Skip to main content

Potassium Uptake by Crops as Well as Microorganisms

  • Chapter
  • First Online:

Abstract

Potassium (K) is one of the essential major plant nutrients. Its importance in agriculture has increased with intensive agriculture as well as deficiency occurring in crop plants. Global population is increasing at a quantum rate, which pushes the targeted yield to higher levels for mitigating the food demand of hungry mouths. Production of more food material from limited land is a challenge for the researcher and it aggravates nutrient deficiency, due to more uptake of plant nutrients, especially K, by high-yielding crop varieties. Among plant nutrients, deficiency of K limits the crop growth and reduces the crop yield. The source of K is native or via various replenishment paths, i.e. crop residue, microbial biomass and a range of waste materials. Researchers mentioning the wide gap between the addition of K and removal during crop production are highlighting the challenge to maintain a sustainable crop yield. The nutrient balance in the soil system is also affected by the quantity of nutrient that is taken up, raising nutrient storage in the soil–plant–microbe system, and how much is recycled by crop residues. The use of potassium-solubilizing microorganisms (KSMs) can increase the K level in the soil solution and ultimately increase plant growth and development. The main mechanisms of KSMs are acidolysis, chelation, exchange reactions, complexolysis and organic acid production in the soil. K fertilizers cost much more than other fertilizers, so use of KSMs in agricultural crop production can be a sustainable option for enhancing in situ K availability from the fixed sink of agricultural soils.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander M (1977) Introduction to soil microbiology, 1st edn. Wiley, New York

    Google Scholar 

  • Argelis DT, Gonzala DA, Vizcaino C, Gartia MT (1993) Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry 19:129–147

    Google Scholar 

  • Badar MA, Shafei AM, Sharaf El-Deen SH (2006) The dissolution of K and phosphorus bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agric Biol Sci 2:5–11

    Google Scholar 

  • Bajpai PD, Sundara R (1971) Phosphate solubilizing bacteria, solubilization of phosphate in liquid culture by selected bacteria as affected by different pH values. Soil Sci Plant Nutr 17:41–43

    Article  Google Scholar 

  • Banik S, Dey BK (1982) Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate solubilizing microorganisms. Plant Soil 69:353–364

    Article  CAS  Google Scholar 

  • Barker WW, Welch SA, Chu S, Banfield JF (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral 83:1551–1563

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilising microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2010) Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fert Soils. doi:10.1007/s00374-010-0456-x

    Google Scholar 

  • Beckett PHT (1964) The immediate O/I relations of labile potassium in the soil. J Soil Sci 15:9–23

    Article  CAS  Google Scholar 

  • Bennett PC, Choi WJ, Rogera JR (1998) Microbial destruction of feldspars. Mineral Manag 8(62A):149–150

    Article  Google Scholar 

  • Bennett PC, Rpgers JR, Choi WJ (2001) Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18:3–19

    Article  CAS  Google Scholar 

  • Berthelin J (1983) Microbial weathering processes. In: Krumbein WE (ed) Microbial geochemistry. Blackwell, Oxford, pp 223–262

    Google Scholar 

  • Bertsch PM, Thomas GW (1985) Potassium status of temperate region soils. In: Munson RD (ed) Potassium in agriculture. ASA, Madison, pp 131–162

    Google Scholar 

  • Brady NC (1990) The nature and properties of soils, 10th edn. Prentice Hall of India Pvt Ltd, New Delhi

    Google Scholar 

  • Calonego JC, Foloni JSS, Rosolem CA (2005) Lixiviac¸a˜o de pota’ssio da palha de plantas de cobertura em diferentes esta’dios de senesceˆncia apo’s a dessecac¸a˜o quı’mica. Rev Bras Cienc Solo 29:99–108. doi:10.1590/S0100-06832005000100011

    Article  CAS  Google Scholar 

  • Claassen N (1990) Naehrstoffaufnahme hoeherer Pflanzen aus dem Boden. Ergebnis von Verfuegbarkeit und Aneignungsvermoegen. Habilitationsschrift, Severin Verlag, Goettingen

    Google Scholar 

  • Denoroy P, Dubrulle P, Villette C, Colomb B, Fayet G, Schoeser M, Marin-Laflèche A, Pellerin F, Pellerin S, Boiffin J (2004) REGIFERT: Interpréter les résultats des analyses de terre. INRA, Paris

    Google Scholar 

  • Diep CN, Hieu TN (2013) Phosphate and potassium solubilizing bacteria from weathered materials of denatured rock mountain, Ha Tien, Kiên Giang province Vietnam. Am J Life Sci 1(3):88–92

    Article  CAS  Google Scholar 

  • Dotaniya ML, Meena VD (2013) Rhizosphere effect on nutrient availability in soil and its uptake by plants -A review. Proc Natl Acad Sci India Sec B: Biol Sci 85(1):1–12. doi:10.1007/s40011-013-0297-0

    Article  Google Scholar 

  • Dotaniya ML, Sharma MM, Kumar K, Singh PP (2013) Impact of crop residue management on nutrient balance in rice–wheat cropping system in an Aquic hapludoll. J Rural Agric Res 13(1):122–123

    Google Scholar 

  • Foloni JSS, Tiritan CS, Calonego JC, Alves Junior J (2008) Aplicacaodefosfato natural e reciclagem de fo’sforo por milheto, braquia’ria, milho e soja. Rev Bras Cienc Solo 32:1147–1155. doi:10.1590/S0100-06832008000300023

    Article  CAS  Google Scholar 

  • Friedrich S, Platonova NP, Karavaiko GI, Stichel E, Glombitza F (1991) Chemical and microbiological solubilization of silicates. Acta Biotechnol 11:187–196

    Article  CAS  Google Scholar 

  • Garcia RA, Crusciol CAC, Calonego JC, Rosolem CA (2008) Potassium cycling in a corn-brachiaria cropping system. Eur J Agron 28:579–585. doi:10.1016/j.eja.2008.01.002

    Article  CAS  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1(2):176–180

    Google Scholar 

  • Han HS, Supanjani E, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52(3):130–136

    CAS  Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990

    Article  CAS  Google Scholar 

  • Huang WH, Keller WD (1972) Organic acids as agents of chemical weathering of silicate minerals. Nature (Physical Sci) 239:149–151

    Article  CAS  Google Scholar 

  • Kloepper JW, Zablowicz RM, Tipping EM, Lifshitz R (1991) Plant growth mediated by bacterial rhizosphere colonizers. In: Keister DL, Gregan B (eds) The rhizosphere and plant growth. Kluwer Academic Publishing, Dordrecht, pp 315–326

    Google Scholar 

  • Krishnamurthy HA (1989) Effect of pesticides on phosphate solubilizing microorganisms, M.Sc. (Agric.) thesis, University of Agricultural Sciences, Dharwad

    Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth–promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9(1):715–724

    Google Scholar 

  • Leyval C, Berthelin J (1989) Interaction between Laccaria laccata, Agrobacterium radiobacter and beech roots: influence on P, K, Mg and Fe mobilization from minerals and plant growth. Plant Soil 117:103–110

    Article  CAS  Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potas-sium release by silicate bacteria. Acta Mineral Sin 22:179

    CAS  Google Scholar 

  • Lin QM, Rao ZH, Sun YX, Yao J, Xing LJ (2002) Identification and practical application of silicate-dissolving bacteria. Agric Sci China 1:81–85

    Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29(5):413–421

    Article  CAS  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013) Influence of K- solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1(1):53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol. doi:10.1016/j.bcab.2015.08.006

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015a) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meyer D, Jungk A (1993) A new approach to quantify the utilization of non-exchangeable soil potassium by plants. Plant Soil 149:235–243

    Article  CAS  Google Scholar 

  • Mikhailouskaya N, Tchernysh A (2005) K – mobilizing bacteria and their effect on wheat yield. Latv J Agron 8:147–150

    Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3(1):25–31

    Google Scholar 

  • Rao AS, Brar MS (2002) Essential nutrients and their uptake by plants. Fundamental of Soil Science, ISSS, New Delhi, pp 368–380

    Google Scholar 

  • Romheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180

    Article  Google Scholar 

  • Rosolem CA (1982) Soybean mineral nutrition and fertilization, 2nd edn. Instituto Internacional da Potassa e Instituto da Potassae Fosfato, Piracicaba

    Google Scholar 

  • Rosolem CA, Sgariboldi T, Garcia RA, Calonego JC (2010) Potassium leaching as affected by soil texture and residual fertilization in tropical soils. Commun Soil Sci Plant Anal 41(16):1934–1943. doi:10.1080/00103624.2010.495804

    Article  CAS  Google Scholar 

  • Rosolem CA, Calonego JC, Foloni JSS, Garcia RA (2007) Pota’ssio lixiviado da palha de aveia-preta e milheto apo’s adessecac¸a˜o quı’mica. Pesqui Agrop Bras 42:1169–1175. doi:10.1590/S0100-204X2007000800 014

    Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wildtype strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Xia JJ, Chen J (2003) Mutagenesis of the Bacillus edphicaus strain NBT and its effect on growth of chili and cotton. Agric Sci China 2:40–41

    Google Scholar 

  • Simonsson M, Andersson S, Andrist-Rangel Y, Hillier S, Mattsson L, ÖOborn I (2007) Potassium release and fixation as a function of fertilizer application rate and soil parent material. Geoderma 140:188–198

    Article  CAS  Google Scholar 

  • Singh RB, Paroda RS (1994) Sustainability and productivity of rice–wheat systems in Asia-Pacific region: research and technology development needs. In: Paroda RS, Woodhead T, Singh RB (eds) Sustainability of rice–wheat production systems in Asia. FAO, Bangkok, pp 1–35

    Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99

    Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. Wisc, ASA, Madison, pp 201–276

    Google Scholar 

  • Sperberg JI (1958) The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Aust J Agric Res Econ 9:778

    Article  Google Scholar 

  • Taha SM, Mahmod SAZ, Halim El-Damaty A, Hafez AM (1969) Activity of phosphate dissolving bacteria in Egyptian soils. Plant Soil 31:149–160

    Article  Google Scholar 

  • Tandon HLS (1991) Sulphur research and agriculture production in India. The Sulphur Institute, Washington, DC, pp 6–17

    Google Scholar 

  • Tiwari KN (2000) Potash in Indian farming. Potash & Phosphate Institute of Canada - India Programme, Gurgaon, p 48

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Williams SM, Weil RR (2004) Crop cover root channels mayalleviate soil compaction effects on soybean crop. Soil Sci Soc Am J 68:1403–1409. doi:10.2136/sssaj2004.1403

    Article  CAS  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trail. Geoderma 125:155–166

    Article  Google Scholar 

  • Xue-Zhiyong (1996) Effect of silicate bacterium on release of potassium in different soils and on increase yield of sweet potato. Soil Fertil 1:26–28

    Google Scholar 

  • Yadav RL, Prasad K, Gangwar KS (1998) Analysis of eco-regional production constraints in rice-wheat cropping system. PDCSR Bulletin No. 98-2. Project Directorate for Cropping Systems Research, Modipuram, India, pp 68

    Google Scholar 

  • Yadav RL, Singh SR, Prasad K, Dwivedi BS, Batta RK, Singh AK, Patil NG, Chaudhary SK (2000) Management of irrigated ecosystem. In: Yadav JSP, Singh GB (eds) Natural resource management for agricultural production in India. Indian Society of Soil Science, New Delhi, pp 775–870

    Google Scholar 

  • Zhang Z, Liao L, Xia Z (2010) Ultrasound-assisted preparation and characterization of anionic surfactant modified montmorillonites. Appl Clay Sci 50:576–581

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to Dr. Kuldeep Kumar, Scientist, ICAR-Indian Institute of Soil and Water Conservation Research and Training, Dehradun, India, for help during the writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Dotaniya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Dotaniya, M.L., Meena, V.D., Basak, B.B., Meena, R.S. (2016). Potassium Uptake by Crops as Well as Microorganisms. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_19

Download citation

Publish with us

Policies and ethics