UV Signal Transduction for Countering Deleterious Effects of UV Radiation in Plant

  • Swati Sen Mandi


UV radiation, causes direct damage to macromolecules while at low intensity (resulting from transmission through aerosol/cloud cover) induces signal transduction mediated epigenetic upregulation of appropriate genes for synthesis of UV protective compounds/enzymes that collectively confer UV acclimation processes in plants. These secondary metabolites are specifically synthesized in plants through need based molecular rearrangements between primary and secondary metabolism enabled by the unique fearture of cellular plasticity in plants. For exerting the epigenetic effect of low dose UV radiation at a distance, i.e. from the site of perception, viz. the outer layer of epidermal cell to the genome, fluencing UV radiation takes recourse to the process of signal transduction either by UV induced damaged DNA or by wavelength specific photoreceptors. In plants, high intensity UV-induced damaged DNA, being recognized by orthologs of ATR and ATM proteins acting as sensor of DNA breaks (SSB and DSB), serves as signaling molecule for upregulation of DNA repair enzymes. In this signaling process, damaged DNA-induced cell cycle arrest allows time for DNA repair. UVR8 on perception of low-dose UV radiation (particularly UV-B) upregulates many genes related to the secondary metabolite pathways for synthesis of phenolics viz. flavonoids that, on accumulation (ununiformly) along inner surface of mesophyll cell, restrain (partially) UV entry into cells thereby conferring UV acclimation under high intensity UV radiation in plants. Other photoreceptors specifically associated with UV-A, viz., cryptochrome, phototropins, and members of the Zeitlupe family are also known in plants. The UV-A-related photoreceptors also function for the blue light region. UVR8 photoreceptor that is generally known to be associated with UV-B recently has been reported to be associated also with UV-A. Combined activities of photoreceptors enable plants to detect and respond to the presence, absence, intensity, as well as directionality and diurnal duration of impinging UV radiation.

In addition to specific photoreceptor mediated signaling, for upregulating cell protective events, mechanisms for nonspecific signaling mediated by a range of reactive oxygen species (ROS) also exist in cells. UV-induced ROS in addition to causing oxidative damages to macromolecules induces upregulation of UV protective genes and often downregulation of UV responsive damaging genes to cope with the adverse effect of UV radiation. Thus through cell signaling mechanisms plants acclimatize to UV environment and flourish in spite of the deleterious effect of UV radiation.


Specific Photoreceptor Sunburn Cell Uvr8 Mutant Ensure Plant Survival Phytochrome Signal Transduction Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. A-H-Mackerness S (2000) Plant responses to UV-B (UV-B: 280–320 nm) stress: what are the key regulators? Plant Growth Regul 32:27–39CrossRefGoogle Scholar
  2. A-H-Mackerness S, John CF, Jordan B, Thomas B (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242PubMedCrossRefGoogle Scholar
  3. Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166PubMedCrossRefGoogle Scholar
  4. Ahmad M, Cashmore AR (1996) Seeing blue: the discovery of cryptochrome. Plant Mol Biol 30:851–861PubMedCrossRefGoogle Scholar
  5. Ahmad M, Lin C, Cashmore AR (1995) Mutations through-out an Arabidopsis blue-light photoreceptor impair blue-light- responsive anthocyanin accumulation and inhibition of hypocotyl extension. Plant J 8:853–6513CrossRefGoogle Scholar
  6. Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998) The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol Cell 1:939–948PubMedCrossRefGoogle Scholar
  7. Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng XW (1998) Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell 1(2):213–222PubMedCrossRefGoogle Scholar
  8. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefGoogle Scholar
  9. Ballaré CL, Barnes PW, Kendrick RE (1991) Photomorphogenic effects of UV-B radiation on hypocotyl elongation in wild type and stable-phytochrome-deficient mutant seedlings of cucumber. Physiol Plant 83:652–658CrossRefGoogle Scholar
  10. Baudry A, Ito S, Song YH, Strait AA, Kiba T, Lu S et al (2010) F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22:606–622PubMedPubMedCentralCrossRefGoogle Scholar
  11. Beggs CJ, Wellmann E (1994) Photocontrol of flavonoid biosynthesis. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants, 2nd edn. Kluwer Academic Publishers, Dordrecht, pp 733–751CrossRefGoogle Scholar
  12. Boccalandro H, Mazza C, Mazzella M, Casal J, Ballaré C (2001) Ultraviolet-B radiation enhances a phytochrome-B-mediated photomorphogenic response in Arabidopsis. Plant Physiol 126:780–788PubMedPubMedCentralCrossRefGoogle Scholar
  13. Boccalandro HE, Rossi MC, Saijo Y, Deng XW, Casal JJ (2004) Promotion of photomorphogenesis by COP1. Plant Mol Biol 56:905–915PubMedCrossRefGoogle Scholar
  14. Bornman JF, Reuber S, Cen YP, Weissenbock G (1997) Ultraviolet radiation as a stress factor and the role of protective pigments. In: Lumsden P (ed) Plants and UV-B: responses to environmental change. Cambridge University Press, Cambridge, pp 156–168Google Scholar
  15. Briggs WR, Huala E (1999) Blue-light photoreceptors in higher plants. Annu Rev Cell Dev Biol 15:33–62PubMedCrossRefGoogle Scholar
  16. Briggs WR, Lino M (1983) Blue-light-absorbing photoreceptors in plants. Philos Trans R Soc Lond B Biol Sci 303:347–359CrossRefGoogle Scholar
  17. Brosche M, Strid A (2003) Molecular events following perception of ultraviolet-B radiation by plants. Physiol Plant 117:1–10CrossRefGoogle Scholar
  18. Brown BA, Jenkins GI (2008) UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol 146:576–588PubMedPubMedCentralCrossRefGoogle Scholar
  19. Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P et al (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci U S A 102:18225–18230PubMedPubMedCentralCrossRefGoogle Scholar
  20. Casal J (2000) Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem Photobiol 71:1–11PubMedCrossRefGoogle Scholar
  21. Cashmore AR, Jarillo JA, Wu Y-J, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765PubMedCrossRefGoogle Scholar
  22. Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117PubMedCrossRefGoogle Scholar
  23. Christie JM (2007) Steric interactions stabilize the signaling state of the LOV2 domain of phototropin 1. Biochemistry 46:9310–9319PubMedCrossRefGoogle Scholar
  24. Christie JM, Jenkins GI (1996) Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells. Plant Cell 8:1555–1567PubMedPubMedCentralCrossRefGoogle Scholar
  25. Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O’Hara A, Kelly SM, Hothorn M, Smith BO, Hitomi K et al (2012a) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492–1496PubMedPubMedCentralCrossRefGoogle Scholar
  26. Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, Kelly SM, Hothorn M, Smith BO, Hitomi K, Jenkins GI, Getzoff ED (2012b) Plant UVR8 Photoreceptor senses UV-B by Tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492–1496PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cloix C, Jenkins GI (2008) Interaction of the Arabidopsis UV-B-specific signaling component UVR8 with chromatin. Mol Plant 1:118–128PubMedCrossRefGoogle Scholar
  28. Cloix C, Kaiserli E, Heilmann M, Baxter KJ, Brown BA, O’Hara A, Smith BO, Christie JM, Jenkins GI (2012) C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein. Proc Natl Acad Sci U S A 109:16366–16370PubMedPubMedCentralCrossRefGoogle Scholar
  29. Close DC, McArthur C (2002) Rethinking the role of many plant phenolics – protection from photodamage not herbivores? Oikos 99:166–172CrossRefGoogle Scholar
  30. Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci U S A 93:9970–9974PubMedPubMedCentralCrossRefGoogle Scholar
  31. Culligan K, Tissier A, Britt A (2004) ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana. Plant Cell 16(5):1091–1104PubMedPubMedCentralCrossRefGoogle Scholar
  32. Culligan KM, Robertson CE, Foreman J, Doerner P, Britt AB (2006) ATR and ATM play both distinct and additive roles in response to ionizing radiation. Plant J 48(6):947–961PubMedCrossRefGoogle Scholar
  33. Dalton TP, Shertzer HG, Puga A (1999) Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39:67–101PubMedCrossRefGoogle Scholar
  34. Demarsy E, Fankhauser C (2009) Higher plants use LOV to perceive blue light. Curr Opin Plant Biol 12:69–74PubMedCrossRefGoogle Scholar
  35. Desikan R, Neill SJ, Hancock JT (2000) Hydrogen peroxide-induced gene expression in Arabidopsis thaliana. Free Rad Biol Med 28:773–778PubMedCrossRefGoogle Scholar
  36. Desikan R, A-H Mackerness S, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172PubMedPubMedCentralCrossRefGoogle Scholar
  37. Ehmann B, Ocker B, Schäfer E (1991) Development- and light-dependent regulation of the expression of two different chalcone synthase transcripts in mustard cotyledons. Planta 183:416–422PubMedCrossRefGoogle Scholar
  38. Eller MS, Gilchrest BA (2000) Tanning as part of the eukaryotic SOS response. Pigment Cell Res 13:94–97PubMedCrossRefGoogle Scholar
  39. Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins GI, Oakeley EA et al (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28:591–601PubMedPubMedCentralCrossRefGoogle Scholar
  40. Feinbaum R, Storz G, Ausubel F (1991) High intensity and blue-light regulated expression of chimeric chalcone synthase genes in transgenic Arabidopsis thaliana plants. Mol Gen Gent 226:449–456Google Scholar
  41. Fornara F, Panigrahi KC, Gissot L, Sauerbrunn N, Ruhl M, Jarillo JA et al (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev C 17:75CrossRefGoogle Scholar
  42. Foyera CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364CrossRefGoogle Scholar
  43. Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428PubMedPubMedCentralCrossRefGoogle Scholar
  44. Frohnmeyer H, Ehmann B, Kretsch T, Rocholl M, Harter K, Nagatani A, Furuya M, Batschauer A, Hahlbrock K, Schäfer E (1992) Differential usage of photoreceptors for chalcone synthase gene expression during plant development. Plant J 2:899–906CrossRefGoogle Scholar
  45. Frohnmeyer H, Loyall L, Blatt MR, Grabov A (1999) Millisecond UV-B radiation evokes prolonged elevation of cytosolic-free Ca2_ and stimulates gene expression in transgenic parsley cell cultures. Plant J 20:109–118PubMedCrossRefGoogle Scholar
  46. Fuglevand G, Jackson JA, Jenkins GI (1996) UV-B, UV-A, and blue light signal transduction pathways interact synergistically to regulate chalcone synthase gene expression in Arabidopsis. Plant Cell 8(12):2347–2357PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gao Q, Zhang LX (2008) Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol 165:138–148PubMedCrossRefGoogle Scholar
  48. Gardner G, Lin C, Tobin EM, Loehrer H, Brinkman D (2009) Photobiological properties of the inhibition of etiolated Arabidopsis seedling growth by ultraviolet-B radiation. Plant Cell Environ 32:1573–1583PubMedCrossRefGoogle Scholar
  49. Gilchrest BA, Eller MS (1999) DNA photodamage stimulates melanogenesis and other photoprotective responses. J Investig Dermatol Symp Proc 4:35–40PubMedCrossRefGoogle Scholar
  50. González Besteiro MA, Bartels S, Albert A, Ulm R (2011) Arabidopsis MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 photoreceptor pathway. Plant J 68:727–737PubMedCrossRefGoogle Scholar
  51. Grubera H, Heijdea M, Hellerc W, Albertd A, Seidlitzd HK, Ulma R (2010) Negative feedback regulation of UV-B–induced photomorphogenesis and stress acclimation in Arabidopsis. Proc Natl Acad Sci U S A 107(46):20132–20137CrossRefGoogle Scholar
  52. Gyula P, Schafer E, Nagy F (2003) Light perception and signalling in higher plants. Curr Opin Plant Biol 6(5):446–452PubMedCrossRefGoogle Scholar
  53. Harter K, Frohnmeyer H, Kircher S, Kunkel T, Muhlbauer S, Schäfer E (1994a) Light induces rapid changes of the phosphorylation pattern in the cytosol of evacuolated parsley protoplasts. Proc Natl Acad Sci U S A 91:5038–5048PubMedPubMedCentralCrossRefGoogle Scholar
  54. Harter K, Kircher S, Frohnmeyer H, Krenz M, Nagy F, Schäfer E (1994b) Light-regulated modification and nuclear translocation of cytosolic G-box binding factors in parsley. Plant Cell 6:545–559PubMedPubMedCentralCrossRefGoogle Scholar
  55. Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signaling in plants. Trends Plant Sci 17:230–237PubMedCrossRefGoogle Scholar
  56. Heijde M, Ulm R (2013) Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc Natl Acad Sci U S A 110(3):1113–1118PubMedCrossRefGoogle Scholar
  57. Holley SR, Yalamanchili RD, Moura DS, Ryan CA, Stratmann JW (2003) Convergence of signaling pathways induced by systemin, oligosaccharide elicitors, and ultraviolet-B radiation at the level of mitogen-activated protein kinases in Lycopersicon peruvianum suspension-cultured cells. Plant Physiol 132:1728–1738PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hutchinson F (1987) A review of some topics concerning mutagenesis by ultraviolet light. Photochem Photobiol 45:897–903PubMedCrossRefGoogle Scholar
  59. Ikeuchi M, Ishizuka T (2008) Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria. Photochem Photobiol Sci 7:1159–1167PubMedCrossRefGoogle Scholar
  60. Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA (2003) FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426:302–306PubMedCrossRefGoogle Scholar
  61. Ito S, Song YH, Imaizumi T (2012) LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol Plant 5:573–582PubMedCrossRefGoogle Scholar
  62. Jackson JA, Jenkins GI (1995) Extension growth responses and expression of flavonoid biosynthesis genes in the Arabidopsis hy4 mutant. Planta 197:233–239PubMedCrossRefGoogle Scholar
  63. Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Ann Rev Plant Biol 60:407–431CrossRefGoogle Scholar
  64. Jenkins GI, Christie JM, Fuglwand G, Long JC, Jackson JA (1995) Plant responses to UV and blue light: biochemical and genetic approaches. Plant Sci 112:117–138CrossRefGoogle Scholar
  65. Jenkins GI, Long JC, Wade HK, Shenton MR, Bibikova TN (2001) UV and blue light signalling: pathways regulating chalcone synthase gene expression in Arabidopsis. New Phytol 151:121–131CrossRefGoogle Scholar
  66. Jiang L, Wang Y, Björn LO, Li SS (2009) Arabidopsis RADICAL-INDUCED CELL DEATH1 is involved in UV-B signaling. Photochem Photobiol Sci 8:838–846PubMedCrossRefGoogle Scholar
  67. Jiang L, Wang Y, Li QF, Björn LO, He JX, Li SS (2012) Arabidopsis STO/BBX24 negatively regulates UV-B signaling by interacting with COP1 and repressing HY5 transcriptional activity. Cell Res 22:1046–1057PubMedPubMedCentralCrossRefGoogle Scholar
  68. Jordan BR (1996) The effects of ultraviolet-B radiation on plants: a molecular perspective. Adv Bot Res 22:98–138Google Scholar
  69. Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141PubMedCrossRefGoogle Scholar
  70. Kaiser T, Emmler K, Kretsch T, Weisshaar B, Schäfer F, Batschauer A (1995) Promoter elements of the mustard CHSI gene are sufficient for light-regulation in transgenic plants. Plant Mol Biol 28:219–229PubMedCrossRefGoogle Scholar
  71. Kaiserli E, Jenkins GI (2007) UV-B promotes rapid nuclear translocation of the UV-B-specific signaling component UVR8 and activates its function in the nucleus. Plant Cell 19:2662–2673PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kendrick RE, Kronenberg GHM (1994) Photomorphogenesis in plants, 2nd edn. Kluwer, DordrechtCrossRefGoogle Scholar
  73. Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D et al (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci U S A 97:8849–8855PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kliebenstein DJ, Lim JE, Landry LG, Last RL (2002) Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation. Plant Physiol 130:234–243PubMedPubMedCentralCrossRefGoogle Scholar
  75. Koornneef M, Rolff E, Spruit CJP (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z Pflanzenphysiol 100:147–160CrossRefGoogle Scholar
  76. Kubasek WL, Shirley BW, Mckillop A, Goodman HM, Briggs W, Ausubel FM (1992) Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell 4(10):1229–1236PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lang-Mladek C, Xie L, Nigam N, Chumak N, Binkert M, Neubert S et al (2012) UV-B signaling pathways and fluence rate dependent transcriptional regulation of ARIADNE12. Physiol Plant 145:527–539PubMedCrossRefGoogle Scholar
  78. Lee J, He K, Stole V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao HY, Lee I, Deng X (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lin C, Robertson DE, Ahmad M, Raibekas AA, Jorns MS, Dutton PL, Cashmore AR (1995a) Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRYI. Science 269:968–970PubMedCrossRefGoogle Scholar
  80. Lin C, Ahmad M, Gordon D, Cashmore AR (1995b) Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A and green light. Proc Natl Acad Sci U S A 92:8423–8427PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lin C, Ahmad M, Cashmore AR (1996) Arabidopsis cryptochrome is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant J 10:893–902PubMedCrossRefGoogle Scholar
  82. Mackerness S, John CF, Jordan BR, Thomas B (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242CrossRefGoogle Scholar
  83. Malhotra K, Kim ST, Batschauer A, Dawut L, Sancar A (1995) Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high-degree of sequence homology to DNA photolyase contain the 2 photolyase cofactors but lack DNA repair activity. Biochemistry 34:6892–6899PubMedCrossRefGoogle Scholar
  84. McKenzie RL, Björn LO, Bais A, Ilyas M (2003) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Photochem Photobiol Sci 2:5–15PubMedCrossRefGoogle Scholar
  85. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498PubMedCrossRefGoogle Scholar
  86. Montgomery BL (2007) Sensing the light: photoreceptive systems and signal transduction in cyanobacteria. Mol Microbiol 64:16–27PubMedCrossRefGoogle Scholar
  87. Morales LO, Tegelberg R, Brosché M, Keinänen M, Lindfors A, Aphalo PJ (2010) Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. Tree Physiol 30:923–934PubMedCrossRefGoogle Scholar
  88. Morales LO, Tegelberg R, Brosché M, Lindfors A, Siipola S, Aphalo PJ (2011) Temporal variation in epidermal flavonoids due to altered solar UV radiation is moderated by the leaf position in Betula pendula. Physiol Plant 143:261–270PubMedCrossRefGoogle Scholar
  89. Morales LO, Brosché M, Vainonen J, Jenkins GI, Wargent JJ, Sipari N, Strid Å, Lindfors AV, Tegelberg R, Aphalo PJ (2013) Multiple roles for UV RESISTANCE LOCUS 8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar UV radiation. Plant Physiol 161(2):744–759PubMedCrossRefGoogle Scholar
  90. Moseyko N, Zhu T, Chang HS, Wang X, Feldman LJ (2002) Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiol 130:720–728PubMedPubMedCentralCrossRefGoogle Scholar
  91. Mullineaux CW (2001) How do cyanobacteria sense and respond to light? Mol Microbiol 41:965–971PubMedCrossRefGoogle Scholar
  92. Nawkar GM, Maibam P, Park JH, Sahi VP, Lee SY, Kang CH (2013) UV-induced cell death in plants. Int J Mol Sci 14(1):1608–1628PubMedPubMedCentralCrossRefGoogle Scholar
  93. Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitrogen oxide as signaling molecules in plants. J Exp Bot 53:1237–1247PubMedCrossRefGoogle Scholar
  94. Oravecz A, Baumann A, Mảte Z, Brzezinska A, Monlinier J et al (2006) Constitutively photomorphogenic1 is required for the UV-B response in Arabidopsis. Plant Cell 18:1975–1990PubMedPubMedCentralCrossRefGoogle Scholar
  95. Rice-Evans CA, Miller NJ, Papanga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159CrossRefGoogle Scholar
  96. Rizzini L, Favory J-J, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106PubMedCrossRefGoogle Scholar
  97. Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci U S A 98:6969–6974PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85PubMedCrossRefGoogle Scholar
  99. Schafer E, Kunkel T, Frohnmeyer H (1997) Signal transduction in the photocontrol of Chalcone synthase gene expression. Plant Cell Environ 20(6):722–727CrossRefGoogle Scholar
  100. Short TW, Briggs WR (1994) The transduction of blue light signals in higher plants. Annu Rev Plant Physiol Plant Mol Biol 45:143–171CrossRefGoogle Scholar
  101. Smith H (2000) Phytochromes and light signal perception by plants? An emerging synthesis. Nature 407:585–591PubMedCrossRefGoogle Scholar
  102. Somers DE, Fujiwara S (2009) Thinking outside the F-box: novel ligands for novel receptors. Trend Plant Sci 14:206–213CrossRefGoogle Scholar
  103. Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101:319–329PubMedCrossRefGoogle Scholar
  104. Stracke R, Favory JJ, Gruber H, Bartelniewoehner L, Bartels S, Binkert M, Funk M, Weisshaar B, Ulm R (2010) The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ 33:88–103PubMedGoogle Scholar
  105. Stratmann J (2003) Ultraviolet-B radiation co-opts defense signaling pathways. Trends Plant Sci 8:526–533PubMedCrossRefGoogle Scholar
  106. Suetsugu N, Wada M (2013) Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles: phototropin, ZTL/FKF1/LKP2 and ureochrome. Plant Cell Physiol 54:8–23PubMedCrossRefGoogle Scholar
  107. Surplus SL, Jordan BR, Murphy AM, Carr JP, Thomas B, A-H-Mackerness S (1998) Ultraviolet-B induced responses in Arabidopsis thaliana: role of salicylic acid and ROS in the regulation of transcripts and acidic PR proteins. Plant Cell Environ 21:685–694CrossRefGoogle Scholar
  108. Takase T, Nishiyama Y, Tanihigashi H, Ogura Y, Miyazaki Y, Yamada Y et al (2011) LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J 67:608–621PubMedCrossRefGoogle Scholar
  109. Tevini M, Teramura AH (1989) UV-B effects on terrestrial plants. Photochem Photobiol 50:479–487CrossRefGoogle Scholar
  110. Ulm R, Nagy F (2005) Signalling and gene regulation in response to UV light. Curr Opin Plant Biol 8:477–482PubMedCrossRefGoogle Scholar
  111. Ulm R, Baumann A, Oravecz A, Máté Z, Adám E, Oakeley EJ, Schäfer E, Nagy F (2002) Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc Natl Acad Sci U S A 101:1397–1402CrossRefGoogle Scholar
  112. Wargent JJ, Moore JP, Roland Ennos A, Paul ND (2009) Ultraviolet radiation as a limiting factor in leaf expansion and development. Photochem Photobiol 85:279–286PubMedCrossRefGoogle Scholar
  113. Weißhaar B, Block A, Armstrong G, Herrmann A, Schulze-Lefert P, Hahlbrock K (1991) Regulatory elements required for light-mediated expression of the Petroselinum crispum chalcone synthase gene. EMBO J 10:1777–1786PubMedPubMedCentralGoogle Scholar
  114. Wellmann E (1976) Specific ultraviolet effects in plant morphogenesis. Photochem Photobiol 24:659–660PubMedCrossRefGoogle Scholar
  115. Wu M, Grahn E, Eriksson LA, Strid Å (2011) Computational evidence for the role of Arabidopsis thaliana UVR8 as UV-B photoreceptor and identification of its chromophore amino acids. J Chem Inf Model 51:1287–1295PubMedCrossRefGoogle Scholar
  116. Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Yang P, Deng H, Wang J et al (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484:214–219PubMedCrossRefGoogle Scholar
  117. Zhou B, Li Y, Xu Z, Yan H, Homma S, Kawabata S (2007) Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (Brassica rapa). J Exp Bot 58:1771–1781PubMedCrossRefGoogle Scholar

Copyright information

© Springer (India) Pvt. Ltd. 2016

Authors and Affiliations

  • Swati Sen Mandi
    • 1
  1. 1.Division of Plant BiologyBose InstituteKolkataIndia

Personalised recommendations