Formulation of Pochonia chlamydosporia for Plant and Nematode Management

  • Aurelio Ciancio
  • Mariantonietta Colagiero
  • Isabella Pentimone
  • Laura Cristina Rosso


Soil microorganisms play a key role in plant nutrition and health, interacting with soil pests with beneficial, antagonistic effects. The nematode parasitic and root endophytic fungus Pochonia chlamydosporia has been extensively studied in the last years for exploitation, due to its multiple behaviours in soil and the rhizosphere. The fungus has a complex biology and can act as a biological control agent of phytonematodes, as a plant growth promoter or as a soil saprotroph. In this review we consider several aspects concerning its production and application as a nematode and plant management tool, including biodiversity and trophic specialisation. Formulations of P. chlamydosporia have already reached the industrial stage. Commercial products are available for biological control of root-knot or cyst nematodes or plant growth promotion in intensive to peri-urban cropping systems. Aspects related to the fungus biology, production substrates, industrial scale-up and conservation methods are examined. Finally, potential in nematode management is discussed.


Nematode Population Methyl Bromide bZIP Transcription Factor Potato Cyst Nematode Cereal Cyst Nematode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adesemoye A, Torbert H, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929CrossRefPubMedGoogle Scholar
  2. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31CrossRefGoogle Scholar
  3. Atkins SD, Hidalgo-Diaz L, Kalisz H, Mauchline TH, Hirsch PR, Kerry BR (2003) Development of a new management strategy for the control of root-knot nematodes (Meloidogyne spp.) in organic vegetable production. Pest Manag Syst 59:183–189CrossRefGoogle Scholar
  4. Atkins SD, Clark I, Pande S, Hirsch PR, Kerry BR (2005) The use of real-time PCR and species-specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS Microbiol Ecol 51:257–264CrossRefPubMedGoogle Scholar
  5. Atkins SD, Peteira B, Clark IM, Kerry BR, Hirsch PR (2009) Use of real-time quantitative PCR to investigate root and gall colonisation by co-inoculated isolates of the nematophagous fungus Pochonia chlamydosporia. Ann Appl Biol 155:143–152CrossRefGoogle Scholar
  6. Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740CrossRefGoogle Scholar
  7. Bakker O, Parker MG (1991) CAAT/enhancer binding protein is able to bind to ATF/CRE elements. Nucleic Acids Res 19:1213–1217CrossRefPubMedPubMedCentralGoogle Scholar
  8. Behie SW, Zelisko PM, Bidochka MJ (2012) Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336:1576–1577CrossRefPubMedGoogle Scholar
  9. Blackburn F, Hayes WA (1966) Studies on the nutrition of Arthrobotrys oligospora Fres. and A. robusta Dudd. I. The saprophytic phase. Ann Appl Biol 58:43–50CrossRefPubMedGoogle Scholar
  10. Bontempo AF, Fernandes RH, Lopes J, Freitas LG, Lopes EA (2014) Pochonia chlamydosporia controls Meloidogyne incognita on carrot. Australas Plant Pathol 43:421–424CrossRefGoogle Scholar
  11. Bordallo JJ, Lopez-Llorca LV, Jansson HB, Salinas J, Persmark L, Asensio L (2002) Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytol 154:491–499CrossRefGoogle Scholar
  12. Bourne JM, Kerry BR, de Leij FAAM (1996) The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus, Verticillium chlamydosporium Goddard. Biocontrol Sci Tech 6:539–548CrossRefGoogle Scholar
  13. Burdsall HH, Dorworth EB (1994) Preserving cultures of wood-decaying Basidiomycotina using sterile distilled water in cryovials. Mycologia 86:275–280CrossRefGoogle Scholar
  14. Chen J, Abawi GS, Zuckerman BM (1999) Suppression of Meloidogyne hapla and its damage to lettuce grown in a mineral soil amended with chitin and biocontrol organisms. J Nematol 31(4S):719–725PubMedPubMedCentralGoogle Scholar
  15. Ciancio A, Loffredo A, Paradies F, Turturo C, Finetti-Sialer M (2005) Detection of Meloidogyne incognita and Pochonia chlamydosporia by fluorogenic molecular probes. OEPP/EPPO Bull 35:157–164CrossRefGoogle Scholar
  16. Ciancio A, Colagiero M, Ferrara M, Nigro F, Pentimone I, Rosso LC (2013) Transcriptome changes in tomato roots during colonization by the endophytic fungus Pochonia chlamydosporia. 5th Congress European Microbiologists (FEMS), 21–25 July, Leipzig, GermanyGoogle Scholar
  17. Clarkson JM, Charnley AK (1997) News insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol 4:197–203CrossRefGoogle Scholar
  18. Cordier C, Edel-Hermann V, Martin-Laurent F, Blal B, Steinberg C, Alabouvette C (2007) SCAR-based real time PCR to identify a biocontrol strain (T1) of Trichoderma atroviride and study its population dynamics in soils. J Microbiol Methods 68:60–68CrossRefPubMedGoogle Scholar
  19. Dallemole-Giaretta R, Freitas LG, Lopes EA, Ferraz S, de Podestá GS, Agnes EL (2011) Cover crops and Pochonia chlamydosporia for the control of Meloidogyne javanica. Nematology 13:919–926CrossRefGoogle Scholar
  20. de Leij FAAM, Kerry BR (1991) The nematophagous fungus Verticillium chlamydosporium Goddard, as a potential biological control agent for Meloidogyne arenaria (Neal) Chitwood. Rev Nématol 14:157–164Google Scholar
  21. de Leij FAAM, Kerry BR, Dennehy JA (1992a) The effect of fungal application rate and nematode density on the effectiveness of Verticillium chlamydosporium as a biological control agent for Meloidogyne incognita. Nematologica 38:112–122CrossRefGoogle Scholar
  22. de Leij FAAM, Davies KG, Kerry BR (1992b) The use of Verticillium chlamydosporium Goddard and Pasteuria penetrans (Thorne) Sayre & Starr alone and in combination to control Meloidogyne incognita on tomato plants. Fundam Appl Nematol 15:235–342Google Scholar
  23. Diogo HC, Sarpieri A, Pires MC (2005) Fungi preservation in distilled water. An Bras Dermatol 80:591–594CrossRefGoogle Scholar
  24. Duan W, Yang E, Xiang M, Liu X (2008) Effect of storage conditions on the survival of two potential biocontrol agents of nematodes, the fungi Paecilomyces lilacinus and Pochonia chlamydosporia. Biocontrol Sci Tech 18:605–612CrossRefGoogle Scholar
  25. Elliot JM, Marks CF, Tu CM (1977) Effects of certain nematicides on soil nitrogen, soil nitrifiers, and populations of Pratylenchus penetrans in flue-cured tobacco. Can J Plant Sci 57:143–154CrossRefGoogle Scholar
  26. Escudero N, Lopez-Llorca LV (2012) Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis 57:33–42CrossRefGoogle Scholar
  27. Ferreira SR, Araújo JV, Braga FR, Araujo JM, Carvalho RO, Silva AR, Frassy LN, Freitas LG (2011) Ovicidal activity of seven Pochonia chlamydosporia fungal isolates on Ascaris suum eggs. Trop Anim Health Prod 43:639–642CrossRefPubMedGoogle Scholar
  28. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109:21390–21395CrossRefPubMedPubMedCentralGoogle Scholar
  29. Flores-Camacho R, Manzanilla-López RH, Cid del Prado-Vera I, Martínez-Garza A (2007) Control de Nacobbus aberrans (Thorne) Thorne y Allen con Pochonia chlamydosporia (Goddard) Gams y Zare. Rev Mex Fitopatol 25:26–34Google Scholar
  30. Franco-Navarro F, Vilchis-Martínez K, Miranda-Damián J (2008) New records of Pochonia chlamydosporia from Mexico: isolation, root colonization and parasitism of Nacobbus aberrans eggs. Nematropica 39:133–142Google Scholar
  31. Frisli T, Haverkamp THA, Jakobsen KS, Stenseth NC, Rudi K (2013) Estimation of metagenome size and structure in an experimental soil microbiota from low coverage next generation sequence data. J Appl Microbiol 114:141–151CrossRefPubMedGoogle Scholar
  32. Gao L, Liu X (2010) Effects of carbon concentrations and carbon to nitrogen ratios on sporulation of two biological control fungi as determined by different culture methods. Mycopathologia 169:475–481CrossRefPubMedGoogle Scholar
  33. Green LH (2008) Culturing and preserving microorganisms. In: Goldman E, Green LH (eds) Practical handbook of microbiology, IIth edn. CRC Press, Boca Raton, pp 31–35Google Scholar
  34. Grivell AR, Jackson JF (1969) Microbial culture preservation with silica gel. J Gen Microbiol 58:423–425CrossRefPubMedGoogle Scholar
  35. Hadapad AB, Zebitz CP (2006) Mass production, survival and evaluation of solid substrate inocula of Beauveria brongniartii (Saccardo) Petch against Holotrichia serrata (Coleoptera: Scarabaeidae). Commun Agric Appl Biol Sci 71(2B):433–441PubMedGoogle Scholar
  36. Hellwig V, Mayer-Bartschmid A, Müller H, Greif G, Kleymann G, Zitzmann W, Tichy HV, Stadler M (2003) Pochonins A-F, new antiviral and antiparasitic resorcylic acid lactones from Pochonia chlamydosporia var. catenulata. J Nat Prod 66:829–837CrossRefPubMedGoogle Scholar
  37. Hirsch PR, Mauchline TH (2012) Who’s who in the plant root microbiome? Nat Biotechnol 30:961–962CrossRefPubMedGoogle Scholar
  38. Hirsch PR, Atkins SD, Mauchline TH, Morton OC, Davies KG, Kerry B (2001) Methods for studying the nematophagous fungus Verticillium chlamydosporium in the root environment. Plant Soil 232:21–30CrossRefGoogle Scholar
  39. Hong TD, Ellis RH, Moore D (1997) Development of a model to predict the effect of temperature and moisture on fungal spore longevity. Ann Bot 79:121–128CrossRefGoogle Scholar
  40. Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Dis Rep 57:1025–1028Google Scholar
  41. Jenkins NE, Heviefo G, Langewald J, Cherry AJ, Lomer CJ (1998) Development of mass production technology for aerial conidia of mitosporic fungi for use as mycopesticides. Biocontrol News Inform Serv 19:21N–31NGoogle Scholar
  42. Jones KA, Burges HD (1998) Technology of formulation and application. In: Burges HD (ed) Formulation of microbial biopesticides. Kluwer Academic Publishers, Dordrecht, pp 7–30CrossRefGoogle Scholar
  43. Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–424CrossRefPubMedGoogle Scholar
  44. Kerry BR, Bourne JM (1996) The importance of rhizosphere interactions in the biological control of plant parasitic nematodes – a case study using Verticillium chlamydosporium. Pestic Sci 47:69–75CrossRefGoogle Scholar
  45. Kerry BR, Bourne JM (eds) (2002) A manual for research on Verticillium chlamydosporium a potential biological control agent for root knot nematodes. IOBC/WPRS, Gent, 84 ppGoogle Scholar
  46. Kerry BR, Hidalgo-DÚaz L (2004) Application of Pochonia chlamydosporia in the integrated control of root-knot nematodes on organically grown vegetable crops in Cuba. In: Multitrophic interactions in soil and integrated control. IOBC/WPRS bulletin 27. International Organisation for Biological and Integrated Control, West Palaeartic Regional Section, Dijon, pp 123–126Google Scholar
  47. Kerry BR, Simon A, Rovira AD (1984) Observations on the introduction of Verticillium chlamydosporium and other parasitic fungi into soil for control of the cereal cyst-nematode H. avenae. Ann Appl Biol 105:509–516CrossRefGoogle Scholar
  48. Khambay BPS, Bourne JM, Cameron S, Kerry BR, Zaki M, Javed CS (2000) A nematicidal metabolite from Verticillium chlamydosporium. Pest Manage Sci 56:1098–1099CrossRefGoogle Scholar
  49. Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167:493–499CrossRefPubMedGoogle Scholar
  50. Larriba E, Martín Nieto J, Lopez-Llorca LV (2012) Gene cloning, molecular modeling, and phylogenetics of serine protease P32 and serine carboxypeptidase SCP1 from nematophagous fungi Pochonia rubescens and Pochonia chlamydosporia. Can J Microbiol 58:815–827CrossRefPubMedGoogle Scholar
  51. Larriba E, Jaime MD, Carbonell-Caballero J, Conesa A, Dopazo J, Nislow C, Martín-Nieto J, Lopez-Llorca LV (2014) Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Fungal Genet Biol 65:69–80CrossRefPubMedGoogle Scholar
  52. Lauber C, Knight R, Hamady M, Fierer N (2009) Soil pH as a predictor of soil bacterial community structure at the continental scale: a pyrosequencing-based assessment. Appl Environ Microbiol 75:5111–5120CrossRefPubMedPubMedCentralGoogle Scholar
  53. Liu XZ, Chen SY (2003) Nutritional requirements of Pochonia chlamydospora and ARF18, fungal parasites of nematode eggs. J Invertebr Pathol 83:10–15CrossRefPubMedGoogle Scholar
  54. Lomer CJ, Prior C, Kooyman C (1997) Development of Metarhizium spp. for the control of locusts and grasshoppers. Mem Entomol Soc Can 171:265–286CrossRefGoogle Scholar
  55. Lopez-Llorca LV, Bordallo JJ, Salinas J, Monfort E, López-Serna ML (2002) Use of light and scanning electron microscopy to examine colonisation of barley rhizosphere by the nematophagous fungus Verticillium chlamydosporium. Micron 33:61–67CrossRefPubMedGoogle Scholar
  56. Lopez-Llorca LV, Maciá-Vicente JG, Jansson HB (2008) Mode of action and interactions of nematophagous fungi. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecht, 356 ppGoogle Scholar
  57. Lopez-Llorca LV, Gómez-Vidal S, Monfort E, Larriba E, Casado-Vela J, Elortza F, Jansson HB, Salinas J, Martín-Nieto J (2010) Expression of serine proteases in egg-parasitic nematophagous fungi during barley root colonization. Fungal Genet Biol 47:342–351CrossRefPubMedGoogle Scholar
  58. Lozupone C, Knight AR (2008) Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev 32:557–578CrossRefPubMedPubMedCentralGoogle Scholar
  59. Maciá-Vicente J, Rosso LC, Ciancio A, Jansson HB, Lopez-Llorca LV (2009) Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: effects on plant growth and disease. Ann App Biol 155:391–401CrossRefGoogle Scholar
  60. Magan N (2001) Physiological approaches to improving the ecological fitness of fungal biocontrol agents. In: Jackson TMC, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford, pp 239–251CrossRefGoogle Scholar
  61. Manzanilla-López RH, Esteves I, Powers SJ, Kerry BR (2011) Effects of crop plants on abundance of Pochonia chlamydosporia and other fungal parasites of root-knot and potato cyst nematodes. Ann Appl Biol 159:118–129CrossRefGoogle Scholar
  62. Manzanilla-López RH, Esteves I, Finetti-Sialer MM, Hirsch PR, Ward E, Devonshire J, Hidalgo-Díaz L (2013) Pochonia chlamydosporia: advances and challenges to improve its performance as a biological control agent of sedentary endo-parasitic nematodes. J Nematol 45:1–7PubMedPubMedCentralGoogle Scholar
  63. Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 1:293–319Google Scholar
  64. Mo MH, Xu CK, Zhang KQ (2005) Effects of carbon and nitrogen sources, carbon-to-nitrogen ratio, and initial pH on the growth of nematophagous fungus Pochonia chlamydosporia in liquid culture. Mycopathologia 159:381–387CrossRefPubMedGoogle Scholar
  65. Monfort E, Lopez-Llorca LV, Jansson HB, Salinas J, Park JO, Sivasithamparam K (2005) Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaeumannomyces graminis var. tritici and development of root-rot. Soil Biol Biochem 37:1229–1235CrossRefGoogle Scholar
  66. Montes de Oca N (2004) Buenas prácticas de fabricación para la obtención de un bionematicida a partir de la cepa Vcc 108 de Pochonia chlamydosporia var. catenulata. Ph.D. thesis, Universidad Agraria de la Habana, Centro Nacional de Sanidad Agropecuaria, Havana, CubaGoogle Scholar
  67. Morton CO, Mauchline TH, Kerry BR, Hirsch PR (2003) PCR-based DNA fingerprinting indicates host-related genetic variation in the nematophagous fungus Pochonia chlamydosporia. Mycol Res 107:198–205CrossRefPubMedGoogle Scholar
  68. Muthulakshmi M, Kumar S, Subramanian S, Anita B (2012) Compatibility of Pochonia chlamydosporia with other biocontrol agents and carbofuran. J Biopestic 5(Suppl):243–245Google Scholar
  69. Nakasone KK, Peterson SW, Jong SC (2004) Preservation and distribution of fungal cultures. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi – inventory and monitoring methods. Elsevier, AmsterdamGoogle Scholar
  70. Niu XM, Wang YL, Chu YS, Xue HX, Li N, Wei LX, Mo MH, Zhang KQ (2010) Nematode toxic aurovertin-type metabolites from a root-knot nematode parasitic fungus Pochonia chlamydosporia. J Agric Food Chem 58:828–834CrossRefPubMedGoogle Scholar
  71. Pereg L, McMillan M (2015) Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biol Biochem 80:349–358CrossRefGoogle Scholar
  72. Pietrantonio L, Di Cillo P, Pignoli G, Torzi E, Rosso L, Ciancio A, Colagiero M (2013) Green technologies for sustainable management of field crops: use and potentialities of the fungus Pochonia chlamydosporia. Italian Forum on Industrial Biotechnology and Bioeconomy (IFIB), 22–23 October, NaplesGoogle Scholar
  73. Roberts EH, Ellis RH (1989) Water and seed survival. Ann Bot 63:39–52Google Scholar
  74. Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290PubMedPubMedCentralGoogle Scholar
  75. Rosso L, Ciancio A (2005) Indagini sulla specificità parassitaria di Pochonia chlamydosporia. Nematol Mediterr 33(Suppl):87–90Google Scholar
  76. Rosso LC, Ciancio A, Finetti-Sialer M (2007) Application of molecular methods for detection of Pochonia chlamydosporia from soil. Nematropica 37:1–8Google Scholar
  77. Rosso LC, Finetti-Sialer MM, Hirsch PR, Ciancio A, Kerry BR, Clark IM (2011) Transcriptome analysis shows differential gene expression in the saprotrophic to parasitic transition of Pochonia chlamydosporia. Appl Microbiol Biotechnol 90:1981–1994CrossRefPubMedGoogle Scholar
  78. Rosso LC, Pentimone I, Colagiero M, Ferrara M, Nigro F, Ciancio A (2013) Expression of Meloidogyne incognita resistance genes induced by endophytic Pochonia chlamydosporia in tomato. Nematropica 43:322Google Scholar
  79. Rosso LC, Colagiero M, Salatino N, Ciancio A (2014) Effect of trophic conditions on gene expression of Pochonia chlamydosporia. Ann Appl Biol 164:232–243CrossRefGoogle Scholar
  80. Segers R, Butt TM, Kerry BR, Beckett A, Peberdy JF (1996) The role of the proteinase VCP1 produced by the nematophagous Verticillium chlamydosporium in the infection process of nematode eggs. Mycol Res 100:421–428CrossRefGoogle Scholar
  81. Siddiqui IA, Atkins SD, Kerry BR (2009) Relationship between saprotrophic growth in soil of different biotypes of Pochonia chlamydosporia and the infection of nematode eggs. Ann Appl Biol 155:131–141CrossRefGoogle Scholar
  82. Silva AR, Araujo JV, Braga FR, Benjamim LA, Souza DL, Carvalho RO (2011) Comparative analysis of destruction of the infective forms of Trichuris trichiura and Haemonchus contortus by nematophagous fungi Pochonia chlamydosporia; Duddingtonia flagrans and Monacrosporium thaumasium by scanning electron microscopy. Vet Microbiol 147:214–219CrossRefPubMedGoogle Scholar
  83. Sleator RD, Shortall C, Hill C (2008) Metagenomics. Lett Appl Microbiol 47:361–366CrossRefPubMedGoogle Scholar
  84. St Leger RJ, Charnley AK, Cooper RM (1991) Kinetics of the digestion of insect cuticles by a protease (Pr1) from Metarhizium anisopliae. J Invertebr Pathol 57:146–147CrossRefGoogle Scholar
  85. Stadler M, Tichy HV, Katsiou E, Hellwig V (2003) Chemotaxonomy of Pochonia and other conidial fungi with Verticillium-like anamorphs. Mycol Prog 2:95–122CrossRefGoogle Scholar
  86. Taborsky V (1992) Small-scale processing of microbial pesticides. FAO agricultural services bulletin 96, RomeGoogle Scholar
  87. Thiel G, Al Sarraj J, Vinson C, Stefano L, Bach K (2005) Role of basic region leucine zipper transcription factors cyclic AMP response element binding protein (CREB), CREB2, activating transcription factor 2 and CAAT/enhancer binding protein α in cyclic AMP response element-mediated transcription. Neurochemistry 92:321–336CrossRefGoogle Scholar
  88. Tunlid A, Jansson S (1991) Proteases and their involvement in the infection and immobilization of nematodes by the nematophagous fungus Arthrobotrys oligospora. Appl Environ Microbiol 57:2868–2872PubMedPubMedCentralGoogle Scholar
  89. Usuki H, Toyo-oka M, Kanzaki H, Okuda T, Nitoda T (2009) Pochonicine, a polyhydroxylated pyrrolizidine alkaloid from fungus Pochonia suchlasporia var. suchlasporia TAMA 87 as a potent b-N-acetylglucosaminidase inhibitor. Bioorg Med Chem 17:7248–7253CrossRefPubMedGoogle Scholar
  90. Verdejo-Lucas S, Sorribas FJ, Ornat C, Galeano M (2003) Evaluating Pochonia chlamydosporia in a double-cropping system of lettuce and tomato in plastic houses infested with Meloidogyne javanica. Plant Pathol 52:521–528CrossRefGoogle Scholar
  91. Viaene NM, Abawi GS (2000) Hirsutella rhossiliensis and Verticillium chlamydosporium as biological control agents of Meloidogyne hapla on lettuce. J Nematol 32:85–100Google Scholar
  92. Vieira Dos Santos MC, Esteves I, Kerry B, Abrantes I (2013) Biology, growth parameters and enzymatic activity of Pochonia chlamydosporia isolated from potato cyst and root-knot nematodes. Nematology 15:493–504CrossRefGoogle Scholar
  93. Walker HL, Connick WJ (1983) Sodium alginate for production and formulation of mycoherbicides. Weed Sci 31:333–338Google Scholar
  94. Ward E, Kerry BR, Manzanilla Lopez RH, Mutua G, Devonshire J, Kimenju J, Hirsch PR (2012) The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and ph: implications for nematode biocontrol. PLoS One 7:e35657CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zare R, Gams W, Evans HC (2001) A revision of Verticillium section Prostrata V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia 73:51–86Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Aurelio Ciancio
    • 1
  • Mariantonietta Colagiero
    • 1
  • Isabella Pentimone
    • 1
  • Laura Cristina Rosso
    • 1
  1. 1.Istituto per la Protezione Sostenibile delle Piante (IPSP)Consiglio Nazionale delle RicercheLarino (CB)Italy

Personalised recommendations