Encapsulation Techniques for Plant Growth-Promoting Rhizobacteria

  • Mauricio Schoebitz
  • María Dolores López Belchí


Application of microbial inoculants into the soil can enhance soil properties and plant nutrient acquisition and increase the efficiency of mineral fertilizers and manures. The potential use of microbial inoculants in sustainable agriculture and soil restoration has been gaining increasing interest. Encapsulation of beneficial soil microorganisms has been applied and used in the agricultural industry, particularly in processes such as spray drying, interfacial polymerization, or cross-linking. This chapter presents different techniques for microbial inoculants and their benefits for agricultural and environmental purposes. Techniques include fluidized bed, coacervation, and ionic or inverse gelation. The major topics discussed are conventional inoculants, formulation of microbial inoculants, encapsulation techniques, and application trends. In addition, the use of biochar as inoculant carrier is proposed in order to develop new formulations. This innovative microbial inoculant has many advantages, such as increased water-holding capacity, high internal porosity, and large surface area, while it also provides a suitable habitat for microorganisms to enhance colonization and bacteria protection in the soil.


Sodium Alginate Organic Amendment Alginate Solution Calcium Chloride Solution Degraded Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abang S, Chan ES, Poncelet D (2012) Effects of process variables on the encapsulation of oil in ca-alginate capsules using an inverse gelation technique. J Microencapsul 29:417–428CrossRefPubMedGoogle Scholar
  2. Abit SM, Bolster CH, Cai P, Walker SL (2012) Influence of feedstock and pyrolysis temperature of biochar amendments on transport of Escherichia coli in saturated and unsaturated soil. Environ Sci Technol 46:8097–8105CrossRefPubMedGoogle Scholar
  3. Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12CrossRefPubMedGoogle Scholar
  4. Albareda M, Rodriguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternative to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40:2771–2779CrossRefGoogle Scholar
  5. Alburquerque JA, Gonzálvez J, García D, Cegarra J (2006) Composting of a solid olive-mill by-product (“alperujo”) and the potential of the resulting compost for cultivating pepper under commercial conditions. Waste Manage 26:620–626CrossRefGoogle Scholar
  6. Amiet-Charpentier C, Gadille P, Digat B, Benoit JP (1998) Microencapsulation of rhizobacteria by spray-drying: formulation and survival studies. J Microencapsul 15:639–659CrossRefPubMedGoogle Scholar
  7. Antoun H, Kloepper JW (2001) Plant growth-promoting rhizobacteria (PGPR). In: Brenner S, Miller JH (eds) Encyclopaedia of genetics. Academic, New York, pp 1477–1480CrossRefGoogle Scholar
  8. Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770CrossRefGoogle Scholar
  9. Bashan Y, de-Bashan LE (2005) Bacteria/plant growth-promotion. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 103–115CrossRefGoogle Scholar
  10. Bashan Y, Hernandez JP, Leyva LA, Bacilio M (2002) Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol Fertil Soils 35:359–368CrossRefGoogle Scholar
  11. Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577CrossRefPubMedGoogle Scholar
  12. Bashan Y, de-Bashan L, Prahbu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33CrossRefGoogle Scholar
  13. Behboudi-Jobbehdar S, Soukoulisa C, Yonekuraa L, Fiska I (2013) Optimization of spray-drying process conditions for the production of maximally viable microencapsulated L. acidophilus NCIMB 701748. Dry Technol 31(11):1274–1283CrossRefGoogle Scholar
  14. Bungenberg de Jong HG (1949) Morphology of coacervates. In: Kruyt HR (ed) Colloid science. Elsevier, Amsterdam, pp 335–432Google Scholar
  15. Calvo P, Nelson L, Kloepper J (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41CrossRefGoogle Scholar
  16. Campos DC, Acevedo F, Morales E, Aravena J, Amiard V, Jorquera M, Inostroza N, Rubilar M (2014) Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules. World J Microbiol Biotechnol 30(9):2371–2378CrossRefPubMedGoogle Scholar
  17. Caravaca F, Alguacil MM, Azcón R, Parlade J, Torres P, Roldán A (2005) Establishment of two ectomycorrhizal shrub species in a semiarid site after in situ amendment with sugar beet, rock phosphate, and Aspergillus niger. Microb Ecol 49:73–82CrossRefPubMedGoogle Scholar
  18. Crittenden R, Laitila A, Forssell P, Mättö J, Saarela M, Mattila-Sandholm T, Myllärinen P (2001) Adhesion of Bifidobacteria to granular starch and its implications in probiotic technologies. Appl Environ Microbiol 67:3469–3475CrossRefPubMedPubMedCentralGoogle Scholar
  19. De Luca TH, MacKenzie MD, Gundale MJ (2009) Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan Publisher, London, pp 251–270Google Scholar
  20. Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology – a review. Soil Biol Biochem 36:1275–1288CrossRefGoogle Scholar
  21. De-Bashan LE, Hernández JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation – a comprehensive evaluation. Appl Soil Ecol 61:171–189CrossRefGoogle Scholar
  22. Denton MD, Pearce DJ, Ballard RA, Hannah MC, Mutch LA, Norng S, Slattery J (2009) A multi-site field evaluation of granular inoculants for legume nodulation. Soil Biol Biochem 41:2508–2516CrossRefGoogle Scholar
  23. Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan Publisher, London, pp 13–32Google Scholar
  24. Fallik E, Okon Y (1996) Inoculants of Azospirillum brasilense: biomass production, survival and growth promotion of Setaria italica and Zea mays. Soil Biol Biochem 28:123–126CrossRefGoogle Scholar
  25. Flores RJ, Wall MD, Carnahan DW, Orofino TA (1992) An investigation of internal phase losses during the microencapsulation of fragances. J Microencapsul 3:287–307CrossRefGoogle Scholar
  26. Gardiner GE, O’Sullivan E, Kelly J, Auty MA, Fitzgerald GF, Collins JK, Ross RP, Stanton C (2000) Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl Environ Microbiol 66:2605–2612CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ghomarde V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotech Adv 29:792–803CrossRefGoogle Scholar
  28. Golowczyc MA, Silva J, Abraham GL, De Antoni GL, Teixeira P (2010) Preservation of probiotics strains isolated from kéfir by spray drying. Lett Appl Microbiol 50:7–12CrossRefPubMedGoogle Scholar
  29. Goss GR, Baldwin HM, Riepl RG (2003) Clays as biological carriers. In: Downer RA, Mueninghoff JC, Volgas GC (eds) Pesticide formulations and delivery systems: meeting the challenges of the current crop protection industry. American Society for Testing and Materials, Dallas, pp 24–34CrossRefGoogle Scholar
  30. Groboillot AF, Champagne CP, Darling GD, Poncelet D, Neufeld RJ (1993) Membrane formation by interfacial cross-linking of chitosan for microencapsulation of Lactococcus lactis. Biotechnol Bioeng 42:1157–1163CrossRefPubMedGoogle Scholar
  31. Groboillot A, Boadi DK, Poncelet D, Neufeld RJ (1994) Immobilization of cells for application in the food industry. Crit Rev Biotechnol 14:75–107CrossRefPubMedGoogle Scholar
  32. Hale L, Luth M, Kenney R, Crowley D (2014) Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation. Appl Soil Ecol 84:192–199CrossRefGoogle Scholar
  33. Hayat R, Ahmed I, Sheidil RA (2012) An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In: Aksoy A, Ashraf M, Ozturk M, Sajid A, Ahmad M (eds) Crop production for agricultural Improvement. Springer, Dordrecht, pp 557–579CrossRefGoogle Scholar
  34. Heijnen CE, Van Veen JA (1991) A determination of protective microhabitats for bacteria introduced into soil. FEMS Microbiol Ecol 85:73–80CrossRefGoogle Scholar
  35. Heijnen CE, Hok-A-Hin CH, Van Veen JA (1992) Improvements to the use of bentonite clay as a protective agent, increasing survival levels of bacteria introduced into soil. Soil Biol Biochem 24(6):533–538CrossRefGoogle Scholar
  36. Herridge DF, Roughley RJ (1974) Survival of some slow-growing Rhizobium on inoculated legume seed. Plant Soil 40:441–444CrossRefGoogle Scholar
  37. Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873CrossRefPubMedGoogle Scholar
  38. Hickman MV (1999) Controlled-release pesticide formulations from cornstarch. In: Scher HB (ed) Controlled-release delivery systems for pesticides. Marcel Dekker, New York, pp 153–171Google Scholar
  39. Hueso-Gonzalez P, Martinez-Murillo JF, Ruiz-Sinoga JD (2014) The impact of organic amendment on forest soil properties under mediterranean climatic conditions. Land Degrad Dev 25:604–612CrossRefGoogle Scholar
  40. Hyndman CL, Groboillot A, Poncelet D, Champagne C, Neufeld RJ (1993) Microencapsulation of Lactococcus lactis with cross-link gelatin membranes. J Chem Technol Biotechnol 56:259–263CrossRefGoogle Scholar
  41. Jacquot M, Pernetti M (2003) Spray coating and drying processes. In: Nedovic V, Willaert R (eds) Cell immobilization biotechnology. Kluwer Academic Publishers, Dordrecht, pp 343–356Google Scholar
  42. Jha MN, Prasad AN (2006) Efficacy of new inexpensive cyanobacterial biofertilizers including its shelf life. World J Microbiol Biotechnol 22:73–79CrossRefGoogle Scholar
  43. John RP, Tyagi RD, Brar SK, Surampalli RY, Prevost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31(3):211–226CrossRefPubMedGoogle Scholar
  44. Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, van Zwieten L, Kimber S, Cowie A, Singh BP, Lehmann J, Foidl N, Smernik RJ, Amonette JE (2010) An investigation into the reactions of biochar in soil. Aust J Soil Res 48:501–515CrossRefGoogle Scholar
  45. Kim KI, Baek YJ, Yoon YH (1996) Effects of rehydration media and immobilisation in calcium-alginate on the survival of Lactobacillus casei and Bifidobacterium bifidum. Korean J Dairy Sci 18:193–198Google Scholar
  46. Kim IY, Pusey PL, Zhao Y, Korban SS, Choi H, Kim KK (2012) Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight disease of apple. J Control Release 161:09–15CrossRefGoogle Scholar
  47. Korus J (2001) Microencapsulation of flavours in starch matrix by coacervation method. Pol J Food Nutr Sci 51:17–23Google Scholar
  48. Koyama K, Seki M (2004) Evaluation of mass-transfer characteristics in alginate–membrane liquid-core capsules prepared using polyethylene glycol. J Biosci Bioeng 98:114–121CrossRefPubMedGoogle Scholar
  49. Lacroix C, Paquin C, Arnaud JP (1990) Batch fermentation with entrapped growing cells of Lactobacillus casei. Optimization of the rheological properties of the entrapment gel matrix. Appl Microbiol Biotechnol 32:403–408CrossRefGoogle Scholar
  50. Larena I, Melgarejo P, Cal AD (2003) Drying of Conidia of Penicillum oxalicum, a biological control agent against Fusarium wilt of tomato. J Phytopath 151:600–606CrossRefGoogle Scholar
  51. Larisch BC, Poncelet D, Champagne CP, Neufeld RJ (1994) Microencapsulation of Lactococcus lactis subsp. cremoris. J Microencapsul 11:189–195CrossRefPubMedGoogle Scholar
  52. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910CrossRefPubMedGoogle Scholar
  53. López MD, Maudhuit A, Pascual-Villalobos MJ, Poncelet D (2012) Development of formulations to improve the controlled-release of linalool to be applied as an insecticide. J Agric Food Chem 60:1187–1192CrossRefPubMedGoogle Scholar
  54. Lugtenberg BJJ, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556CrossRefPubMedGoogle Scholar
  55. Madene A, Jacquot M, Scher J, Desobry S (2006) Flavour encapsulation and controlled release – a review. I J Food Sci Tech 41:1–21CrossRefGoogle Scholar
  56. Major J, Rondon M, Molina D, Riha SJ, Lehman J (2012) Nutrient leaching in a Colombian savana oxisol amended with biochar. J Environ Qual 41:1076–1086CrossRefPubMedGoogle Scholar
  57. Malusá E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol 98:6599–6607CrossRefPubMedPubMedCentralGoogle Scholar
  58. Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:491206. doi: 10.1100/2012/491206 CrossRefGoogle Scholar
  59. Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacterial. J Soil Sci Plant Nutr 10:293–319CrossRefGoogle Scholar
  60. Mauriello G, Aponte M, Andolfi R, Moschetti G, Villani F (1999) Spray-drying of bacteriocin-producing lactic acid bacteria. J Food Prot 62:773–777PubMedGoogle Scholar
  61. Medina A, Azcón R (2010) Effectiveness of the application of arbuscular mycorrhizal fungi and organic amendments to improve soil quality and plant performance under stress conditions. J Soil Sci Plant Nutr 10(3):354–372CrossRefGoogle Scholar
  62. Medina A, Roldán A, Azcón R (2010) The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil. J Environ Manage 91:2547–2553CrossRefPubMedGoogle Scholar
  63. Mengual C, Schoebitz M, Azcón R, Roldán A (2014a) Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions. J Environ Manage 134:1–7CrossRefPubMedGoogle Scholar
  64. Mengual C, Roldán A, Caravaca F, Schoebitz M (2014b) Advantages of inoculation with immobilized rhizobacteria versus amendment with olive-mill waste in the afforestation of a semiarid area with Pinus halepensis. Ecol Eng 73:1–8CrossRefGoogle Scholar
  65. Mille Y, Beney L, Gervais P (2002) Viability of E. coli after combined osmotic and thermal treatment: a plasma membrane implication. BBA Biomembr 1567:41–48CrossRefGoogle Scholar
  66. Morgan CA, Herman N, White PA, Vesey G (2006) Preservation of microorganisms by drying. A review. J Microbiol Methods 66:183–193CrossRefPubMedGoogle Scholar
  67. Muñoz C, Quilodrán C, Navia R (2014) Evaluation of biochar-plant extracts complexes on soil nitrogen dynamics. Bioenergy 8:377–385Google Scholar
  68. Nakagawa K, Iwamoto S, Nakajima M, Shono A, Satoh K (2004) Microchannel emulsification using gelatin and surfactant-free coacervate microencapsulation. J Colloid Interf Sci 278:198–205CrossRefGoogle Scholar
  69. Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3:195–206Google Scholar
  70. Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133CrossRefPubMedGoogle Scholar
  71. Poirier I, Marechal PA, Gervais P (1997) Effects of the kinetics of water potential variation on bacteria viability. J Appl Microbiol 82:101–106CrossRefPubMedGoogle Scholar
  72. Puente ME, Bashan Y, Li CY, Lebsky VK (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol (Stuttg) 6:629–642CrossRefGoogle Scholar
  73. Reineccius GA (1988) Spray-drying of food flavours. In: Risch SJ, Reineccius GA (eds) Flavor encapsulation. American Chemical Society, Washington, DC, pp 55–66CrossRefGoogle Scholar
  74. Rincón A, Ruíz-Díez B, Fernández-Pascual M, Probanza A, Pozuelo JM (2006) Afforestation of degraded soils with Pinus halepensis Mill: effects of inoculation with selected microorganisms and soil amendment on plant growth, rhizospheric microbial activity and ectomycorrhizal formation. Appl Soil Ecol 34:42–51CrossRefGoogle Scholar
  75. Risch SJ (1995) Encapsulation: overview of uses and techiniques. In: Rish SJ, Reineccius GA (eds) Encapsulation and controlled release of food ingredient. American Chemical Society, Washington, DC, pp 2–7CrossRefGoogle Scholar
  76. Rivera-Cruz MC, Trujillo-Narcía A, Córdova-Ballona G, Kohler J, Caravaca F, Roldán A (2008) Poultry manure and banana waste are effective biofertilizer carriers for promoting plant growth and soil sustainability in banana crops. Soil Biol Biochem 40:3092–3095CrossRefGoogle Scholar
  77. Sasaki E, Kuruyama F, Ida J, Matsuyama T, Yamamoto H (2008) Preparation of microcapsules by electrostática atomization. J Electrost 66:312–318CrossRefGoogle Scholar
  78. Schoebitz M, Ribaudo C, Pardo M, Cantore M, Ciampi L, Cura JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41:1768–1774CrossRefGoogle Scholar
  79. Schoebitz M, Simonin H, Poncelet D (2012) Starch filler and osmoprotectants improve the survival of rhizobacteria in dried alginate beads. J Microencapsul 29:532–538CrossRefPubMedGoogle Scholar
  80. Schoebitz M, López MD, Roldán A (2013a) Bioencapsulation of microbial inoculants for better soil-plant fertilization. A review. Agron Sustain Dev 33:751–765CrossRefGoogle Scholar
  81. Schoebitz M, Osman J, Ciampi L (2013b) Effect of immobilized Serratia sp. by spray-drying technology on plant growth and phosphate uptake. Chilean J Agric Anim Sci 29(2):111–119Google Scholar
  82. Schoebitz M, Mengual C, Roldán A (2014) Combined effects of clay immobilized Azospirillum brasilense and Pantoea dispersa and organic olive residue on plant performance and soil properties in the revegetation of a semiarid area. Sci Total Environ 466–467:67–73CrossRefPubMedGoogle Scholar
  83. Schutyser AIM, Perdana J, Boom RM (2012) Single droplet drying for optimal spray drying of enzymes and probiotics. Trends Food Sci Tech 27(2):73–82CrossRefGoogle Scholar
  84. Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353CrossRefGoogle Scholar
  85. Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. Inoculants and nitrogen fixation of legumes in Vietnam. In: Herridge D (ed) ACIAR proceedings. PK Editorial Services, Brisbane, pp 52–66Google Scholar
  86. Sparks RE, Jacobs IC (1999) Selection of coating and microencapsulation processes. In: Scher HB (ed) Controlled-release delivery system for pesticides. Marcel Dekker, New York, pp 3–29Google Scholar
  87. Streeter JG (2003) Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J Appl Microbiol 95:484–491CrossRefPubMedGoogle Scholar
  88. Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272CrossRefGoogle Scholar
  89. Thies JE, Rillig MC (2009) Characteristics of biochar-biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management science and technology. Earthscan Publisher, London, pp 85–106Google Scholar
  90. Trivedi P, Pandey A, Palni LMS (2005) Carrier-based preparations of plant growth-promoting bacterial inoculants suitable for use in cooler regions. World J Microb Biot 21:941–945CrossRefGoogle Scholar
  91. Uhlemann J, Mörl L (2000) Wirbelschicht-Sprühgranulation. Springer, BerlinCrossRefGoogle Scholar
  92. Vriezen JAC, de Bruijn FJ, Nüsslein K (2006) Desiccation responses and survival of Sinorhizobium meliloti USDA 1021 in relation to growth phase, temperature, chloride and sulfate availability. Lett Appl Microbiol 42:172–178CrossRefPubMedGoogle Scholar
  93. Wang X, Brown IL, Evans AJ, Conway PL (1999) The protective effects of high amylose maize (amylomaize) starch granules on the survival of Bifidobacterium spp. in the mouse intestinal tract. J Appl Microbiol 87:631–639CrossRefPubMedGoogle Scholar
  94. Watanabe Y, Fang X, Minemoto Y, Adachi S, Matsuno R (2002) Suppressive effect of saturated acyl L-ascorbate on the oxidation of linoleic acid encapsulated with maltodextrin or gum arabic by spray-drying. J Agric Food Chem 50:3984–3987CrossRefPubMedGoogle Scholar
  95. Wu Z, Guo L, Qin S, Li C (2012) Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. J Ind Microbiol Biotechnol 39(2):317–327CrossRefPubMedGoogle Scholar
  96. Wu Z, He Y, Chen L, Han Y, Li C (2014) Characterization of Raoultella planticola Rs-2 microcapsule prepared with a blend of alginate and starch and its release behavior. Carbohyd Polym 110:259–267CrossRefGoogle Scholar
  97. Wurster DE (1966) Particle coating process. US Patent No. 3,253,944, Wisconsin Alumni Research FoundationGoogle Scholar
  98. Xavier IJ, Holloway G, Leggett M (2004) Development of rhizobial inoculant formulations. Online Crop Manag. Accessed 16 Mar 2015
  99. Yeo Y, Back N, Park K (2001) Microencapsulation methods for delivery of protein drugs. Biotechnol Bioproc Eng 6:213–230CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Mauricio Schoebitz
    • 1
  • María Dolores López Belchí
    • 2
  1. 1.Departamento de Suelos y Recursos Naturales, Facultad de AgronomíaUniversidad de ConcepciónConcepciónChile
  2. 2.Departamento de Producción Vegetal, Facultad de AgronomíaUniversidad de ConcepciónChillánChile

Personalised recommendations