Skip to main content

Potential Role of Xylose Transporters in Industrial Yeast for Bioethanol Production: A Perspective Review

  • Conference paper
  • First Online:
  • 810 Accesses

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

Sustainable development in lignocellulosic bioethanol production has major challenge due to high cost of production. There are several issues such as efficient utilization of pentose sugars present in lignocelluloses, economical production of lignocellulolytic enzymes with high specificity and economical product recovery, etc. In line, genetically modified yeast strains have been approached to utilize pentose and hexose sugars for bioethanol production. However, these strains showed limited xylose consumption. For efficient utilization of xylose, it is necessary to provide efficient molecular transportation of xylose to the yeast cells. The yeast strains which have been found prominent are Saccharomyces cerevisiae, Candida intermedia, C. tropicalis, Kluyveromyces marxianus and Scheffersomyces stipitis which have been engineered and examined for xylose transporter genes for xylose utilization. Several transporter genes of interest have been targeted; however, there are major bottleneck in this approach such as xylose transporters which are significantly inhibited by glucose and other hexose sugars. Hence, there are several molecular approaches that have been applied to engineer the yeasts which could improve the xylose transportation. This review has been focused to discuss the molecular advancements in xylose transporter genes and its complexity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barnett JA (2008) A history of research on yeasts 13 active transport and the uptake of various metabolites. Yeast 25(10):689–731

    Article  Google Scholar 

  • Behera S, Arora R, Sharma NK, Kumar S (2014b) Fermentation of glucose and xylose sugar for the production of ethanol and xylitol by the newly isolated NIRE-GX1 yeast. Recent Advances in Bio-energy Research, SSS-NIRE, Chapter 16, pp. 175–182

    Google Scholar 

  • Behera S, Arora R, Nandhagopal N, Kumar S (2014a) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energy Rev 36:91–106

    Article  Google Scholar 

  • Boles E, André B (2014) Role of transporter-like sensors in glucose and amino acid signalling in yeast. Molecular mechanisms controlling transmembrane transport. Top Curr Genet 9:155–178

    Article  Google Scholar 

  • Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21(1):85–111

    Article  Google Scholar 

  • Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1983) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol 18:287–292

    Article  Google Scholar 

  • Büttner M (2007) The monosaccharide transporter(-like) gene family in Arabidopsis. FEBS Lett. 581:2318–2324

    Google Scholar 

  • Cirillo VP, Wilkins PO, Anton J (1963) Sugar transport in a psychrophilie yeast. J Baeteriol 86(6):1259–1264

    Google Scholar 

  • Cirillo VP (1961) Sugar transport in microorganisms. Annual Rev Mierobiol 15:197–218

    Article  Google Scholar 

  • Does AL, Bisson LF (1989) Characterization of Xylose Uptake in the Yeasts Pichia heedii and Pichia stipitis. Appl Environ Microbiol 55(1):159–164

    Google Scholar 

  • Du J, Li S, Zhao H (2010) Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol BioSyst 6(11):2150–2156

    Article  Google Scholar 

  • Du Preez JC, Bosch M, Prior BA (1986) The fermentation of hexose and pentose sugars by Candida shehatae and Pichia stipitis. AppI Microbiol Biotechnol 23:228–233

    Article  Google Scholar 

  • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386

    Article  Google Scholar 

  • Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E (2014) Engineering of yeast hexose transporters to transport d-xylose without inhibition by d-glucose. PNAS 111(14):5159–5164

    Google Scholar 

  • Gamo FJ, Moreno E, Lagunas R (1995) The low-affinity component of the glucose transport system in Saccharomyces cerevisiae is not due to passive diffusion. Yeast 11:1393–1398

    Google Scholar 

  • Hahn-Hägerdal B, Jeppsson H, Skoog K, Prior B (1994) Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb Technol 16:933–943

    Article  Google Scholar 

  • Hamacher T, Becker J, Gardony M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148:2783–2788

    Article  Google Scholar 

  • Hector RE, Qureshi N, Hughes SR, Cotta MA (2008) Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 80(4):675–684

    Article  Google Scholar 

  • Jansen ML, De Winde JH, Pronk JT (2002) Hxt-carrier-mediated glucose efflux upon exposure of Saccharomyces cerevisiae to excess maltose. Appl Environ Microbiol 68(9):4259–4265

    Article  Google Scholar 

  • Jeffries TW (1983) Utilization of xylose by bacteria, yeasts and fungi. Adv Biochem Eng Biotech 27:1–31

    MathSciNet  Google Scholar 

  • Kruckeberg AL, Bisson LF (1990) The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport. Mol Cell Biol 10(11):5903–5913

    Article  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  Google Scholar 

  • Leandro MJ, Spencer-Martins I, Goncalves P (2008) The expression in Saccharomyces cerevisiae of a glucose/xylose symporter from Candida intermedia is affected by the presence of a glucose/xylose facilitator. Microbiology 154:1646–1655

    Article  Google Scholar 

  • Leandro MJ, Goncalves P, Spencer-Martins I (2006) Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H + symporter. Biochem J 395(3):543–549

    Article  Google Scholar 

  • Lee YY, Lin CM, Johnson T, Chambers RP (1979) Selective hydrolysis of hardwood hemicellulose by acids. Biotechnol Bioeng Symp 8:75–88

    Google Scholar 

  • Maier A, Volker B, Boles E, Fuhrmann GF (2002) Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res 2:539–550(2002)

    Google Scholar 

  • Maleszka R, Schneider H (1982) Fermentation of D-xylose, xylitol and D-xylulose by yeasts. Can J Microbiol 28:360–363

    Article  Google Scholar 

  • Naftalin RJ (2008) Alternating carrier models of asymmetric glucose transport violate the energy conservation laws. Biophys J 95(9):4300–4314

    Article  Google Scholar 

  • Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72(3):379–412

    Article  Google Scholar 

  • Nijland JG, Shin HY, de Jong RM, de Waal PP, Klaassen P, Driessen AJ (2014) Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae. Biotechnol Biofuels 7(1):168

    Google Scholar 

  • Nobre A, Lucas C, Leão C (1999) Transport and utilization of hexoses and pentose in the halotolerant yeast Debaryomyces hansenii. Appl Environ Microbiol 65(8):3594

    Google Scholar 

  • Prior BA, Kilian SG, du Preez JC (1989) Fermentation of D-xylose by the yeasts Candida shehatae and Pichia stipitis. Process Biochem 89:21–32  

    Google Scholar 

  • Reifenberger E, Boles E, Ciriacy M (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245:324–333

    Google Scholar 

  • Rodrigues AA, Morais JM, Lopes MA (1992) Effects of acetic acid on the temperature range of ethanol tolerance in Candida she hate growing on D-xylose. Biotechnol Lett 14:1181–1186

    Article  Google Scholar 

  • Rydholm SA (1965) Pulping processing. Interscience Publishers, Inc., New York, pp 95–98

    Google Scholar 

  • Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttila M, Ruohonen L (2007) Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol 74:1041–1052

    Article  Google Scholar 

  • Sedlak M, Ho NW (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during gluco se and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21:671–684

    Google Scholar 

  • Sharma NK, Behera S, Arora R, Kumar S (2016) Enhancement in xylose utilization using Kluyveromyces marxianus NIRE-K1 through evolutionary adaptation approach. Bioprocess Biosyst Eng 1–9

    Google Scholar 

  • Sharma NK, Behera S, Kumar S (2014) Genetic modification for simultaneous utilization of glucose and xylose by yeast. In: Kumar S, Sarma AK, Tyagi SK, Yadav YK (eds) Recent advances in bioenergy research, vol III. SSS-NIRE, Kapurthala, India. pp 194–207

    Google Scholar 

  • Singh A, Mishra P (1995) Microbial pentose utilization: current applications in biotechnology. Elsevier Science Ltd, ISBN: 0444820396

    Google Scholar 

  • Singla A, Paroda S, Dhamija SS, Goyal S, Shekhawat K, Amachi S, Inubushi K (2012) Bioethanol production from xylose: problems and possibilities. J Biofuels 3(1):39–49

    Article  Google Scholar 

  • Skoog K, Hahn-Hägerdal B (1988) Xylose fermentation. Enzyme Microb Technol 10:1–15

    Article  Google Scholar 

  • Solomon BD (2012) Biofuels and sustainability. Ann N Y Acad Sci 1185:119–134

    Article  Google Scholar 

  • Spencer-Martins I (1994) Transport of sugars in yeasts: implications in the fermentation of lignocellulosic materials. Bioresour Tech 50:51–57

    Google Scholar 

  • Stambuk BU, Franden MA, Singh A, Zhang M (2003) D-Xylose transport by Candida succiphila and Kluyveromyces marxianus. Appl Biochem Biotechnol Spring 105–108:255–263

    Article  Google Scholar 

  • Teusink B, Diderich JA, Westerhoff HV, Dam KV, Walsh MC (1998) Intracellular glucose concentration in derepressed yeast cells consuming glucose is high enough to reduce the glucose transport rate by 50 %. J Bacteriol 180(3):556–562

    Google Scholar 

  • Toivari MH, Salusjärvi L, Ruohonen L, Penttilä M (2004) Endogenous xylose pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 70(6):3681–3686

    Article  Google Scholar 

  • Truernit E, Stadler R, Baier K, Sauer N (1999) A male gametophyte-specific monosaccharide transporter in Arabidopsis. Plant J. 17:191–201

    Article  Google Scholar 

  • Walker GM (1998) Yeast physiology and biotechnology. John Wiley & Sons Ltd

    Google Scholar 

  • Walker GM, White NA (2011) Introduction to fungal physiology, in fungi: biology and applications. In: Kavanagh K (ed), Wiley, Ltd, Chichester, UK

    Google Scholar 

  • Wang X, Jin M, Balan V, Jones AD, Li X, Li BZ, Dale BE, Yuan YJ (2014) Comparative metabolic profiling revealed limitations in xylose-fermenting yeast during co-fermentation of glucose and xylose in the presence of inhibitors. Biotechnol Bioeng 111(1):152–164

    Article  Google Scholar 

  • Wenzl HF (1970) The chemical technology of wood. Academic Press, New York and London, pp 119–123

    Google Scholar 

  • Weusthuis RA, Pronk JT, van den Broek PJ, van Dijken JP (1994) Chemostat cultivation as a tool for studies on sugar transport in yeasts. Microbiol Rev 58:616–630

    Google Scholar 

  • Wolf K, Tanner W, Sauer N (1991) The Chlorella H +/hexose cotransporter gene. Curr Genet 19(3):215–219

    Article  Google Scholar 

  • Young E, Poucher A, Comer A, Bailey A, Alper H (2011) Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl Environ Microbiol 77(10):3311–3319

    Article  Google Scholar 

  • Young EM, Tong A, Bui H, Spofford C, Alper HS (2014) Rewiring yeast sugar transporter preference through modifying a conserved protein motif. PNAS 111(1):131–136

    Article  Google Scholar 

Download references

Acknowledgments

Authors are very much thankful to Ministry of New and Renewable Energy, New Delhi, Govt. of India for the financial support and providing all research facilities to carry out research work. One of the authors (Nilesh Kumar Sharma) also acknowledges Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala for providing Junior Research Fellowship and I. K. Gujral Punjab Technical University, Jalandhar for his Ph.D. registration (Pro. reg. 1422002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Sharma, N.K., Shuvashish Behera, Richa Arora, Kumar, S. (2016). Potential Role of Xylose Transporters in Industrial Yeast for Bioethanol Production: A Perspective Review. In: Kumar, S., Khanal, S., Yadav, Y. (eds) Proceedings of the First International Conference on Recent Advances in Bioenergy Research. Springer Proceedings in Energy. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2773-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2773-1_6

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2771-7

  • Online ISBN: 978-81-322-2773-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics