The Contribution of Secondary Metabolites in the Success of Bioformulations

  • María A. Morel
  • Célica Cagide
  • Susana Castro-SowinskiEmail author


Bioformulations are biologically active products containing one or more beneficial microbial strains, commonly used to increase plant growth, soil fertility and suppression of phytopathogens. Many reports support that the use of a combination of beneficial microorganisms has additive or synergistic effects on plant growth and yield. However, the addition of microbial- or plant-produced secondary metabolites to bioformulations may increase agricultural productivity, improving the performance of the inoculation. This chapter focuses on the use of some secondary metabolites (flavonoids, lipochitooligosaccharides, phytohormones, etc.) in bioformulations, focusing mainly on formulations that improve leguminous crop yields. The information supports that the addition of these molecules may contribute to the sustainable development of new agronomic products.


Nitrogen Fixation Jasmonic Acid Exogenous Application Botrytis Cinerea Alfalfa Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank PEDECIBA-Uruguay (Programa de Desarrollo de las Ciencias Básicas), LAGE y Cia SA (, and ANII (Agencia Nacional de Investigación e Innovación; FMV-3-2011-6089) for partial financial support. The work of M.A. Morel and C. Cagide was also supported by ANII. We are especially grateful for Cecilia Hermann’s assistance during the search of commercial products. The cartoon or Fig. 13.1 was drawn by Juan José Marizcurrena.


  1. Abd-Alla MH, El-enany AWE, Bagy MK, Bashandy SR (2014a) Alleviating the inhibitory effect of salinity stress on nod gene expression in Rhizobium tibeticum–fenugreek (Trigonella foenum graecum) symbiosis by isoflavonoids treatment. J Plant Int 9:275–284Google Scholar
  2. Abd-Alla MH, Bagy MK, El-enany AWES, Bashandy SR (2014b) Activation of Rhizobium tibeticum with flavonoids enhances nodulation, nitrogen fixation, and growth of fenugreek (Trigonella foenum-graecum L.) grown in cobalt-polluted soil. Arch Environ Cont Tox 66:303–315CrossRefGoogle Scholar
  3. Agehara S, Leskovar DI (2012) Characterizing concentration effects of exogenous abscisic acid on gas exchange, water relations, and growth of muskmelon seedlings during water stress and rehydration. J Am Soc Hortic Sci 137:400–410Google Scholar
  4. Almaraz JJ, Zhou X, Souleimanov A, Smith D (2007) Gas exchange characteristics and dry matter accumulation of soybean treated with Nod factors. J Plant Physiol 164:1391–1393CrossRefGoogle Scholar
  5. A (2015) Bayer CropScience Chile: Líder en protección de cultivos, productos agricolas y fitosanitarios. [online] Available at:
  6. Argueso CT, Ferreira FJ, Epple P, To JPC, Hutchison CE, Schaller GE, Kieber JJ (2012) Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet 8:e1002448PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constrains in bioformulation, commercialization, and future strategies. In: Maheshwari DK (ed) Plant growth and health promoting bacteria microbiology monographs 18. Springer, Berlin, pp 97–116CrossRefGoogle Scholar
  8. Atti S, Bonnell R, Prasher S, Smith DL (2005) Response of soybean {Glycine max (L.) Merr.} under chronic water deficit to LCO application during flowering and pod filling. Irrig Drain 54:15–30CrossRefGoogle Scholar
  9. Bai Y, Souleimanov A, Smith DL (2002) An inducible activator produced by a Serratia proteamaculans strain and its soybean growth promoting activity under greenhouse conditions. J Exp Bot 53:1495–1502PubMedCrossRefGoogle Scholar
  10. Bajsa N, Morel MA, Braña V, Castro-Sowinski S (2013) The effect of agricultural practices on resident soil microbial communities: focus on biocontrol and biofertilization. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 2. Wiley-Blackwell, Hoboken, pp 687–700Google Scholar
  11. Bandyopadhyay AK, Jain V, Nainawatee HS (1996) Nitrate alters the flavonoid profile and nodulation in pea (Pisum sativum L.). Biol Fert Soils 21:189–192CrossRefGoogle Scholar
  12. Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33CrossRefGoogle Scholar
  13. (2015) Bayer de México, S.A. de C.V. [online]. Available at:
  14. Begum AA, Leibovitch S, Migner P, Zhang F (2001) Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J Exp Bot 52:1537–1543PubMedCrossRefGoogle Scholar
  15. Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319PubMedPubMedCentralGoogle Scholar
  16. (2015) Novozymes BioAg Group. [online] Available at:
  17. Bonaterra A, Camps J, Montesinos E (2005) Osmotically induced trehalose and glycine betaine accumulation improves tolerance to desiccation, survival and efficacy of the postharvest biocontrol agent Pantoea agglomerans EPS125. FEMS Microbiol Lett 250:1–8PubMedCrossRefGoogle Scholar
  18. Boot KJ, van Brussel AA, Tak T, Spaink HP, Kijne JW (1999) Lipochitin oligosaccharides from Rhizobium leguminosarum bv. viciae reduce auxin transport capacity in Vicia sativa subsp. nigra roots. Mol Plant Microbe Interact 12:839–844CrossRefGoogle Scholar
  19. Broughton WJ, Zhang F, Perret X, Staehelin C (2003) Signals exchanged between legumes and Rhizobium: agricultural uses and perspectives. Plant Soil 252:129–137CrossRefGoogle Scholar
  20. Cai T, Xu H, Peng D, Yin Y, Yang W, Ni Y, Chen X, Xu C, Yang D, Cui Z, Wang Z (2014) Exogenous hormonal application improves grain yield of wheat by optimizing tiller productivity. Field Crops Res 155:172–183CrossRefGoogle Scholar
  21. Cargeeg RD, Seevers K (2011) Methods and compositions containing jasmonates or related compounds for promoting biodefense activity in plants. US Patent Application US20120077674 A1Google Scholar
  22. Chen C, McIver J, Yang Y, Bai Y, Schultz B, McIver A (2007) Foliar application of lipo-chitooligosaccharides (Nod factors) to tomato (Lycopersicon esculentum) enhances flowering and fruit production. Can J Plant Sci 87:365–372CrossRefGoogle Scholar
  23. Cohen Y, Gisi U, Niderman T (1993) Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic metil ester. Phytopathology 83:1054–1062CrossRefGoogle Scholar
  24. Cohen AC, Bottini R, Piccoli PN (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul 54:97–103CrossRefGoogle Scholar
  25. Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462CrossRefGoogle Scholar
  26. (2015) Bayer S.A. [online]. Available at:
  27. D’Haeze W, Gao M, De Rycke R, Van Montagu M, Engler G, Holsters M (1998) Roles for azorhizobial Nod factors and surface polysaccharides in intercellular invasion and nodule penetration, respectively. Mol Plant Microbe Interact 11:999–1008CrossRefGoogle Scholar
  28. Dashti N, Prithiviraj B, Zhou X, Hynes RK, Smith DL (2000) Combined effects of plant growth promoting rhizobacteria and genistein on nitrogen fixation in soybean at suboptimal root zone temperatures. J Plant Nutr 23:593–604CrossRefGoogle Scholar
  29. Davière JM, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151PubMedCrossRefGoogle Scholar
  30. De Jong AJ, Heidstra R, Spaink HP, Hartog MV, Meijer EA, Hendriks T, Lo Schiavo F, Ab Van Kammen M, De Vries SC (1993) Rhizobium lipooligosaccharides rescue a carrot somatic embryo mutant. Plant Cell Online 5:615–620CrossRefGoogle Scholar
  31. Dolatabadian A, Sanavy SAMM, Ghanati F, Gresshoff PM (2012) Morphological and physiological response of soybean treated with the microsymbiont Bradyrhizobium japonicum pre-incubated with genistein. S Afr J Bot 79:9–18CrossRefGoogle Scholar
  32. Dolatabadian A, Sanavy SAMM, Ghanati F, Gresshoff PM (2013) Agrobacterium rhizogenes transformed soybean roots differ in their nodulation and nitrogen fixation response to genistein and salt stress. World J Microbiol Biotech 29:1327–1339CrossRefGoogle Scholar
  33. Duzan HM, Zhou X, Souleimanov A, Smith DL (2004) Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merr.] root hairs under abiotic stress conditions. J Exp Bot 55:2641–2646PubMedCrossRefGoogle Scholar
  34. Duzan HM, Mabood F, Zhou X, Souleimanov A, Smith DL (2005) Nod factor induces soybean resistance to powdery mildew. Plant Physiol Biochem 43:1022–1030PubMedCrossRefGoogle Scholar
  35. Dyachok JV, Tobin AE, Price NPJ, Von Arnold S (2000) Rhizobial Nod factors stimulate somatic embryo development in Picea abies. Plant Cell Rep 19:290–297CrossRefGoogle Scholar
  36. Etesami H, Alikhani HA, Akbari AA (2009) Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes. World Appl Sci J 6:1576–1584Google Scholar
  37. Fine Americas (2014) Fine Americas Inc. [online]. Available at:
  38. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7PubMedCrossRefGoogle Scholar
  39. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339CrossRefGoogle Scholar
  40. Hamayun M, Khan SA, Khan AL, Rehman G, Kim YH, Iqbal I, Hussain J, Sohn EY, Lee IJ (2010) Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.). Mycologia 102(5):989–995PubMedCrossRefGoogle Scholar
  41. Hedin PA, McCarty JC (1991) Effects of kinetin formulations on allelochemicals and agronomic traits of cotton. Agric Food Chem 39:549–553CrossRefGoogle Scholar
  42. Hedin PA, McCarty JC (1994) Effects of several commercial plant growth regulator formulations on yield and allelochemicals of cotton (Gossypium hirsutum L.). Agric Food Chem 42:1355–1357CrossRefGoogle Scholar
  43. Jain V, Garg N, Nainawatee HS (1990) Naringenin enhanced efficiency of Rhizobium meliloti-alfalfa symbiosis. World J Microbiol Biotechnol 6:434–436PubMedCrossRefGoogle Scholar
  44. Jana S, Sivanesan I, Jeong BR (2013) Effect of cytokinins on in vitro multiplication of Sophora tonkinensis. Asian Pac J Tropic Biomed 3:549–553CrossRefGoogle Scholar
  45. Janczarek M, Rachwał K, Marzec A, Grządziel J, Palusińska-Szysz M (2015) Signal molecules and cell-surface components involved in early stages of the legume–rhizobium interactions. Appl Soil Ecol 85:94–113CrossRefGoogle Scholar
  46. Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31:55–67PubMedCrossRefGoogle Scholar
  47. Kapulnik Y, Joseph CM, Phillips DA (1987) Flavone limitations to root nodulation and symbiotic nitrogen fixation in Alfalfa. Plant Physiol 84:1193–1196PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ketring DL, Schubert AM (1981) Reproduction of peanuts treated with a cytokinin-containing preparation. Agric J 73:350–352Google Scholar
  49. Khakipour NK, Khavazi Mojallali H, Pazira E, Asadirahmani H (2008) Production of auxin hormone by fluorescent pseudomonads. Am Eur J Agric Environ Sci 4:687–692Google Scholar
  50. Khalid A, Sultana S, Arshad M, Mahmood S, Mahmood T, Siddique MT (2011) Performance of auxin producing rhizobacteria for improving growth and yield of wheat and rice grown in rotation under field conditions. Int J Agric Appl Sci 3:44–50Google Scholar
  51. Khan W, Prithiviraj B, Smith DL (2008) Nod factor [Nod Bj V (C 18: 1, MeFuc)] and lumichrome enhance photosynthesis and growth of corn and soybean. J Plant Physiol 165:1342–1351PubMedCrossRefGoogle Scholar
  52. Khan W, Costa C, Souleimanov A, Prithiviraj B, Smith DL (2011) Response of Arabidopsis thaliana roots to lipo-chitooligosaccharide from Bradyrhizobium japonicum and other chitin-like compounds. Plant Growth Regul 63:243–249CrossRefGoogle Scholar
  53. Kidaj D, Wielbo J, Skorupska A (2012) Nod factors stimulate seed germination and promote growth and nodulation of pea and vetch under competitive conditions. Microbiol Res 167:144–150PubMedCrossRefGoogle Scholar
  54. Kudoyarova GR, Melentiev AI, Martynenko EV, Timergalina LN, Arkhipova TN, Shendel GV, Kuz’mina LY, Dodd IC, Veselov SY (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291PubMedCrossRefGoogle Scholar
  55. Leibovitch S, Migner P, Zhang F, Smith DL (2001) Evaluation of the effect of SoyaSignal technology on soybean yield [Glycine max (L.) Merr.] under field conditions over 6 years in eastern Canada and the northern United States. J Agron Crop Sci 187:281–292CrossRefGoogle Scholar
  56. Liang YJ, Mitchell DM, Harris JM (2007) Abscisic acid rescues the root meristem defects of the Medicago truncatula latd mutant. Dev Biol 304:297–307PubMedCrossRefGoogle Scholar
  57. Lim JH, Kim SD (2009) Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniformis K11. J Korean Soc Appl Biol Chem 52:531–538CrossRefGoogle Scholar
  58. Liu Y, Sun Y, He S, Zhu Y, Ao M, Li J, Cao Y (2013) Synthesis and characterization of gibberellin-chitosan conjugate for controlled-release application. J Biol Macromol 57:213–217CrossRefGoogle Scholar
  59. (2015) Loveland Products Inc. | get growing [online]. Available at:
  60. Lulai EC, Orr PH, Glynn MT (1995) Natural suppression of sprouting in stored potatoes using jasmonates. U.S. Patent No. 5,436,226Google Scholar
  61. Mabood F, Smith DL (2005) Pre-inoculation of Bradyrhizobium japonicum with jasmonates accelerates nodulation and nitrogen fixation in soybean (Glycine max) at optimal and suboptimal root zone temperatures. Physiol Plant 125:311–323CrossRefGoogle Scholar
  62. Mabood F, Souleimanov A, Khan W, Smith DL (2006) Jasmonates induce Nod factor production by Bradyrhizobium japonicum. Plant Physiol Biochem 44:759–765PubMedCrossRefGoogle Scholar
  63. Macchiavelli RE, Brelles-Mariño G (2004) Nod factor-treated Medicago truncatula roots and seeds show an increased number of nodules when inoculated with a limiting population of Sinorhizobium meliloti. J Exp Bot 55:2635–2640PubMedCrossRefGoogle Scholar
  64. Maj D, Wielbo J, Marek-Kozaczuk M, Martyniuk S, Skorupska A (2009) Pretreatment of clover seeds with Nod factors improves growth and nodulation of Trifolium pratense. J Chem Ecol 35:479–487PubMedCrossRefGoogle Scholar
  65. Marcińska I, Czyczyło-Mysza I, Skrzypek E, Grzesiak MT, Janowiak F, Filek M, Dziurka M, Dziurka K, Waligórski P, Juzoń K, Cyganek K, Grzesiak S (2013) Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic acid on wheat seedlings. Int J Mol Sci 14:13171–13193PubMedPubMedCentralCrossRefGoogle Scholar
  66. Marks BB, Megías M, Nogueira MA, Hungria M (2013) Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Express 3:21PubMedPubMedCentralCrossRefGoogle Scholar
  67. Matthew C, Hofmann WA, Osborne MA (2009) Pasture response to gibberellins: a review and recommendations. N Z J Agric Res 52:213–225CrossRefGoogle Scholar
  68. Meir S, Droby S, Davidson H, Alsevia S, Cohen L, Horev B, Philosph-Hadas S (1998) Suppression of Botrytis rot in cut rose flowers by postharvest application of methyl jasmonate. Postharv Biol Technol 13:235–243CrossRefGoogle Scholar
  69. Miransari M, Smith DL (2007) Overcoming the stressful effects of salinity and acidity on soybean nodulation and yields using signal molecule genistein under field conditions. J Plant Nutr 30:1967–1992CrossRefGoogle Scholar
  70. Miransari M, Smith DL (2009a) Alleviating salt stress on soybean (Glycine max L.) Merr.) –Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Eur J Soil Biol 45:146–152CrossRefGoogle Scholar
  71. Miransari M, Smith DL (2009b) Rhizobial lipo-chitooligosaccharides and gibberellins enhance barley (Hordeum vulgare L.) seed germination. Biotechnology 8:270–275CrossRefGoogle Scholar
  72. Molla AH, Shamsuddin ZH, Saud HM (2001) Mechanism of root growth and promotion of nodulation in vegetable soybean by Azospirillum brasilense. Commun Soil Sci Plant Anal 32:2177–2187CrossRefGoogle Scholar
  73. Moons A, Prinsen E, Bauw G, Montagu MV (1997) Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transgenic transcripts in rice roots. Plant Cell 9:2243–2259PubMedPubMedCentralCrossRefGoogle Scholar
  74. Morel MA, Castro-Sowinski S (2013) The complex molecular signaling network in microbe-plant interaction. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New DelhiGoogle Scholar
  75. Morel MA, Ubalde MC, Braña V, Castro-Sowinski S (2011) Delftia sp. JD2: a potential Cr (VI) reducing agent with plant growth promoting activity. Arch Microbiol 193:63–68PubMedCrossRefGoogle Scholar
  76. Morel MA, Braña V, Castro-Sowinski S (2012) Legume crops, importance and use of bacterial inoculation to increase the production. In: Goyal A (ed) Crop plant. InTech, Rijeka, pp 217–240Google Scholar
  77. Morel MA, Cagide C, Minteguiaga MA, Dardanelli MS, Castro-Sowinski S (2015) The pattern of secreted molecules during the co-inoculation of alfalfa plants with Sinorhizobium meliloti and Delftia sp. strain JD2: an interaction that improves plant yield. Mol Plant-Microbe Interact 28:134–142PubMedCrossRefGoogle Scholar
  78. Muñoz N, Soria-Díaz ME, Manyani H, Sánchez-Matamoros RC, Serrano AG, Megías, Lascano R (2014) Structure and biological activities of lipochitooligosaccharide nodulation signals produced by Bradyrhizobium japonicum USDA 138 under saline and osmotic stress. Biol Fert Soils 50:207–215CrossRefGoogle Scholar
  79. Nápoles MC, Guevara E, Montero F, Rossi A, Ferreira A (2009) Role of Bradyrhizobium japonicum induced by genistein on soybean stressed by water deficit. Span J Agri Res 7:665–671CrossRefGoogle Scholar
  80. Novak K, Chovanec P, Škrdleta V, Kropáčová M, Lisá L, Němcová M (2002) Effect of exogenous flavonoids on nodulation of pea (Pisum sativum L.). J Exp Bot 53:1735–1745PubMedCrossRefGoogle Scholar
  81. Nukui N, Ezura H, Yuhashi KI, Yasuta T, Minamisawa K (2000) Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptiliumatropurpureum. Plant Cell Physiol 41:893–897PubMedCrossRefGoogle Scholar
  82. Paau AS, Bennett ML, Kurtenbach CJ, Graham LL (1990) Improvement of inoculant efficiency by strain improvement and formulation manipulations. In: Gresshoff, Roth, Stacey, Newton (eds) Nitrogen fixation: achievements and objectives. Springer, New York, pp 617–624CrossRefGoogle Scholar
  83. Pan B, Smith DL (2000) Preincubation of Bradyrhizobium japonicum cells with genistein reduces the inhibitory effects of mineral nitrogen on soybean nodulation and nitrogen fixation under field conditions. Plant Soil 223:235–242Google Scholar
  84. Pan B, Zhang F, Smith DL (1998) Genistein addition to the root medium of soybean at the onset of nitrogen fixation increases nodulation. J Plant Nutr 21:1631–1639CrossRefGoogle Scholar
  85. Pedranzani H, Racagni G, Alemano S, Miersch O, Ramirez I, Pena-Cortes H, Taleisnik E, Machado Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Reg 41:149–158CrossRefGoogle Scholar
  86. Péret B, Svistoonoff S, Lahouze B, Auguy F, Santi C, Doumas P, Laplaze L (2008) A role for auxin during actinorhizal symbioses formation. Plant Signal Behav 3:34–35PubMedPubMedCentralCrossRefGoogle Scholar
  87. Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. In: Mark E, Dolf W, Ljung K, Ottoline L (eds) Additional perspectives on auxin signaling. Cold Spring Harbor Laboratory Press 2(5):a001446Google Scholar
  88. Peters NK, Crist-Estes D (1989) Nodule formation is stimulated by the ethylene inhibitor amino-ethoxyvinylglycine. Plant Physiol 91:690–693PubMedPubMedCentralCrossRefGoogle Scholar
  89. Pieterse C, Leon-Reyes A, Van der Ent S, Van Wees S (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Boil 5:308–317CrossRefGoogle Scholar
  90. Podleśny J, Wielbo J, Podleśna A, Kidaj D (2014) The pleiotropic effects of extract containing rhizobial Nod factors on pea growth and yield. Central Eur J Biol 9:396–409Google Scholar
  91. Poustini K, Mabood F, Smith DL (2010) Preincubation of Rhizobium leguminosarum bv. phaseoli with jasmonate and genistein signal molecules increases bean (Phaseolus vulgaris L.) nodulation, nitrogen fixation and biomass production. J Agr Sci Tech 9:107–117Google Scholar
  92. Prithiviraj B, Zhou X, Souleimanov A, Kahn W, Smith D (2003) A host-specific bacteria-to-plant signal molecule (Nod factor) enhances germination and early growth of diverse crop plants. Planta 216:437–445PubMedGoogle Scholar
  93. Qiu ZB, Guo JL, Zhu AJ, Zhang L, Zhang MM (2014) Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Saf 104:202–208PubMedCrossRefGoogle Scholar
  94. Relić B, Talmont F, Kopcinska J, Golinowski W, Promé JC, Broughton WJ (1993) Biological activity of Rhizobium sp. NGR234 Nod-factors on Macroptilium atropurpureum. Mol Plant Microbe Interact 6:764–774PubMedCrossRefGoogle Scholar
  95. Relić B, Perret X, Estrada‐García MT, Kopcinska J, Golinowski W, Krishnan HB, Pueppke SG, Broughton WJ (1994) Nod factors of Rhizobium are a key to the legume door. Mol Microbiol 13:171–179PubMedCrossRefGoogle Scholar
  96. (2015) Rizobacter| Rizobacter global [online]. Available at:
  97. Roberto SR, Marinho de Assis A, Yamamoto LY, Miotto LCV, Satto AJ, Koyama R, Genta W (2012) Application timing and concentration of abscisic acid improve color of “Benitaka” table grape. Sci Hortic 142:44–48CrossRefGoogle Scholar
  98. Saleem M, Arshad M, Hussain S, Bhatti A (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC-deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648PubMedCrossRefGoogle Scholar
  99. Seagull RW, Giavalis S (2004) Pre- and post-anthesis application of exogenous hormones alters fiber production in Gossypium hirsutum L. cultivar Maxxa GTO. J Cotton Sci 8:105–111Google Scholar
  100. Seo HS, Song JT, Cheong JJ, Lee YH, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci U S A 98:4788–4793PubMedPubMedCentralCrossRefGoogle Scholar
  101. Shaharoona B, Imran M, Arshad M, Khalid A (2011) Manipulation of ethylene synthesis in roots through bacterial ACC deaminase for improving nodulation in legumes. Crit Rev Plant Sc 30:279–291CrossRefGoogle Scholar
  102. Siczek A, Lipiec J, Wielbo J, Szarlip P, Kidaj D (2013) Pea growth and symbiotic activity response to Nod factors (lipo-chitooligosaccharides) and soil compaction. Appl Soil Ecol 72:181–186CrossRefGoogle Scholar
  103. Siczek A, Lipiec J, Wielbo J, Kidaj D, Szarlip P (2014) Symbiotic activity of pea (Pisum sativum) after application of Nod factors under field conditions. Int J Mol Sci 15:7344–7351PubMedPubMedCentralCrossRefGoogle Scholar
  104. Smith D, Zhang F (1999) Composition for enhancing grain yield and protein yield of legumes grown under environmental conditions that inhibit or delay nodulation thereof. US Patent No. 5.922.316. US Patent and Trademark Office, Washington, DCGoogle Scholar
  105. Souleimanov A, Prithiviraj B, Smith DL (2002) The major Nod factor of Bradyrhizobium japonicum promotes early growth of soybean and corn. J Exp Bot 53:1929–1934PubMedCrossRefGoogle Scholar
  106. Spaepen S (2015) Plant hormones produced by microbes. In: Lugtenberg B (ed) Principle of plant-microbe interactions. Springer, New York, pp 247–256Google Scholar
  107. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438PubMedPubMedCentralCrossRefGoogle Scholar
  108. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefGoogle Scholar
  109. Sudadi, Suryono (2015) Exogenous application of tryptophan and indole acetic acid (IAA) to induce root nodule formation and increase soybean yield in acid, neutral and alkaline soil. Agrivita J Agric Sc 37:1CrossRefGoogle Scholar
  110. Supanjani S, Habib A, Mabood F, Lee KD, Donnelly D, Smith DL (2006) Nod factor enhances calcium uptake by soybean. Plant Physiol Biochem 44:866–872PubMedCrossRefGoogle Scholar
  111. Tian Y, Guan B, Zhou D, Yu J, Li G, Lou Y (2014) Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.). Sci World J 2014:1–8Google Scholar
  112. Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024PubMedPubMedCentralGoogle Scholar
  113. Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107PubMedCrossRefGoogle Scholar
  114. Tomma BPHJ, Eggermont K, Broekaert W, Cammue BPA (2000) Disease development of several fungi on Arabidopsis can be reduced by treatment with methyl jasmonate. Plant Physiol Biochem 38:421–427CrossRefGoogle Scholar
  115. Torres S (2015) Nitragin [online] Available at:
  116. Ubalde MC, Braña V, Sueiro F, Morel MA, Martínez-Rosales C, Marquez C, Castro-Sowinski S (2012) The versatility of Delftia sp. isolates as tools for bioremediation and biofertilization technologies. Curr Microbiol 64:597–603PubMedCrossRefGoogle Scholar
  117. Ulferts S, Delventhal S, Splivallo R, Karlovsky P, Schaffrath U (2015) Abscisic acid negatively interferes with basal defence of barley against Magnaporthe oryzae. BMC Plant Biol 15:7PubMedPubMedCentralCrossRefGoogle Scholar
  118. van Brussel AAN, Bakhuizen R, van Spronsen PC, Spaink HP, Tak T, Lugtenberg BJJ, Kijne JW (1992) Induction of pre-infection thread structures in the leguminous host plant by mitogenic lipo-oligosaccharides of Rhizobium. Science 257:70–72PubMedCrossRefGoogle Scholar
  119. Venburg GD, Rath A, Petracek PD (2013) Use of abscisic acid to alter sensory characteristics of white grapes and wine. US Patent No. 5.922.316. US Patent and Trademark Office, Washington, DCGoogle Scholar
  120. Vierheilig H, Bago B, Albrecht C, Poulin MJ, Piché Y (1998) Flavonoids and arbuscular-mycorrhizal fungi. In: Manthey JA, Buslig BS (eds) Flavonoids in the living system. Springer, New York, pp 9–33Google Scholar
  121. Wang N, Khan W, Smith DL (2012) Changes in soybean global gene expression after application of lipo-chitooligosaccharide from Bradyrhizobium japonicum under sub-optimal temperature. PLoS One 7:e31571PubMedPubMedCentralCrossRefGoogle Scholar
  122. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697PubMedPubMedCentralCrossRefGoogle Scholar
  123. Waterland NL, Campbell CA, Finer JJ, Jones ML (2010) Abscisic acid application enhances drought stress tolerance in bedding plants. Hort Sci 45:409–413Google Scholar
  124. Xie ZP, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton WJ, Vogeli-Lange R, Boller T (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and non nodulating soybeans. Plant Physiol 108:1519–1525PubMedPubMedCentralGoogle Scholar
  125. Yoon JI, Hamayun M, Lee SK, Lee IJ (2009) Methyl jasmonate alleviated salinity stress soybean. J Crop Sc Biotechnol 12:63–68CrossRefGoogle Scholar
  126. Zhang F, Smith D (1995) Preincubation of Bradyrhizobium japonicum with genistein accelerates nodule development of soybean at suboptimal root zone temperatures. Plant Physiol 108:961–968PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zhang F, Smith D (1996) Inoculation of soybean (Glycine max. (L.) Merr.) with genistein-preincubated Bradyrhizobium japonicum or genistein directly applied into soil increases soybean protein and dry matter yield under short season conditions. Plant Soil 179:233–241CrossRefGoogle Scholar
  128. Zhang F, Smith D (2002) Interorganismal signaling in suboptimum environments: the legume-rhizobia symbiosis. Adv Agron y 76:125–161CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • María A. Morel
    • 1
  • Célica Cagide
    • 1
  • Susana Castro-Sowinski
    • 1
    • 2
    Email author
  1. 1.Unidad Microbiología MolecularInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
  2. 2.Sección Bioquímica y Biología Molecular, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations