Beneficial Microorganisms: Current Challenge to Increase Crop Performance

  • Márcia do Vale Barreto FigueiredoEmail author
  • Aurenivia Bonifacio
  • Artenisa Cerqueira Rodrigues
  • Fabio Fernando de Araujo
  • Newton Pereira Stamford


The major goal of agricultural microbiology is a comprehensive analysis of beneficial microorganisms. Fundamental knowledge of the ecology and evolution of interactions could enable the development of microbe-based sustainable agriculture. Plant growth-promoting bacteria (PGPB) have gained worldwide importance and acceptance for their agricultural benefits. This is due to the emerging demand to reduce dependence on synthetic chemical products within a holistic vision of developing and focalizing environmental protection. Beneficial microorganisms also help to solubilize mineral phosphates and other nutrients, enhance resistance to stress, stabilize soil aggregates, improve soil structure and organic matter content, and inhibit phytopathogens. Several efforts have been made in research to clarify definitions as well as develop commercial inoculants using these organisms, with a special emphasis on formulations that interact synergistically and are currently being devised. In addition, numerous recent studies indicate increased crop performance with the use of these commercial inoculants. In this chapter, the progress to date in the use of beneficial microbes for agricultural applications is summarized and discussed.


Arbuscular Mycorrhizal Fungus Biological Nitrogen Fixation Diazotrophic Bacterium Beneficial Microorganism Microbial Polysaccharide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85(1):1–12PubMedCrossRefGoogle Scholar
  2. Albareda M, Rodríguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40:2771–2779CrossRefGoogle Scholar
  3. Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167PubMedCrossRefGoogle Scholar
  4. Ansari SA, Matricardi P, Di Meo C, Alhaique F, Coviello T (2012) Evaluation of rheological properties and swelling behavior of sonicated scleroglucan samples. Molecules 17:2283–2297PubMedCrossRefGoogle Scholar
  5. Araujo FF (2008) Seed inoculation with Bacillus subtilis, formulated with oyster meal and growth of corn, soybean and cotton. Ciênc Agrotecnol 32(2):456–462CrossRefGoogle Scholar
  6. Araujo FF, Henning AA, Hungria M (2005) Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol 21:1639–1645CrossRefGoogle Scholar
  7. Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27(2):197–205CrossRefGoogle Scholar
  8. Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740CrossRefGoogle Scholar
  9. Badel S, Bernardi T, Michaud P (2011) New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv 29:54–66PubMedCrossRefGoogle Scholar
  10. Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650PubMedCrossRefGoogle Scholar
  11. Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770CrossRefGoogle Scholar
  12. Bashan Y, De-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33CrossRefGoogle Scholar
  13. Berger LRR, Stamford NP, Santos CERS, Freitas ADS, Franco LO, Stamford TCM (2013) Plant and soil characteristics affected by biofertilizers from rocks and organic matter inoculated with diazotrophic bacteria and fungi that produce chitosan. J Soil Sci Plant Nutr 13:592–603Google Scholar
  14. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350PubMedCrossRefGoogle Scholar
  15. Bogino PC, Oliva MM, Sorroche SG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14:15838–15859PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bomfeti CA, Florentino LA, Guimarães AP, Cardoso PG, Guerreiro MC, Moreira FMS (2011) Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of Leguminosae. Rev Bras Ciênc Solo 35:657–671CrossRefGoogle Scholar
  17. Bonfante P, Anca IA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383PubMedCrossRefGoogle Scholar
  18. Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13(9):492–498PubMedCrossRefGoogle Scholar
  19. Boonlertnirun S, Boonraung C, Suvanasara R (2008) Application of chitosan in rice production. J Min Met Mat S 18(2):47–52Google Scholar
  20. Brahmaprakash GP, Sahu PK (2012) Biofertilizers for sustainability. J Indian Inst Sci 92:37–69Google Scholar
  21. Brotman Y, Landau U, Cuadros-Inostroza Á, Takayuki T, Fernie AR, Chet I, Viterbo A, Willmitzer L (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9(3):1003221CrossRefGoogle Scholar
  22. Castellane TCL, Lemos VFM, Lemos EGM (2014) Evaluation of the biotechnological potential of Rhizobium tropici strains for exopolysaccharide production. Carbohydr Polym 111:191–197PubMedCrossRefGoogle Scholar
  23. Chanway CP (1998) Bacterial endophytes: ecological and practical implications. Sydowia 50:149–170Google Scholar
  24. Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499CrossRefGoogle Scholar
  25. Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790–803PubMedCrossRefGoogle Scholar
  26. Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92(1):29–44PubMedCrossRefGoogle Scholar
  27. Colla G, Rouphael Y, Di Mattia E, El-Nakhel C, Cardarelli M (2014) Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. J Sci Food Agric. doi: 10.1002/jsfa.6875 Google Scholar
  28. Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592PubMedPubMedCentralCrossRefGoogle Scholar
  29. Delbarre-Ladrat C, Sinquin C, Lebellenger L, Zykwinska A, Colliec-Jouault S (2014) Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front Chem 2:85PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694PubMedCrossRefGoogle Scholar
  31. Dobbelare S, Croonenborghs A, Thys A, van de Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164Google Scholar
  32. Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962CrossRefGoogle Scholar
  33. Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013) Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas. Plant Soil 369(1–2):453–465CrossRefGoogle Scholar
  34. El Tarabily KA, Soaud A, Saleh M, Matsumoto S (2006) Isolation and characterization of sulfur bacteria, including strains of Rhizobium from calcareous soils and their effects on nutrient uptake and growth of maize (Zea mays L.). Austr J Agric Res 57:101–111CrossRefGoogle Scholar
  35. Elkoca E, Turan M, Donmez MF (2010) Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. Phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris L. cv. ‘elkoca-05’). J Plant Nutr 33(14):2104–2119CrossRefGoogle Scholar
  36. Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM (2013) Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201–202:42–51PubMedCrossRefGoogle Scholar
  37. Fernandes Júnior PI, Rohr TG, Oliveira PJ, Xavier GR, Rumjanek NG (2009) Polymers as carriers for rhizobial inoculant formulations. Pesq Agrop Brasileira 44:1184–1190CrossRefGoogle Scholar
  38. Fernandes Júnior PI, Silva Júnior EB, Silva Júnior S, Santos CES, Oliveira PJ, Rumjanek NG, Martins LMV, Xavier GR (2012) Performance of polymer compositions as carrier to cowpea rhizobial inoculant formulations: survival of rhizobia in pre-inoculated seeds and field efficiency. African J Biotechnol 11(12):2945–2951Google Scholar
  39. Fernández L, Agaras B, Zalba P, Wall L, Valverde C (2012) Pseudomonas spp. isolates with high phosphate-mobilizing potential and root colonization properties from agricultural bulk soils under no-till management. Biol Fertil Soils 48:763–773CrossRefGoogle Scholar
  40. Figueiredo MVB, Vilar JJ, Burity HA, França FP (1999) Alleviation of water stress effects in cowpea by Bradyrhizobium spp. inoculation. Plant Soil 207:67–75CrossRefGoogle Scholar
  41. Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188CrossRefGoogle Scholar
  42. Figueiredo MVB, Seldin L, Araujo FF, Mariano RLR (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer-Verlag, BerlinGoogle Scholar
  43. Figueiredo MVB, Kuklinsky-Sobral J, Lima CEP, Araújo ASF (2012) Ecological agriculture: strategy for sustainable development. In: Thangadurai D, Busso C, Arenas LGA, Jayabalan S (eds) Frontiers in biodiversity studies. IK International, New DelhiGoogle Scholar
  44. Finore I, Di Donato P, Mastascusa V, Nicolaus B, Poli A (2014) Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Mar Drugs 12:3005–3024PubMedPubMedCentralCrossRefGoogle Scholar
  45. Fliessbach A, Winkler M, Lutz MP, Oberholzer HR, Mader P (2009) Soil amendment with Pseudomonas fluorescens CHA0: lasting effects on soil biological properties in soils low in microbial biomass and activity. Microb Ecol 57:611–623PubMedCrossRefGoogle Scholar
  46. Franco LO, Maia RCC, Porto ALF, Messias AS, Fukushima K, Takaki GMC (2004) Heavy metal biosorption by chitin and chitosan isolated from Cunninghamella elegans (IFM 46109). Braz J Microbiol 35:243–247CrossRefGoogle Scholar
  47. Franco LO, Albuquerque CDC, Stamford NP, Lima MAB, Takaki-Campos GM (2011) Evaluation of acid and alkaline activity and accumulation of inorganic phosphate in samples with Cunninghamella elegans. Analytica 54:70–78Google Scholar
  48. Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398PubMedCrossRefGoogle Scholar
  49. Frey-Klett P, Garbaye JA, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176(1):22–36PubMedCrossRefGoogle Scholar
  50. Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55(5):501–514PubMedCrossRefGoogle Scholar
  51. Giavasis I (2014) Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr Opin Biotechnol 26:162–173PubMedCrossRefGoogle Scholar
  52. Goy RC, Britto D, Assis OBG (2009) A review of the antimicrobial activity of chitosan polymers. Sci Technol 9:241–247Google Scholar
  53. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  54. Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Rock phosphate-solubilizing Actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24:2565–2575CrossRefGoogle Scholar
  55. Hazell P, Wood S (2008) Drivers of change in global agriculture. Phil Trans R Soc B 363(1491):495–515PubMedCrossRefGoogle Scholar
  56. Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25PubMedCrossRefGoogle Scholar
  57. Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873PubMedCrossRefGoogle Scholar
  58. Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49(7):791–801CrossRefGoogle Scholar
  59. Javaid A (2010) Beneficial microorganisms for sustainable agriculture. In: Lichtfouse E (ed) Genetic engineering, biofertilisation, soil quality and organic farming sustainable agriculture reviews. Springer-Verlag, BerlinGoogle Scholar
  60. Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) Fzb24 Bacillus subtilis – mode of action of a microbial agent enhancing plant vitality. Planzenschutz-Nachrich Bayer 1/00(1):72–93Google Scholar
  61. Kloepper JW, Schroth MN, Miller TD (1980) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078–1082CrossRefGoogle Scholar
  62. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1226PubMedCrossRefGoogle Scholar
  63. Kohler J, Caravaca F, Carrasco L, Rolda A (2007) Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilizing fungus in the rhizosphere of Lactuca sativa. Appl Soil Ecol 35:480–487CrossRefGoogle Scholar
  64. Larrainzar E, Molenaar JA, Wienkoop S, Gil-Quintana E, Alibert B, Limami AM, Arrese-Igor C, González EM (2014) Drought stress provokes the down-regulation of methionine and ethylene biosynthesis pathways in Medicago truncatula roots and nodules. Plant Cell Environ 37:2051–2063PubMedCrossRefGoogle Scholar
  65. Lima FS, Stamford NP, Sousa CS, Lira Junior MA, Malheiros S, van Straaten P (2010) Earthworm compound and rock biofertilizer enriched in nitrogen by inoculation with free-living diazotrophic bacteria. World J Microbiol Biotechnol 26:1769–1777CrossRefGoogle Scholar
  66. Lima AST, Xavier TF, Lima CEP, Oliveira JP, Mergulhão ACES, Figueiredo MVB (2011) Triple inoculation with Bradyrhizobium, Glomus and Paenibacillus on cowpea (Vigna unguiculata [L.] walp.) development. Braz J Microbiol 42(3):919–926PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lingua G, Bona E, Manassero P, Marsano F, Todeschini V, Cantamessa S, Copetta A, D’Agostino G, Gamalero E, Berta G (2013) Arbuscular Mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. selva) in conditions of reduced fertilization. Int J Mol Sci 14(8):16207–16225PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mahapatra S, Banerjee D (2013) Fungal exopolysaccharide: production, composition and Applications. Microbiol Insights 6:1–16PubMedPubMedCentralGoogle Scholar
  69. Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol 42(7):741–775CrossRefGoogle Scholar
  70. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663PubMedCrossRefGoogle Scholar
  71. Molla AH, Haque M, Haque A, Ilias GNM (2012) Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agric Res 1:265–272CrossRefGoogle Scholar
  72. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  73. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448PubMedCrossRefGoogle Scholar
  74. Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9PubMedCrossRefGoogle Scholar
  75. Nwodo U, Green E, Okoh A (2012) Bacterial EPS: functionality and prospects. Int J Mol Sci 13:14002–14015PubMedPubMedCentralCrossRefGoogle Scholar
  76. Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26(12):1591–1601CrossRefGoogle Scholar
  77. Oliveira JP (2011) Genetic characterization, production of extracellular biopolymers and proteome of diazotrophic bacteria. Thesis, Federal University of CearáGoogle Scholar
  78. Oliveira JP, Figueiredo MVB, Silva MV, Mendes MMC, Vendrusculo C, Burity HA (2012) Production of extracellular biopolymers and identification of intracellular proteins and Rhizobium tropici. Curr Microbiol 65(6):686–691PubMedCrossRefGoogle Scholar
  79. Pallai R, Hynes RK, Verma B, Nelson LM (2012) Phytohormone production and colonization of canola (Brassica napus L.) roots by Pseudomonas fluorescens 6–8 under gnotobiotic conditions. Can J Microbiol 58(2):170–178PubMedCrossRefGoogle Scholar
  80. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34(1–3):17–42CrossRefGoogle Scholar
  81. Pindi PK (2012) Liquid microbial consortium – a potential tool for sustainable soil health. J Biofertil Biopestici 3:1–9Google Scholar
  82. Poli A, Donato P, Abbamondi G, Nicolaus B (2011) Synthesis, production and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea 693253:1–13CrossRefGoogle Scholar
  83. Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887PubMedPubMedCentralGoogle Scholar
  84. Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361CrossRefGoogle Scholar
  85. Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11CrossRefGoogle Scholar
  86. Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531PubMedCrossRefGoogle Scholar
  87. Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev 8:578–592Google Scholar
  88. Rivera D, Obando M, Barbosa H, Tapias DR, Buitrago RB (2014) Evaluation of polymers for the liquid rhizobial formulation and their influence in the Rhizobium-Cowpea interaction. Univ Sci 19(3):265–275CrossRefGoogle Scholar
  89. Rodrigues AC (2012) Interrelationship Bradyrhizobium and PGPB and Cowpea: evaluation of the enzymatic activity and symbiotic performance. Thesis, Federal Agricultural University of PernambucoGoogle Scholar
  90. Rodrigues AC, Silveira JAG, Bonifacio A, Figueiredo MVB (2013a) Metabolism of nitrogen and carbon: optimization of biological nitrogen fixation and cowpea development. Soil Biol Biochem 67:226–234CrossRefGoogle Scholar
  91. Rodrigues AC, Bonifacio A, Antunes JEL, Silveira JAG, Figueiredo MVB (2013b) Minimization of oxidative stress in cowpea nodules by the interrelationship between Bradyrhizobium sp. and plant growth-promoting bacteria. Appl Soil Ecol 64:245–251CrossRefGoogle Scholar
  92. Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272CrossRefGoogle Scholar
  93. Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Soil 46:17–26CrossRefGoogle Scholar
  94. Santos AA (2010) Polysaccharides production aiming to obtain biological inoculants of interest to agriculture. Dissertation, Federal Agricultural University of PernambucoGoogle Scholar
  95. Schmid J, Meyer V, Sieber V (2011) Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Appl Microbiol Biotechnol 91:937–947PubMedCrossRefGoogle Scholar
  96. Seneviratne G, Thilakaratne RMS, Jayasekara APDA, Seneviratne KACN, Padmathilake KRE, Silva MSDL (2009) Developing beneficial microbial biofilms on roots of non-legumes: a novel biofertilizing technique. In: Khan MS, Zaid A, Musarrat J (eds) Microbial strategy for crop improvement. Springer-Verlag, BerlinGoogle Scholar
  97. Serrato RV, Sassaki GL, Gorin PAJ, Cruz LM, Pedrosa FO, Choudhury B, Carlson RW, Iacomini M (2008) Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica. Carbohydr Polym 73:564–572PubMedCrossRefGoogle Scholar
  98. Sharmila K, Thillaimaharani KA, Durairaj R, Kalaiselvam M (2014) Production and characterization of exopolysaccharides (EPS) from mangrove filamentous fungus, Syncephalastrum sp. Afr J Microbiol Res 8(21):2155–2161CrossRefGoogle Scholar
  99. Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73(4):515–531PubMedCrossRefGoogle Scholar
  100. Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140(3):339–353CrossRefGoogle Scholar
  101. Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104(1):1–13PubMedCrossRefGoogle Scholar
  102. Soliman AS, Shanan NT, Massoud ON, Swelim DM (2012) Improving salinity tolerance of Acacia saligna (Labill.) plant by arbuscular mycorrhizal fungi and Rhizobium inoculation. Afr J Biotechnol 11(5):1259–1266Google Scholar
  103. Stamford NP, Santos PR, Santos CERS, Freitas ADS, Dias SHL, Lira Junior MA (2007) Agronomic effectiveness of biofertilizers with phosphate rock, sulphur and Acidithiobacillus in a Brazilian tableland acidic soil grown with yam bean. Biores Technol 98:1311–1318CrossRefGoogle Scholar
  104. Stamford NP, Lima RA, Lira Junior MA, Santos CERS (2008) Effectiveness of phosphate and potash rocks with Acidithiobacillus on sugar cane yield and their effects in soil chemical attributes. World J Microbiol Biotechnol 24:2061–2066CrossRefGoogle Scholar
  105. Star L, Matan O, Dardanelli MS, Kapulnik Y, Burdman S, Okon Y (2012) The Vicia sativa spp. nigra-Rhizobium leguminosarum bv. viciae symbiotic interaction is improved by Azospirillum brasilense. Plant Soil 356(1–2):165–174CrossRefGoogle Scholar
  106. Staudt AK, Wolfe L, Shrout JD (2012) Variations in exopolysaccharide production by Rhizobium tropici. Arch Microbiol 194:197–206PubMedCrossRefGoogle Scholar
  107. Triveni S, Prasanna R, Saxena AK (2012) Optimization of conditions for in vitro development of Trichoderma viride-based biofilms as potential inoculants. Folia Microbiol 57:431–437CrossRefGoogle Scholar
  108. Van Straaten P (2007) Agrogeology – the use of rocks for crops. Enviroquest, CanadaGoogle Scholar
  109. Vandenkoornhuyse P, Mahe S, Ineson P, Staddon P, Ostle N, Cliquet JB, Francez AJ, Fitter AH, Young JP (2007) Active root-inhabiting microbes identified by rapid incorporation of plant derived carbon into RNA. Proc Natl Acad Sci U S A 104:16970–16975PubMedPubMedCentralCrossRefGoogle Scholar
  110. Vessey JK (2003) Plant growth-promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  111. Vos CMF, Cremer KD, Cammue BPA, Coninck BD (2014) The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Mol Plant Pathol (online). doi: 10.1111/mpp.12189 Google Scholar
  112. Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554PubMedCrossRefGoogle Scholar
  113. Wu SC, Cao ZH, Li ZG, Cheug KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166CrossRefGoogle Scholar
  114. Xavier TF (2009) Production and characterization of exopolysaccharides (EPSs) synthetized by diazotrophic microorganisms. Dissertation, Federal Agricultural University of PernambucoGoogle Scholar
  115. Xie X, Zhang H, Paré PW (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953PubMedPubMedCentralCrossRefGoogle Scholar
  116. Yadav SK, Dave A, Sarkar A, Singh HB, Sarma BK (2013) Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. Int J Agric Environ Biotechnol 6(2):255–259Google Scholar
  117. Zhang H, Sun Y, Xie X, Kim M, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency inducible mechanisms. Plant J 58:568–577PubMedCrossRefGoogle Scholar
  118. Zhang Y, Kong H, Fang Y, Nishinari K, Phillips GO (2013) Schizophyllan: a review on its structure, properties, bioactivities and recent developments. Bioact Carbohydr Diet Fibre 1(1):53–71CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Márcia do Vale Barreto Figueiredo
    • 1
    Email author
  • Aurenivia Bonifacio
    • 2
  • Artenisa Cerqueira Rodrigues
    • 2
  • Fabio Fernando de Araujo
    • 3
  • Newton Pereira Stamford
    • 4
  1. 1.National Research and Technological DevelopmentAgronomical Institute of Pernambuco (IPA/SEAGRI)RecifeBrazil
  2. 2.Federal University of Piaui (UFPI)TeresinaBrazil
  3. 3.Faculty of Agrarian SciencesUniversity of West Paulista (UNOESTE)Presidente PrudenteBrazil
  4. 4.National Research and Technological Development, Department of AgronomyFederal Agricultural University of Pernambuco (UFRPE)RecifeBrazil

Personalised recommendations