Skip to main content

Mechanism of Potassium Solubilization in the Agricultural Soils by the Help of Soil Microorganisms

  • Chapter
  • First Online:
Potassium Solubilizing Microorganisms for Sustainable Agriculture

Abstract

Potassium (K) is an essential macronutrient, largely required for normal functioning of plants; however, its solubilization is an important detriment for limiting agricultural productivity. This happens mainly because of insoluble forms of K, i.e. silicate minerals are present in the earth’s crust. These minerals gradually dissolute K through different weathering processes. However, the use of certain microbes can assist the solubilization of K in addition to physical and chemical weathering of K minerals. These microorganisms, particularly bacteria, convert insoluble form of K to soluble forms, viz. acidification, chelation and exchange reactions. In this chapter, efforts are made to describe the possible ways of K release by the microbes. In addition, potential of different microbial species is summarized. Moreover, suggestions are provided for the sustainable plant production. In this way, the substantial decrease in the cost of commercial fertilizers could be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleksandrov VG, Blagodyr RN, Ilev IP (1967) Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiol Z (Kiev) 29:111–114

    CAS  Google Scholar 

  • AnschĂ¼tz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol 171:670–687

    Article  PubMed  Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. BIOINFOLET-A Q J Life Sci 10:248–257

    Google Scholar 

  • Asher CJ, Ozanne PG (1967) Growth and potassium content of plants in solution cultures maintained at constant potassium concentrations. Soil Sci 103:155–161

    Article  CAS  Google Scholar 

  • Avakyan ZA (1984) Silicon compounds in solution bacteria quartz degradation. Microbiology 54:301–307

    Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfalfa soils. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I (2014) The twins K+ and Na+ in plants. J Plant Physiol 171:723–732

    Article  CAS  PubMed  Google Scholar 

  • Ben-Zioni A, Vaadia Y, Lips SH (1971) Nitrate uptake by roots as regulated by nitrate reduction products of the shoot. Physiol Plant 24:288–290

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (2007) The nature and properties of soils, 14th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Broadley MR, White PJ (2005) Plant nutritional genomics. Blackwell Publishing CRC Press, Oxford

    Google Scholar 

  • Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bio-weathering and biotransformation of rocks and minerals. Miner Mag 67:1127–1155

    Article  CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994a) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J Exp Bot 45:1251–1257

    Article  CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994b) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250

    Article  CAS  Google Scholar 

  • Cheeseman JM, Hanson JB (1979) Mathematical analysis of the dependence of cell potential on external potassium in corn roots. Plant Physiol 63:1–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher-plants. Annu Rev Plant Physiol Plant Mol Biol 31:239–298

    Article  CAS  Google Scholar 

  • De-Villiers JM, Jackson ML (1967) CEC variations with pH in soil clays. Soil Sci Soc Am Proc 31:473–476

    Article  CAS  Google Scholar 

  • Dietrich P, Sanders D, Hedrich R (2001) The role of ion channels in light-dependent stomatal opening. J Exp Bot 52:1959–1967

    Article  CAS  PubMed  Google Scholar 

  • Dolan L, Davies J (2004) Cell expansion in roots. Curr Opin Plant Biol 7:33–39

    Article  CAS  PubMed  Google Scholar 

  • El-Fattah DAA, Wedad EE, Mona SZ, Mosaad KH (2013) Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculant. Ann Agric Sci 58:111–118

    Google Scholar 

  • Friedrich S, Platonova NP, Karavaiko GI (1991) Chemical and microbiological solubilization of silicates. Acta Biotechnol 3:187–196

    Article  Google Scholar 

  • Gadd GM (1999) Fungal production of citric acid and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microbiol Physiol 41:47–92

    Article  CAS  Google Scholar 

  • Gadd GM (2001) Metal transformations. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, UK, pp 359–382

    Chapter  Google Scholar 

  • Gadd GM, Sayer JA (2000) Fungal transformation of metals and metalloids. In: Lovley DR (ed) Environmental microbe-metal interactions. American Society for Microbiology, Washington, DC, pp 237–256

    Chapter  Google Scholar 

  • Gaur AC (1990) Phosphate solubilizing microorganisms as biofertilizers. Omega Scientific Publisher, New Delhi

    Google Scholar 

  • Gillman GP, Burkett DC, Coventry RJ (2002) Amending highly weathered soils with finely ground basalt rock. Geochemistry 17:987–1001

    Article  CAS  Google Scholar 

  • Glowa KR, Arocena JM, Massicotte HB (2003) Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiol J 20:99–111

    Article  CAS  Google Scholar 

  • Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Gu JD, Ford TE, Berke NS, Mitchell R (1998) Biodeterioration of concrete by the fungus Fusarium. Int Biodet Biodeg 41:101–109

    Article  Google Scholar 

  • Han HS, Lee DK (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agr Biol Sci 1:176–180

    Google Scholar 

  • Harley AD, Gilkes RJ (2000) Factors influencing the release of plant nutrients from silicate rock powders: a geochemical overview. Nutr Cycl Agroecosys 56:11–36

    Article  CAS  Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate and potassium-solubilizing bacteria isolated from Tianmu mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990

    Article  CAS  Google Scholar 

  • Kalinowski BE, Schweda P (1996) Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1–4, room temperature. Geochim Cosmochim Acta 60:367–385

    Article  CAS  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  • Kukreja K, Suneja S, Goyal S, Narula N (2004) Phytohormone production by Azotobacter: a review. Agric Rev 25:70–75

    Google Scholar 

  • Kumar R, Kumar AW (1999) Biodeterioration of stone in tropical environments: an overview. The J. Paul Getty Trust, Los Angeles

    Google Scholar 

  • Kumar V, Singh KP (2001) Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria. Bioresour Tech 76:173–175

    Article  CAS  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9(1):715–724

    Google Scholar 

  • Lian B (1998) A study on how silicate bacteria GY92 dissolve potassium from illite. Acta Mineral Sin 18:234–238

    CAS  Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potassium releasing by silicate bacteria. Acta Mineral Sin 22:179–183

    CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • Lindsay WL (1979) Soil chemical equilibria. Wiley, New York

    Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Lopes-Assad ML, Rosa MM, Erler G, Ceccato-Antonini SR (2006) SolubilizaĂ§Ă£o de pĂ³-de-rocha por Aspergillus niger. Espaço e Geografia 9:1–16

    Google Scholar 

  • Manning DAC (2010) Mineral sources of potassium for plant nutrition: a review. Agron Sust Develop 30:282–294

    Article  Google Scholar 

  • Marschner P (2011) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, London

    Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1(1):53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does rhizospheric microorganism enhance K+ availability in agricultural soils? Can J Microbiol 52:66–72

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014c) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4(4):806–811. doi:10.1016/j.bcab.2015.08.006

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015b) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Mouline K, Very AA, Gaymard F, Boucherez J, Pilot G, Devic M, Bouchez D, Thibaud JB, Sentenac H (2002) Pollen tube development and competitive ability are impaired by disruption of a shaker K(+) channel in Arabidopsis. Genes Dev 16:339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muentz A (1890) Sur la decomposition des roches etla formation de la terre arable. CR Acad Sci 110:1370–1372

    Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Rich CI, Black WR (1964) Potassium exchange as affected by cation size, pH, and mineral structure. Soil Sci 97:382–390

    Article  Google Scholar 

  • Rosa-Magri MM, Avansini SH, Lopes-Assad ML, Tauk-Tornisielo SM, Sandra Regina Ceccato-Antonini SR (2012) Release of potassium from rock powder by the yeast Torulaspora globosa. Braz Arch Biol Technol 55:577–582

    Article  Google Scholar 

  • Scheffer F, Schachtschabel P (1989) Lehrbuch der Bodenkunde. 12 Ferdinand Enke Verl Stuttgart, Germany

    Google Scholar 

  • Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant 15:257–279

    Article  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Huang WY (2002) Study on the conditions of potassium release by strain NBT of silicate bacteria. Sci Agric Sinica 35:673–677

    CAS  Google Scholar 

  • Sheng XF, Xia JJ, Chen J (2003) Mutagenesis of the Bacillus edphicaus strain NBT and its effect on growth of chili and cotton. Agric Sci China 2:40–41

    Google Scholar 

  • Shin R, Adams E (2014) Transport, signalling and homeostasis of potassium and sodium in plants. J Integ Plant Biol 56:231–249

    Article  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99

    Google Scholar 

  • Song SK, Huang PM (1988) Dynamics of potassium release from potassium-bearing minerals as influenced by oxalic and citric acids. Soil Sci Soc Am J 52:383–390

    Article  CAS  Google Scholar 

  • Sparks DL (1989) Kinetics of soil chemical processes. Academic, San Diego, CA

    Google Scholar 

  • Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol J 17:97–124

    Article  CAS  Google Scholar 

  • Styriakova I, Styriak I, Hradil D, Bezdicka P (2003) The release of iron bearing minerals and dissolution of feldspar by heterotrophic bacteria of Bacillus species. Ceram-Silikaty 47:20–26

    CAS  Google Scholar 

  • Suelter CH (1970) Enzymes activated by monovalent cations. Science 168:789–795

    Article  CAS  PubMed  Google Scholar 

  • Tan KZ, Radziah O, Halimi MS, Khairuddin AR, Habib SH, Shamsuddin ZH (2014) Isolation and characterization of rhizobia and plant growth promoting rhizobacteria and their effects on the growth of rice seedlings. Am J Agric Biol Sci 9:342–360

    Article  Google Scholar 

  • Thompson ML, Ukrainczyk L (2002) Micas. In: Dixon JB, Schulze DG (eds) Soil mineralogy with environmental applications, Book Series No. 7. Soil Science Society of America, Madison, pp. 431–466

    Google Scholar 

  • Ullaman WJ, Kirchman DL, Welch WA, Vandevivere P (1996) Laboratory evidence by microbially mediated silicate mineral dissolution in nature. Chem Geol 132:11–17

    Article  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valmorbida J, Boaro CSF (2007) Growth and development of Mentha piperita L. in nutrient solution as affected by rates of potassium. Braz Arch Biol Technol 50:379–384

    Article  CAS  Google Scholar 

  • van Straaten P (2007) Agrogeology, the use of rocks for crops. Enviroquest Ltd, Cambridge/Ontario

    Google Scholar 

  • Vaughan DJ, Pattrick RAD, Wogelius RA (2002) Minerals metals and molecules: ore and environmental mineralogy in the new millennium. Miner Mag 66:653–676

    Article  CAS  Google Scholar 

  • Weed SB, Davey CB, Cook MG (1969) Weathering of mica by fungi. Soil Sci Soc Am J 33:702–706

    Article  CAS  Google Scholar 

  • Welch SA, Barker WW, Barfield JF (1999) Microbial extracellular polysaccharides and plagioclase dissolution. Geochim Cosmochim Acta 63:1405–1419

    Article  CAS  Google Scholar 

  • Wood LK, de Turk EE (1941) Absorption of potassium in soils in non-replaceable forms. Soil Sci Soc Am Proc 5:152–161

    Article  Google Scholar 

  • York ET, Bradfield R, Peech M (1953a) Calcium- potassium interactions in soils and plants. I: lime-induced potassium fixation in Mardin silt loam. Soil Sci 76:379–387

    Article  CAS  Google Scholar 

  • York ET, Bradfield R, Peech M (1953b) Calcium- potassium interactions in soils and plants. II: reciprocal relationship between calcium and potassium in plants. Soil Sci 76:481–191

    Article  CAS  Google Scholar 

  • Yuan L, Fang DH, Wang ZH, Shun H, Huang JG (2000) Bio-mobilization of potassium from clay minerals: I by ectomycorrhizas. Pedosphere 10:339–346

    Google Scholar 

  • Yuan L, Huang JG, Li XL, Christie P (2004) Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots. Plant Soil 262:351–361

    Article  CAS  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghari Bano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Masood, S., Bano, A. (2016). Mechanism of Potassium Solubilization in the Agricultural Soils by the Help of Soil Microorganisms. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_10

Download citation

Publish with us

Policies and ethics