Skip to main content

Role of Rhizosphere Microflora in Potassium Solubilization

  • Chapter
  • First Online:
Book cover Potassium Solubilizing Microorganisms for Sustainable Agriculture

Abstract

The K+ is not just the essential nutrient required to support optimal plant growth and yield, it is also an important signaling agent mediating a wide range of plant adaptive responses to abiotic and biotic stresses such as drought, salinity, oxidative stress, and apoptosis. The main source of K+ for plant is soil which is taken up by the plant roots through the epidermal and cortical cells and transported to the shoot and distributed to the leaves. Movement of K+ is facilitated by transport systems present in the cell membrane and the availability of which strongly determines crop yield. It is important to note that only a small percentage of the total K+ of the soil exists in a form available for plant uptake. The remainder is in complex with other elements and organic matter, making it unavailable and even intensive agricultural practices is adding to K+ deficiency in soil. It is already reported that large agricultural areas of world are deficient in K+ availability which is a major concern today. In this connection, efforts to understand the K+ uptake by plants and its solubilization from the K-bearing minerals such as waste muscovite, biotite, feldspars, orthoclase, illite, and mica have been undertaken. Recent investigations have shown that organic exudates of some microorganisms such as Pseudomonas spp., Burkholderia spp., Acidithiobacillus ferrooxidans, Bacillus mucilaginosus, B. edaphicus, B. megaterium, and Aspergillus spp., and even plant roots play a key role in releasing non-available K+ from the minerals. The list of rhizosphere microflora with potassium solubilization is increasing, and hence the present chapter discusses the mechanism of K+ solubilization and its role in signaling its uptake system in plants. Plant species effective in K+ uptake and K+-solubilizing microbial populations may be further key factors that control the K+ release from soil minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    Article  CAS  PubMed  Google Scholar 

  • Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 134:1135–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2009) Differential regulation of the HAK5 genes encoding the high-affinity K+ transporters of Thellungiella halophila and Arabidopsis thaliana. Environ Exp Bot 65:263–269

    Article  CAS  Google Scholar 

  • Amtmann A, Hammond JP, Armengaud P, White PJ, Callow JA (2006) Nutrient sensing and signalling in plants: potassium and phosphorus. Adv Bot Res (Academic Press, London) 43:209–257

    Google Scholar 

  • Andrist-Rangel Y, Hillier S, Öborn I, Lilly A, Towers W, Edwards AC, Paterson E (2010) Assessing potassium reserves in northern temperate grassland soils: a perspective based on quantitative mineralogical analysis and aqua-regia extractable potassium. Geoderma 158:303–314

    Article  CAS  Google Scholar 

  • Argelis DT, Gonzala DA, Vizcaino C, Gartia MT (1993) Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry 19:129–147

    Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 136:2556–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badar MA, Shafei AM, Sharaf El-Deen SH (2006) The dissolution of K and phosphorus bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agric Biol Sci 2:5–11

    Google Scholar 

  • Bajpai PD, Sundara R (1971) Phosphate solubilizing bacteria, solubilization of phosphate in liquid culture by selected bacteria as affected by different pH values. Soil Sci Plant Nutr 17:41–43

    Article  Google Scholar 

  • Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci U S A 96:3403–3411

    Article  Google Scholar 

  • Banik S, Dey BK (1982) Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate solubilizing microorganisms. Plant Soil 69:353–364

    Article  CAS  Google Scholar 

  • Barker WW, Welch SA, Banfield JF (1997) Biogeochemical weathering of silicate minerals. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals, vol 35. Minerological Society of America, Washington, DC, pp 391–428

    Google Scholar 

  • Barker WW, Welch SA, Chu S, Banfield J (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral 83:1551–1563

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Bennett PC, Choi WJ, Rogers JR (1998) Microbial destruction of feldspars. Miner Mag 8:149–150

    Article  Google Scholar 

  • Blum JD, Klaue A, Nezat CA, Driscoll CT, Johnson CE, Siccama TG, Eagar C, Fahey TJ, Likens GE (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417:729–731

    Article  CAS  PubMed  Google Scholar 

  • Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72:1258–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvaruso C, Mareschal L, Turpault MP, Leclerc E (2009) Rapid clay weathering in the rhizosphere of Norway spruce and oak in an acid forest ecosystem. Soil Sci Soc Am J 73:331–338

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chérel I, Michard E, Platet N, Mouline K, Alcon C, Sentenac H, Thibaud JB (2002) Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell 14:1133–1146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2005) Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol 52:153–162

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V (2014) Mechanisms and physiological roles of K+ efflux from root cells. J Plant Physiol 171:696–707

    Article  CAS  PubMed  Google Scholar 

  • Drogue B, Doré H, Borland S, Wisniewski-Dyé F, Prigent-Combaret C (2012) Which specificity in cooperation between phytostimulating rhizobacteria and plants. Res Microbiol 163:500–510

    Article  PubMed  Google Scholar 

  • Ekin Z (2010) Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower (Helianthus annuus L.) in the presence of phosphorus fertilizer. Afr J Biotechnol 9(25):3794–3800

    CAS  Google Scholar 

  • Eweda WE, Selim SM, Mostafa MI, Abd El-Fattah DA (2007) Use of Bacillus circulans as bio-accelerator enriching composted agricultural wastes identification and utilization of the microorganism for compost production. In: Proceedings of the 12th conference of the microbiology. The Egyptian Soc of App Micro (ESAM), Giza, pp 43–65

    Google Scholar 

  • Gholston LE, Hoover CD (1948) The release of exchangeable and nonexchangeable potassium from several Mississippi and Alabama soils upon continuous cropping. Soil Sci Soc Am Proc 13:116–121

    Article  Google Scholar 

  • Gierth M, Maser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glowa KR, Arocena JM, Massicotte HB (2003) Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiol J 20:99–111

    Article  CAS  Google Scholar 

  • Goldstein AH, Braverman K, Osorio N (1999) Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiol Ecol 30:295–300

    Article  CAS  PubMed  Google Scholar 

  • Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631

    Article  CAS  PubMed  Google Scholar 

  • Gundala PB, Chinthala P, Sreenivasulu B (2013) A new facultative alkaliphilic, potassium solubilizing, Bacillus Sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh, India. Res Rev: J Microbiol Biotechnol 2(1):1–7

    Google Scholar 

  • Hamamoto S, Uozumi N (2014) Organelle-localized potassium transport systems in plants. J Plant Physiol 171:743–747

    Article  CAS  PubMed  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Han HS, Supanjani E, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52(3):130–136

    CAS  Google Scholar 

  • Hernandez M, Fernandez-Garcia N, Garcia-Garma J, Rubio-Asensio JS, Rubio F, Olmos E (2012) Potassium starvation induces oxidative stress in Solanum lycopersicum L. roots. J Plant Physiol 169:1366–1374

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P, Jaillard B (1993) Root-induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of rye grass. J Soil Sci 44:525–534

    Article  CAS  Google Scholar 

  • Hinsinger P, Elsass F, Jaillard B, Robert M (1993) Root-induced irreversible transformation of a trioctahedral mica in the rhizosphere of rape. J Soil Sci 44:535–545

    Article  CAS  Google Scholar 

  • Honsbein A, Sokolovski S, Grefen C, Campanoni P, Pratelli R, Chen Z, Paneque-Corralles M, Johansson I, Blatt MR (2009) A tri-partite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis. Plant Cell 21:2859–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate and potassium solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990

    Article  CAS  Google Scholar 

  • Huang Z, He L, Sheng X, He Z (2013) Weathering of potash feldspar by Bacillus sp. L11. Wei Sheng Wu Xue Bao 53(11):1172–1178

    CAS  PubMed  Google Scholar 

  • Idris R, Trifinova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeschke D, Wolf O (1988) External potassium supply is not required for root growth in saline conditions: experiments with Ricinus communis L. grown in a reciprocal split-root system. J Exp Bot 39(9):1149–1167

    Article  CAS  Google Scholar 

  • Jorquera MA, Hernâandez MT, Rengel Z, Marschner P, Mora ML (2008) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, Krishnan HB (1998) Expression of genes from Rahnella aquatilis that are necessary for mineral phosphate solubilization in Escherichia coli. FEMS Microbiol Lett 159:121–127

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Ciani S, Schachtman DP (2010) A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol Plant 3:420–427

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy HA (1989) Effect of pesticides on phosphate solubilizing microorganisms, M.Sc. (Agri.) thesis. University of Agricultural Sciences, Dharwad

    Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9(1):715–724

    Google Scholar 

  • Lee SC, Lan WZ, Kim BG, Li L, Choeng YH, Pandey GK, Lu G, Buchanan B, Luan S (2007) A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci U S A 104:15959–15964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li FC, Li S, Yang YZ, Cheng LJ (2006) Advances in the study of weathering products of primary silicate minerals, exemplified by mica and feldspar. Acta Pet Mineral 25:440–448

    CAS  Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral Sin 22:179–183

    CAS  Google Scholar 

  • Lin Q, Rao Z, Sun Y, Yao J, Xing L (2002) Identification and practical application of silicate-dissolving bacteria. Agric Sci China 1:81–85

    Google Scholar 

  • Liu W, Xu X, Wu X, Yang Q, Luo Y, Christie P (2006) Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ Geochem Health 28:133–140

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Lian B, Wang B, Jiang G (2011) Degradation of potassium rock by earthworms and responses of bacterial communities in its gut and surrounding substrates after being fed with mineral. PLoS One 6(12):28803–28820

    Article  CAS  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29(5):413–421

    Article  CAS  Google Scholar 

  • Lucas RE, Davis JF (1961) Relationships between pH values of organic soils and availabilities of 12 plant nutrients. Soil Sci 92:177–182

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Mannisto MK, Haggblom MM (2006) Characterization of psychrotolerant heterotrophic bacteria from Finnish Lapland. Syst Appl Microbiol 29:229–243

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Cordero MA, Martínez V, Rubio F (2004) Cloning and functional characterization of the high-affinity K+ transporter HAK1 of pepper. Plant Mol Biol 56:413–421

    Article  PubMed  CAS  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1(1):53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol. doi:10.1016/j.bcab.2015.08.006

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015b) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Nieves-Cordones M, Martinez-Cordero MA, Martinez V, Rubio F (2007) An NH4 + sensitive component dominates high-affinity K+ uptake in tomato plants. Plant Sci 172:273–280

    Article  CAS  Google Scholar 

  • Nieves-Cordones M, Miller A, Alemán F, Martínez V, Rubio F (2008) A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5. Plant Mol Biol 68:521–532

    Article  CAS  PubMed  Google Scholar 

  • Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2014) K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J Plant Physiol 171:688–695

    Article  CAS  PubMed  Google Scholar 

  • Oborn I, Andrist-Rangel Y, Askegaard M, Grant CA, Watson CA, Edwards AC (2005) Critical aspects of potassium management in agricultural systems. Soil Use Manag 21:102–112

    Article  Google Scholar 

  • Pindi PK, Satyanarayana SDV (2012) Liquid microbial consortium a potential tool for sustainable soil health. J Biofertil Biopestici 3:124–133

    Google Scholar 

  • Puente ME, Bashan Y, Li CY, Lebsky VK (2004) Microbial populations and activities in the rhizoplane of rock weathering desert plants in root colonization and weathering of igneous rocks. Plant Biol 6:629–642

    Article  CAS  PubMed  Google Scholar 

  • Rajan SSS, Watkinson JH, Sinclair AG (1996) Phosphate rocks for direct application to soils. Adv Agron 57:77–159

    Article  CAS  Google Scholar 

  • Rajkumar M, Vara Prasad MN, Freitas H, Ae N (2009) Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit Rev Biotechnol 29(2):120–130

    Article  CAS  PubMed  Google Scholar 

  • Ranawat P, Kumar KM, Sharma NK (2009) A process for making slow-release phosphate fertilizer from low-grade rock phosphate and siliceous tailings by fusion with serpentinite. Curr Sci 96(6):843–848

    CAS  Google Scholar 

  • Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555

    Article  CAS  PubMed  Google Scholar 

  • Ruangsanka S (2014) Identification of phosphate-solubilizing bacteria from the bamboo rhizosphere. Sci Asia 40:204–211

    Article  CAS  Google Scholar 

  • Sabannavar SJ, Lakshman HC (2009) Effect of rock phosphate solubilization using mycorrhizal fungi and phosphobacteria on two high yielding varieties of Sesamum indicum L. World J Agric Sci 5(4):470–479

    CAS  Google Scholar 

  • Seneviratne G, Indrasena IK (2006) Nitrogen fixation in lichens is important for improved rock weathering. J Biosci 31:639–643

    Article  PubMed  Google Scholar 

  • Setiawati A, Handayanto E (2010) Role of phosphate solubilizing bacteria on availability phosphorus in oxisols and tracing of phosphate in corn by using 32P. In: 19th world congress of soil science, soil solutions for a changing world, Brisbane

    Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Huang WY (2002) Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol Sin 39:863–871

    CAS  Google Scholar 

  • Sheng XF, He LY, Huang WY (2002) The conditions of releasing potassium by a silicate-dissolving bacterial strain NBT. Agric Sci China 1:662–666

    Google Scholar 

  • Sheng XF, Xia JJ, Chen J (2003) Mutagenesis of the Bacillus edphicaus strain NBT and its effect on growth of chili and cotton. Agric Sci China 2:40–51

    Google Scholar 

  • Sheng XF, Zhao F, He LY, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral-solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54(12):1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci U S A 101:8827–8832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin R, Berg RH, Schachtman DP (2005) Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol 46:1350–1357

    Article  CAS  PubMed  Google Scholar 

  • Simonsson M, Andersson S, Andrist-Range Y, Hillier S, Mattsson L, Öborn I (2007) Potassium release and fixation as a function of fertilizer application rate and soil parent material. Geoderma 140:188–198

    Article  CAS  Google Scholar 

  • Sindhu SS, Dua S, Verma MK, Khandelwal A (2010) Growth promotion of legumes by inoculation of rhizosphere bacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer-Wien, New York, pp 195–235

    Chapter  Google Scholar 

  • Singh G, Biswas DR, Marwah TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.). J Plant Nutr 33:1236–1251

    Article  CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosys Environ 140:339–353

    Article  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99

    Google Scholar 

  • Sottocornola B, Visconti S, Orsi S, Gazzarrini S, Giacometti S, Olivari C, Camoni L, Aducci P, Marra M, Abenavoli A, Thiel G, Moroni A (2006) The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins. J Biol Chem 281:35735–35741

    Article  CAS  PubMed  Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. American Society of Agronomy, Madison, pp 201–276

    Google Scholar 

  • Sperberg JI (1958) The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Aust J Agric Res Econ 9:778

    Article  Google Scholar 

  • Sutter JU, Campanoni P, Tyrrell M, Blatt MR (2006) Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane. Plant Cell 18:935–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taha SM, Mahmod SAZ, Halim El-Damaty A, Hafez AM (1969) Activity of phosphate dissolving bacteria in Egyptian soils. Plant Soil 31:149–160

    Article  Google Scholar 

  • Teng H, Lian B (2007) Potassium solubilization in fungal degradation of aluminosilicate minerals. American Geophysical Union, Fall meeting 2007, abstract #B13C-1384

    Google Scholar 

  • Toro M, Azcon R, Barea J (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (sup32) P and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ullman WJ, Kirchman DL, Welch SA (1996) Laboratory evidence by microbiologically mediated silicate mineral dissolution in nature. Chem Geol 132:11–17

    Article  CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Frey Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17(8):378–387

    Article  CAS  PubMed  Google Scholar 

  • Vandevivere P, Welch SA, Ullman WJ, Kirchman DL (1994) Enhanced dissolution of silicate minerals by bacteria at near neutral pH. Microbiol Ecol 27:241–251

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    Article  CAS  PubMed  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Very A-A, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H (2014) Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? J Plant Physiol 171:748–769

    Article  CAS  PubMed  Google Scholar 

  • Vessey KJ (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci U S A 93:10510–10514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant Soil 218:249–256

    Article  CAS  Google Scholar 

  • Wang JG, Zhang FS, Cao YP, Zhang XL (2000) Effect of plant types on release of mineral potassium from gneiss. Nutr Cycl Agroecosyst 56:37–44

    Article  Google Scholar 

  • Wang Y-H, Garvin DF, Kochian LV (2002) Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere mediated signals. Plant Physiol 130:1361–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch SA, Ullman WJ (1999) The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5 and 35 °C. Geochem Cosmochim Acta 63:3247–3259

    Article  CAS  Google Scholar 

  • Wua SC, Cao ZH, Li ZG, Cheunga KC, Wonga MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xie JC (1998) Present situation and prospects for the world’s fertilizer use. Plant Nutr Fertil Sci 4:321–330

    Google Scholar 

  • Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347–1360

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Liu X, Zhu TH, Liu GH, Mao C (2012) Co-inoculation with phosphate-solubilizing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut. Eur J Soil Biol 50:112–117

    Article  CAS  Google Scholar 

  • Zakaria AAB (2009) Growth optimization of potassium solubilizing bacteria isolated from biofertilizer. Bachelor of Chem. Eng. (Biotech.), Fac. of Chem., Natural Resources Eng Univ, Malaysia Pahang p 40

    Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhang S, Zhou Z, Gong Q, Makielski JC, January CT (1999) Mechanism of block and identification of the verapamil binding domain to HERG potassium channels. Circ Res 84:989–998

    Article  CAS  PubMed  Google Scholar 

  • Zhao L-N, Shen L-K, Zhang W-Z, Zhang W, Wang Y, Wu W-H (2013) Ca2+ dependent protein kinase11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes. Plant Cell 25:649–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Raghavendra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Raghavendra, M.P., Chandra Nayaka, S., Nuthan, B.R. (2016). Role of Rhizosphere Microflora in Potassium Solubilization. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_4

Download citation

Publish with us

Policies and ethics