize in Kenya. Can J Plant Sci 93:1201–1208CrossRefGoogle Scholar
  49. Ferreira AS, Pires RR, Rabelo PG, Oliveira RC, Luz JMQ, Brito CH (2013) Implications of Azospirillum brasilense inoculation and nutrient addition on maize in soils of the Brazilian Cerrado under greenhouse and field conditions. Appl Soil Ecol 72:103–108CrossRefGoogle Scholar
  50. Findlay CM, Kendle AD (2001) Towards a mycorrhizal application decision model for landscape management. Landsc Urban Plan 56:149–160CrossRefGoogle Scholar
  51. Frossard E, Bünemann E, Jansa J, Oberson A, Feller C (2009) Concepts and practices of nutrient management in agro–ecosystems: can we draw lessons from history to design future sustainable agricultural production systems. Die Bodenkultur 60:43–60Google Scholar
  52. Gahan J, Schmalenberger A (2014) The role of bacteria and mycorrhiza in plant sulfur supply. Front Plant Sci 5:1–7CrossRefGoogle Scholar
  53. Gao X, Hoffland E, Stomph TJ, Grant CA, Zou C, Zhang F (2012) Improving zinc bioavailability in transition from flooded to aerobic rice. A review. Agron Sustain Dev 32:465–478CrossRefGoogle Scholar
  54. Gemell LG, Hartley EJ, Herridge DF (2005) Point–of–sale evaluation of preinoculated and custom–inoculated pasture legume seed. Anim Prod Sci 45:161–169CrossRefGoogle Scholar
  55. Gianinazzi S, Vosátka M (2004) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82:1264–1271CrossRefGoogle Scholar
  56. Giri B, Giang PH, Kumari R, Prasad R, Varma A (2005) Microbial diversity in soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, BerlinGoogle Scholar
  57. Glick BR (2012) Plant growth–promoting bacteria: mechanisms and applications. Scientifica article ID 963401Google Scholar
  58. Halpern M, Bar–Tal A, Ofek M, Minz D, Muller T, Yermiyahu U (2015) The use of biostimulants for enhancing nutrient uptake. In: Sparks DL (ed) Advances in agronomy, vol 129. Elsevier, Boston, pp 141–174Google Scholar
  59. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species–opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56PubMedCrossRefGoogle Scholar
  60. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598CrossRefGoogle Scholar
  61. Herridge DF (2008) Inoculation technology for legumes. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen–fixing leguminous symbioses. Springer, DordrechtGoogle Scholar
  62. Herridge DF, Gemell G, Hartley E (2002) Legume inoculants and quality control. In: Herridge DF (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR, CanberraGoogle Scholar
  63. Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18CrossRefGoogle Scholar
  64. Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873PubMedCrossRefGoogle Scholar
  65. Herrmann L, Atieno M, Brau L, Lesueur D (2015) Microbial quality of commercial inoculants to increase BNF and nutrient use efficiency. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley – Blackwell, HobokenGoogle Scholar
  66. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152CrossRefGoogle Scholar
  67. Hinsinger P, Herrmann L, Lesueur D, Robin A, Trap J, Waithaisong K, Plassard C (2015) Impact of roots, microorganisms and microfauna on the fate of soil P in the rhizosphere. In: Plaxton W, Lambers H (eds) Annual plant reviews, vol 48, Phosphorus metabolism in plants. Wiley, ChichesterGoogle Scholar
  68. Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10CrossRefGoogle Scholar
  69. Hungria M, Campo RJ, Mendes I (2003) Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol Fertil Soils 39:88–93CrossRefGoogle Scholar
  70. Hungria M, Campo RJ, Mendes IC, Graham PH (2006) Contribution of biological nitrogen fixation to the N nutrition of grain crops in the tropics: the success of soybean (Glycine max L. Merr.) in South America. In: Singh RP, Shankar N, Jaiwal PK (eds) Nitrogen nutrition and sustainable plant productivity. Studium Press, HoustonGoogle Scholar
  71. Husen E, Simanungkalit RDM, Saraswati R (2007) Characterization and quality assessment of Indonesian commercial biofertilizers. Indones J Agric Sci 8:31–38Google Scholar
  72. IJdo M, Cranenbrouck S, Declerck S (2011) Methods for large–scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16PubMedCrossRefGoogle Scholar
  73. Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176CrossRefGoogle Scholar
  74. Jansa J, Wiemken A, Frossard E (2006) The effects of agricultural practices on arbuscular mycorrhizal fungi. In: Frossard E, Blum WEH, Warkentin BP (eds) Function of soils for human societies and the environment. Geological Society, LondonGoogle Scholar
  75. Jansa J, Bationo A, Frossard E, Rao IM (2011) Options for improving plant nutrition to increase common bean productivity in Africa. In: Bationo A, Waswa B, Okeyo JM, Maina F, Kihara J, Mokwunye U (eds) Fighting poverty in sub–Saharan Africa: the multiple roles of legumes in integrated soil fertility management. Springer, HeidelbergGoogle Scholar
  76. Jefwa JM, Pypers P, Jemo M, Thuita M, Mutegi E, Laditi MA, Faye A, Kavoo A, Munyahali W, Herrmann L, Atieno M, Okalebo JR, Yusuf A, Ibrahim A, Ndung’u–Magiroi KW, Asrat A, Muletta D, Ncho C, Kamaa M, Lesueur D (2014) Do commercial biological and chemical products increase crop yields and economic returns under smallholder farmer conditions? In: Vanlauwe B, van Asten P, Blomme G (eds) Challenges and opportunities for agricultural Intensification of the humid highland systems of sub–Saharan Africa. Springer International Publishing, ChamGoogle Scholar
  77. Jenkins NE, Grzywacz D (2000) Quality control of fungal and viral biocontrol agents–assurance of product performance. Biocontrol Sci Technol 10:753–777CrossRefGoogle Scholar
  78. Johnson NC, Wilson GWT, Wilson JA, Miller RM, Bowker MA (2015) Mycorrhizal phenotypes and the law of the minimum. New Phytol 205:1473–1484PubMedCrossRefGoogle Scholar
  79. Kaschuk G, Leffelaar PA, Giller KE, Alberton O, Hungria M, Kuyper TW (2010) Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta–analysis of potential photosynthate limitation of symbioses. Soil Biol Biochem 42:125–127CrossRefGoogle Scholar
  80. Kaur G, Reddy MS (2014) Influence of P–solubilizing bacteria on crop yield and soil fertility at multilocational sites. Eur J Soil Biol 61:35–40CrossRefGoogle Scholar
  81. Kavoo–Mwangi AM, Kahangi EM, Ateka E, Onguso J, Mukhongo RW, Mwangi EK, Jefwa JM (2013) Growth effects of microorganisms based commercial products inoculated to tissue cultured banana cultivated in three different soils in Kenya. Appl Soil Ecol 64:152–162CrossRefGoogle Scholar
  82. Khalid A, Arshad M, Zahir ZA (2006) Phytohormones: microbial production and applications. In: Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. CRC Press, Taylor & Francis, New YorkGoogle Scholar
  83. Khan MS, Zaidi A, Wani PA (2007) Role of phosphate–solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43CrossRefGoogle Scholar
  84. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhyuse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882PubMedCrossRefGoogle Scholar
  85. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free–living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44CrossRefGoogle Scholar
  86. Krak K, Janoušková M, Caklová P, Vosátka M, Štorchová H (2012) Intraradical dynamics of two coexisting isolates of the arbuscular mycorrhizal fungus Glomus intraradices sensu lato as estimated by Real–Time PCR of mitochondrial DNA. Appl Environ Microbiol 78:3630–3637PubMedPubMedCentralCrossRefGoogle Scholar
  87. Krey T, Vassilev N, Baum C, Eichler–Löbermann B (2013) Effects of long–term phosphorus application and plant–growth promoting rhizobacteria on maize phosphorus nutrition under field conditions. Eur J Soil Biol 55:124–130CrossRefGoogle Scholar
  88. Kueneman EA, Root WR, Dashiell KE, Hohenberg J (1984) Breeding soybean for the tropics capable of nodulating effectively with indigenous Rhizobium spp. Plant Soil 82:387–396CrossRefGoogle Scholar
  89. Lamont BB, Pérez–Fernández M, Rodríguez–Sánchez J (2014) Soil bacteria hold the key to root cluster formation. New Phytol 3:1156–1162Google Scholar
  90. Lang FB, Hijri M (2009) The complete Glomus intraradices mitochondrial genome sequence – a milestone in mycorrhizal research. New Phytol 183:3–6PubMedCrossRefGoogle Scholar
  91. Leake JR, Ostle NJ, Rangel–Castro JI, Johnson D (2006) Carbon fluxes from plants through soil organisms determined by field 13CO2 pulse–labelling in an upland grassland. Appl Soil Ecol 33:152–175CrossRefGoogle Scholar
  92. Lehmann A, Barto EK, Powell JR, Rillig MC (2012) Mycorrhizal responsiveness trends in annual crop plants and their wild relatives–a meta–analysis on studies from 1981 to 2010. Plant Soil 355:231–250CrossRefGoogle Scholar
  93. Lendenmann M, Thonar C, Barnard RL, Salmon Y, Werner RA, Frossard E, Jansa J (2011) Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 21:689–702PubMedCrossRefGoogle Scholar
  94. Lesueur D, Duponnois R (2005) Relations between rhizobial nodulation and root colonization of Acacia crassicarpa provenances by an arbuscular mycorrhizal fungus, Glomus intraradices Schenk and Smith or an ectomycorrhizal fungus, Pisolithus tinctorius Coker & Couch. Ann For Sci 62:467–474CrossRefGoogle Scholar
  95. Lesueur D, Ingleby K, Odee D, Chamberlain J, Wilson J, Manga TT, Sarrailh JM, Pottinger A (2001) Improvement of forage production in Calliandra calothyrsus: methodology for the identification of an effective inoculum containing Rhizobium strains and arbuscular mycorrhizal isolates. J Biotechnol 91:269–282PubMedCrossRefGoogle Scholar
  96. Lugtenberg B, Kamilova F (2009) Plant–growth–promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefGoogle Scholar
  97. Lupwayi NZ, Olsen PE, Sande ES, Keyser HH, Collins MM, Singleton PW, Rice WA (2000) Inoculant quality and its evaluation. Field Crops Res 65:259–270CrossRefGoogle Scholar
  98. Malusa E, Sas–Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J. ID. 491206–doi: 10.1100/2012/491206
  99. Marks BB, Megías M, Nogueira MA, Hungria M (2013) Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Express 3:1–10CrossRefGoogle Scholar
  100. McInnes A, Haq K (2007) Contributions of rhizobia to soil nitrogen fertility. In: Abbott LK, Murphy DV (eds) Soil biological fertility. Springer, DordrechtGoogle Scholar
  101. Melchiorre M, De Luca MJ, Anta GG, Suarez P, Lopez C, Lascano R, Racca RW (2011) Evaluation of bradyrhizobia strains isolated from field–grown soybean plants in Argentina as improved inoculants. Biol Fertil Soils 47:81–89CrossRefGoogle Scholar
  102. Miransari M (2011) Soil microbes and plant fertilization. App Microbiol Biotechnol 92:875–885CrossRefGoogle Scholar
  103. Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant–microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739PubMedCrossRefGoogle Scholar
  104. Mortimer PE, Le Roux MR, Pérez–Fernández MA, Benedito VA, Kleinert A, Xu J, Valentine AJ (2013) The dual symbiosis between arbuscular mycorrhiza and nitrogen fixing bacteria benefits the growth and nutrition of the woody invasive legume Acacia cyclops under nutrient limiting conditions. Plant Soil 366:229–241CrossRefGoogle Scholar
  105. Mpepereki S, Javaheri F, Davis P, Giller KE (2000) Soyabeans and sustainable agriculture. Promiscuous soyabeans in southern Africa. Field Crops Res 65:137–149CrossRefGoogle Scholar
  106. Mummey DL, Antunes PM, Rillig MC (2009) Arbuscular mycorrhizal fungi pre–inoculant identity determines community composition in roots. Soil Biol Biochem 41:1173–1179CrossRefGoogle Scholar
  107. Musiyiwa K, Mpepereki S, Giller KE (2005) Symbiotic effectiveness and host ranges of indigenous rhizobia nodulating promiscuous soyabean varieties in Zimbabwean soils. Soil Biol Biochem 37:1169–1176CrossRefGoogle Scholar
  108. Nobbe F, Hiltner L (1896) Inoculation of the soil for cultivating leguminous plants US Patent n°570813Google Scholar
  109. Odee D, Indieka S, Lesueur D (2002) Evaluation of inoculation procedures for Calliandra calothyrsus Meisn. grown in tree nurseries. Biol Fertil Soils 36:124–128CrossRefGoogle Scholar
  110. Okon Y, Itzigsohn R (1995) The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol Adv 13:415–424PubMedCrossRefGoogle Scholar
  111. Okon Y, Labandera–Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601CrossRefGoogle Scholar
  112. Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio–inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54CrossRefGoogle Scholar
  113. Palacios OA, Bashan Y, De–Bashan LE (2014) Proven and potential involvement of vitamins in interactions of plants with plant growth–promoting bacteria–an overview. Biol Fertil Soils 50:415–432CrossRefGoogle Scholar
  114. Pereg L, McMillan M (2015) Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biol Biochem 80:349–358CrossRefGoogle Scholar
  115. Pérez–Montaño F, Alías–Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez–Guerrero I, López–Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336PubMedCrossRefGoogle Scholar
  116. Phillips PWB (2004) An economic assessment of the global inoculant industry. Crop Management 3:OnlineGoogle Scholar
  117. Richardson AE, Barea JM, McNeill AM, Prigent–Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  118. Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475PubMedCrossRefGoogle Scholar
  119. Rodríguez–Navarro DN, Oliver IM, Contreras MA, Ruiz–Sainz JE (2011) Soybean interactions with soil microbes, agronomical and molecular aspects. Agron Sustain Dev 31:173–190CrossRefGoogle Scholar
  120. Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290PubMedPubMedCentralGoogle Scholar
  121. Rooney DC, Killham K, Bending GD, Baggs E, Weih M, Hodge A (2009) Mycorrhizas and biomass crops: opportunities for future sustainable development. Trends Plant Sci 14:542–549PubMedCrossRefGoogle Scholar
  122. Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30Google Scholar
  123. Saikia SP, Dutta SP, Oswami A, Hau BS, Anjilal PB (2010) Role of Azospirillum in the improvement of legumes. In: Khan MS, Musarrat J, Zaidi A (eds) Microbes for legume improvement. Springer, ViennaGoogle Scholar
  124. Saikia SP, Bora D, Goswami A, Mudoi KD, Gogoi A (2012) A review on the role of Azospirillum in the yield improvement of non leguminous crops. Afr J Microbiol Res 6:1085–1102Google Scholar
  125. Sanon A, Andrianjaka ZN, Prin Y, Bally R, Thioulouse J, Comte G, Duponnois R (2009) Rhizosphere microbiota interfers with plant–plant interactions. Plant Soil 321:259–278CrossRefGoogle Scholar
  126. Schröder JJ, Cordell D, Smit AL, Rosemarin A (2010) Sustainable use of phosphorus: EU tender ENV. B1/ETU/2009/0025. Report no.357. Plant Research International, WageningenGoogle Scholar
  127. Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515PubMedCrossRefGoogle Scholar
  128. Sharma RC, Sarkar S, Das D, Banik P (2012) Impact assessment of arbuscular mycorrhiza, Azospirillum and chemical fertilizer application on soil health and ecology. Commun Soil Sci Plant Anal 44:1116–1126CrossRefGoogle Scholar
  129. Sindhu SS, Dua S, Verma MK, Khandelwal A (2010) Growth promotion of legumes by inoculation of rhizosphere bacteria. In: Khan MS, Musarrat J, Zaidi A (eds) Microbes for legume improvement. Springer, ViennaGoogle Scholar
  130. Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353CrossRefGoogle Scholar
  131. Skorupska A, Wielbo J, Kidaj D, Marek–Kozaczuk M (2010) Enhancing Rhizobium–legume symbiosis using signaling factors. In: Khan MS (ed) Microbes for legume improvement. Springer, WienGoogle Scholar
  132. Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13PubMedCrossRefGoogle Scholar
  133. Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20CrossRefGoogle Scholar
  134. Sýkorová Z, Börstler B, Zvolenská S, Fehrer J, Gryndler M, Vosátka M, Redecker D (2012) Long–term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza 22:69–80PubMedCrossRefGoogle Scholar
  135. Thonar C, Erb A, Jansa J (2012) Real–time PCR to quantify composition of arbuscular mycorrhizal fungal communities–marker design, verification, calibration and field validation. Mol Ecol Resour 12:219–232PubMedCrossRefGoogle Scholar
  136. Thuita M, Pypers P, Herrmann L, Okalebo RJ, Othieno C, Muema E, Lesueur D (2012) Commercial rhizobial inoculants significantly enhance growth and nitrogen fixation of a promiscuous soybean variety in Kenyan soils. Biol Fertil Soils 48:87–96CrossRefGoogle Scholar
  137. Tikhonovich IA, Provorov NA (2011) Microbiology is the basis of sustainable agriculture: an opinion. Ann Appl Biol 159:155–168CrossRefGoogle Scholar
  138. Torres AR, Kaschuk G, Saridakis GP, Hungria M (2012) Genetic variability in Bradyrhizobium japonicum strains nodulating soybean [Glycine max (L.) Merrill]. World J Microbiol Biotechnol 28:1831–1835PubMedCrossRefGoogle Scholar
  139. Unkovich M, Baldock J (2008) Measurement of asymbiotic N2 fixation in Australian agriculture. Soil Biol Biochem 40:2915–2921CrossRefGoogle Scholar
  140. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth–promoting rhizobacteria and root system functioning. Front Plant Sci 4:1–19CrossRefGoogle Scholar
  141. van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol doi. doi: 10.1111/nph.13288 Google Scholar
  142. Van Dommelen A, Vanderleyden J (2007) Associative nitrogen fixation. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, AmsterdamGoogle Scholar
  143. Vargas L, de Carvalho TLG, Ferreira PCG, Baldani VLD, Baldani JI, Hemerly AS (2012) Early responses of rice (Oryza sativa L.) seedlings to inoculation with beneficial diazotrophic bacteria are dependent on plant and bacterial genotypes. Plant Soil 356:127–137CrossRefGoogle Scholar
  144. Verbruggen E, Heijden MGA, Rillig MC, Kiers ET (2013) Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol 197:1104–1109PubMedCrossRefGoogle Scholar
  145. Veresoglou SD, Menexes G (2010) Impact of inoculation with Azospirillum spp. on growth properties and seed yield of wheat: a meta–analysis of studies in the ISI Web of Science from 1981 to 2008. Plant Soil 337:469–480CrossRefGoogle Scholar
  146. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  147. Vosátka M, Albrechtová J, Patten R (2008) The international market development for mycorrhizal technology. In: Varma A (ed) Mycorrhiza. Springer, BerlinGoogle Scholar
  148. Wakelin SA, Warren RA, Ryder MH (2005) Effect of soil properties on growth promotion of wheat by Penicillium radicum. Soil Res 42:897–904CrossRefGoogle Scholar
  149. Walker V, Couillerot O, Von Felten A, Bellvert F, Jansa J, Maurhofer M, Bally R, Moënne–Loccoz Y, Comte G (2012) Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 356:151–163CrossRefGoogle Scholar
  150. Wasike VW, Lesueur D, Wachira FN, Mungai NW, Mumera LM, Sanginga N, Mburu H, Mugadi D, Wango P, Vanlauwe B (2009) Genetic diversity of indigenous Bradyrhizobium nodulating promiscuous soybean [Glycine max (L) Merr.] varieties in Kenya: impact of phosphorus and lime fertilization in two contrasting sites. Plant Soil 322:151–163CrossRefGoogle Scholar
  151. Werner D, Newton WE (2005) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Dordrecht–home/en CrossRefGoogle Scholar
  152. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Didier Lesueur
    • 1
    • 2
  • Rosalind Deaker
    • 3
  • Laetitia Herrmann
    • 1
    • 2
  • Lambert Bräu
    • 2
  • Jan Jansa
    • 4
  1. 1.CIRAD, UMR Eco&Sols – Ecologie Fonctionnelle & Biogéochimique des Sols & Agroécosystèmes (SupAgro–CIRAD–INRA–IRD), Land Development DepartmentOffice of Science for Land DevelopmentBangkokThailand
  2. 2.School of Life and Environmental Sciences, Faculty of Science and TechnologyDeakin UniversityBurwoodAustralia
  3. 3.Faculty of Agriculture and EnvironmentUniversity of SydneyEveleighAustralia
  4. 4.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPraha 4 – KrčCzech Republic

Personalised recommendations