Skip to main content
  • 402 Accesses

Abstract

Of the two fractions of solar UV radiation present in earth’s atmosphere, UV-B with its high energy corresponding to its short wavelength is known to be “most hazardous” with UV-A of longer wavelength and consequent lower energy of impact constituting the apparently innocuous fraction; since the 1990s, however UV-A also has been recognized as a harmful component of UV radiation although functioning by different mode of action (compared to UV-B). With an increase in fluence of UV radiation, as a consequence of stratospheric ozone thinning and associated detection of ‘ozone hole’ during the later part of the last century, studies on damaging effect of UV on life forms have drawn greater attention than before- the primary focus being on plants, the primary producers on earth, that due to their stationary life style prevail under the brunt of enhancing UV radiation. While early studies on UV damaging effects vis-a`-vis survival of life forms on earth have often been conducted in closed chamber, such studies do not provide realistic understanding since closed chamber environment lack a) interaction between UV and other wave bands including the Photosynthetically Active Radiation (PAR) b) quality and intensity of natural UV radiation that remain unrepresented in artificial UV lamps. This establishes that for developing an understanding on effects of UV on plants, manifested as resultant of damage countered by repair/UV acclimation process in plants. For determining survival potential in plants thus it is important to undertake studies in open field under conditions of natural balance between UV-B/UV-A and photosynthetically active radiation (PAR). Such studies conducted under weather variations and also at different (latitude/altitude) locations that provide natural variation of UV fluence would provide useful experimental data for developing comprehensive understanding on UV intensity-related survival of life forms on earth. Difference in UV fluence at different altitudes/latitudes as well as intensity/dose variation at different times of the day and under variation of weather/aerosol/cloud cover evoke characteristic biological impacts.

UV-B is directly absorbed by cellular chromophores such as DNA, proteins (containing aromatic amino acids), and phospholipids. DNA, being the major target of UV radiation, incurs direct strand breaks, both double and single stranded breaks (DSB and SSB) as a result of phosphodiester bond breakage between adjacent nucleotides. In addition to DNA strand breaks, UV induced covalent linkage formation of double bonds between adjacent pyrimidine bases leads to formation of photodimers that constitute major DNA lesions; different types of photodimers produced include cyclobutane pyrimidine dimer (CPD) and 6-4 pyrimidine-pyrimidone dimer (6-4PP). DNA damages are particularly hazardous since this causes disruption in the cell cycle process which, if not repaired in time, would lead to programmed cell death/apoptosis. UV-B radiation causes photolysis of proteins through disruption of tertiary structure either directly (by UV-B) or through UV-induced (both UV-B and UV-A) ROS. Lipids are also affected by UV radiation as unsaturated fatty acids of plant cell membrane (target of UV radiation) undergo peroxidation that leads to breakdown of membrane structure and function. Indirect effect of UV radiation is mediated by a range of (nonspecific) reactive oxygen species (ROS), viz., H2O2, OH, O2 , and singlet oxygen (1O2); of these, singlet oxygen is the major UV-A-induced ROS that is involved in UV-A-mediated cell inactivation.

ROS are formed (a) directly by energy transfer from UV radiation via photosensitizers such as riboflavin, tryptophan, pterin, and other small molecules and also (b) indirectly as a by-product of electron transport chain in mitochondria, chloroplasts, and other organelles. ROS produced in the organelles are released into the cytoplasm through UV-induced damage of the organellar membranes; these are referred to as “unaccounted” ROS that together with other ROS in the cytoplasm constitute a population of nonspecific ROS functioning in several ROS-mediated cellular activities. UV-B damages cell membranes by photo absorption-mediated peroxidation of unsaturated fatty acids that bring about variation in membrane lipid composition. Photosynthesis, the most important plant physiological process, is also adversely affected by UV radiation that affects both the photosystems (PSI and PSII) as well as the main enzyme of carbon fixation, i.e., Rubisco. Such cell molecular damages caused by UV radiation adversely affects growth, development, and general morphology of plants, thereby adversely affecting productivity by affecting photosynthesis of sensitive plants. In addition to plants, UV damaging effects have also been recorded in animal system, especially humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Adrain C, Martin SJ (2001) The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci 26:390–397

    Article  CAS  PubMed  Google Scholar 

  • Agnez-Lima LF, Melo JT, Silva AE, Oliveira AH, Timoteo AR, Lima-Bessa KM, Martinez GR, Medeiros MH, Di Mascio P, Galhardo RS, Menck CF (2012) DNA damage by singlet oxygen and cellular protective mechanisms. Mutat Res/Rev Mutat Res 751(1):15–28

    Article  CAS  Google Scholar 

  • Agrawal SB, Rathore D (2007) Changes in oxidative stress defense in wheat (Triticum aestivum L.) and mung bean (Vigna radiata L.) cultivars grown with or without mineral nutrients and irradiated by supplemental ultraviolet-B. Environ Exp Bot 59:21–22

    Article  CAS  Google Scholar 

  • A-H-Mackerness S, John CF, Jordan B, Thomas B (2001) Early signaling components in ultraviolet-B responses:distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Jarillo JA, Klimczak LJ, Landry LG, Peng T, Last RL, Cashmore AR (1997) An enzyme similar to animal type II photolyases mediates Photoreactivation in Arabidopsis. Plant Cell 9:199–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ajavon AN, Albritton DL, Watson RT (2007) Scientific assessment of ozone depletion: 2006, Rep. 50, Global Ozone Res. and Monitoring Project, World Meteorological Organisation, Geneva

    Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100(2):224–233

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmund CB, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  • Baier MC, Barsch A, Kuster H, Hohnjec N (2007) Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome. Plant Physiol 145:1600–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balakrishnan V, Ravindran KC, Venkatesan K, Karuppusamy S (2005) Effect of UV-B supplemental radiation on growth and biochemical characteristics in Crotalaria juncea L. seedlings. Electr J Environ Agric Food Chem 4:1125–1131

    CAS  Google Scholar 

  • Ballaré CL, Barnes WP, Kandrick RE (1991) Photomorphogenetic effect of UV-B radiation on hypocotyls elongation in wild type and stable-phytochrome-deficient mutant seedlings of cucumber. Physiol Plant 83:651–658

    Article  Google Scholar 

  • Banath JP, Olive PL (2003) Expression of phosphorylated histone H2AX as a surrogate of cell killing by drugs that create DNA double-strand breaks. Cancer Res 63:4347–4350

    CAS  PubMed  Google Scholar 

  • Bartholic JF, Halsey LH, Garrard LA (1975) Field trials with filters to test for effects of UV radiation on agricultural productivity. In: Nachtwey DS, Caldwell MM, Biggs RH (eds) Climatic Impact Assessment Program (CLAP), Monograph 5, Part l – Ultraviolet Radiation Effects, US Dept Transp., Report No. DOT-TST-75-55. (PB-247-725), National Technical lnformation Service. Springfield, Virginia, pp 4–61, 4–71 (Appendix A fluence is higher)

    Google Scholar 

  • Basiouny FM, Van TK, Biggs RH (1978) Some morphological and biochemical characteristics of C3 and C4 plants irradiated with UV-B. Physiol Plant 42(1):29–32

    Article  CAS  Google Scholar 

  • Basu-Modak S, Tyrrell RM (1993) Singlet oxygen: a primary effector in the ultraviolet A/near-visible light induction of the human heme oxygenase gene. Cancer Res 53:4505–4510

    CAS  PubMed  Google Scholar 

  • Battag PR, Brennan TM (2000) Differential effects of short-term exposure to UV-B radiation upon photosynthesis in cotyledons of a resistant and a susceptible species. Int J Plant Sci 161:771–778

    Article  Google Scholar 

  • Beak SM, Lee YS, Kim JA (2004) NADPH oxidase and cyclooxygenase mediate the ultraviolet B-induced generation of reactive oxygen species and activation of nuclear factor-kappaB in HaCaT human keratinocytes. Biochimie 86:425–429

    Article  CAS  PubMed  Google Scholar 

  • Beggs C, Wellmann E, Grisebach H (1986) Photocontrol of flavonoid synthesis. In: Kendsrick RE, Kronenberg G (eds) Photomorphogenesis in plants. Nijhoff/W. Junk Publishers, Dordrecht, pp 467–499

    Chapter  Google Scholar 

  • Bent DV, Hayon E (1975a) Excited-state chemistry of aromatic amino-acids and related peptides. I. tyrosine. J Am Chem Soc 97(10):2599–2606, ISSN (Print): 0002-7863

    Article  CAS  PubMed  Google Scholar 

  • Bent DV, Hayon E (1975b) Excited-state chemistry of aromatic amino-acids and related peptides. II. phenylalanine. J Am Chem Soc 97(10):2606–2612, ISSN(Print): 0002-7863

    Article  CAS  PubMed  Google Scholar 

  • Bent DV, Hayon E (1975c) Excited-state chemistry of aromatic amino-acids and related peptides. III. tryptophan. J Am Chem Soc 97(10):2612–2619

    Article  CAS  PubMed  Google Scholar 

  • Berkelsar EJ, Ormrod DP, Hale BA (1996) The influence of photosynthetically active radiation on the effects of ultraviolet-B radiation on Arabidopsis thaliana. Photochem Photobiol 64(1):110–116

    Article  CAS  PubMed  Google Scholar 

  • Besaratinia, Kim SI, Pfeifer GP (2008) Rapid repair of UV-A-induced oxidized purines and persistence of UV-B-induced dipyrimidine lesions determine the mutagenicity of sunlight in mouse cells. FASEB J 22:2379–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biever JJ, Brinkman D, Gardner G (2014) UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation. J Exp Bot 65:2949–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biggs RH, Basiouny FM (1975) Plant growth responses to elevated UV-B irradiation under growth chamber, greenhouse and solarium conditions. In: Nachtwey DS, Caldwell MM, Biggs RH (eds) Climatic Impact Assessment Program (CLAP), Monograph 5, Part l – Ultraviolet Radiation Effects, US Dept Transp., Report No. DOT-TST-75-55. (PB-247-725), National Technical lnformation Service. Springfield, Virginia, pp 4–197, 4–249 (Part 1, Chpt. 4, Appendix L)

    Google Scholar 

  • Bjorn LO (1996) Effect of ozone depletion and increased UV-B on terrestrial ecosystems. Int J Environ Stud 51:217–243

    Article  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot (Lond) 91:179–194

    Article  CAS  Google Scholar 

  • Blumthaler M, Amback W (1990) Indication of increasing solar UV-B radiation flux in alpine regions. Science 248:206–208

    Article  CAS  PubMed  Google Scholar 

  • Boccalandro F, Muench A, Sdringola S, Rosales OR (2004) Wireless laser-assisted angioplasty of the superficial femoral artery in patients with critical limb ischemia who have failed conventional percutaneous revascularization. Catheter Cardiovasc Interv 63:7e12

    Google Scholar 

  • Bonura T, Smith KC (1975) Quantitative evidence for enzymatically-induced DNA double-strand breaks as lethal lesions in UV-irradiated pol+ and polA1 strains of E. coli K-12. Photochem Photobiol 22:243–248

    Article  CAS  PubMed  Google Scholar 

  • Bornman JF (1989) New trends in photobiology: target sites of UV-B radiation in photosynthesis of higher plants. J Photochem Photobiol B:Biol 4:145–158

    Article  CAS  Google Scholar 

  • Bornman JF, Teramura AH (1993) Effect of ultraviolet-B radiation on terrestrial plants. In: Young AR, Bjorn LO, Moan J, Nultsch W (eds) Environmental UV photobiology. Plenum Press, New York, pp 427–471

    Chapter  Google Scholar 

  • Bornman JF, Barnes PW, Robinson SA, Ballaré CL, Flint SD, Caldwell MM (2015) Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems. Photochem Photobiol Sci 14:88–107

    Article  CAS  PubMed  Google Scholar 

  • Box HC, Dawidzik JB, Budzinski EE (2001) Free radical-induced double lesions in DNA. Free Radic Biol Med 31:856–868

    Article  CAS  PubMed  Google Scholar 

  • Brandle JR, Campbell WF, Sisson WB, Caldwell MM (1977) Net photosynthesis, electron transport capacity, and ultrastructure of Pisum sativum L. exposed to ultraviolet-B radiation. Plant Physiol 60:165–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bravard A, Vacher M, Gouget B, Coutant A, de Boisferon FH, Marsin S, Chevillard S, Radicella JP (2006) Redox regulation of human OGG1 activity in response to cellular oxidative stress. Mol Cell Biol 26(20):7430–7436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner M, Hearing VJ (2008) The protective role of melanin against UV damage in human skin. Photochem Photobiol 84(3):539–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britt AB, Chen J-J, Wykoff D, Mitchell D (1993) A UV sensitive mutant of Arabidopsis defective in the repair of pyrimidine- pyrimidone(6-4) dimers. Science 261:1571–1574

    Article  CAS  PubMed  Google Scholar 

  • Brown SB, Houghton JD, Henry GAF (1991) Chlorophyll breakdown. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, pp 465–489

    Google Scholar 

  • Buma AGJ, Helbling EW, Karin De Boer MK, Villafañe VE (2001) Patterns of DNA damage and photoinhibition in temperate South-Atlantic picophytoplankton exposed to solar ultraviolet radiation. J Photochem Photobiol B: Biol 62(1-2):9–18

    Article  CAS  Google Scholar 

  • Cadet J, Douki T (2011) Oxidatively generated damage to DNA by UV-A radiation in cells and human skin. J Invest Dermatol 131:1005–1007

    Article  CAS  PubMed  Google Scholar 

  • Cadet J, Berger M, Douki T, Morin B, Raoul S, Ravanat JL, Spinelli S (1997) Effect of UV and visible radiation on DNA-final base damage. Biol Chem 378:1275–1286

    CAS  PubMed  Google Scholar 

  • Cadet J, Douki T, Gasparutto D, Ravanat J-L (2003) Oxidative damage to DNA: formation, measurement and biochemical features. Mutat Res 531:5–23

    Article  CAS  PubMed  Google Scholar 

  • Cadet J, Douki T, Ravanat JL et al (2009) Sensitized formation of oxidatively generated damage to cellular DNA by UV-A radiation. Photochem Photobiol Sci 8:903–911

    Article  CAS  PubMed  Google Scholar 

  • Caldwell MM, Teramura AT, Tevini M (1978) The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends in Ecol Evol 4:363–367

    Article  Google Scholar 

  • Carletti P, Masi A, Wonisch A, Grill D, Tausz M, Ferretti M (2003) Changes in antioxidant and pigment pool dimensions in UV-B radiation maize seedlings. Environ Exp Bot 50:149–157

    Article  CAS  Google Scholar 

  • Casati P, Walbot V (2003) Gene expression profiling in response to UV radiation in maize genotypes with varying flavonoid content. Plant Physiol 132:1739–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casati P, Walbot V (2004) Crosslinking of ribosomal proteins to RNA in maize ribosomes by UV-B and its effect on translation. Plant Physiol 136:3319–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cen YP, Bornmann JF (1990) The response of bean plants to UV-B radiation under different irradiances of background visible light. J Exp Bot 41:1489–1495

    Article  Google Scholar 

  • Chatgilialoglu C, D’Angelantonio M, Kciuk G, Bobrowski K (2011) New insights into the reaction paths of hydroxyl radicals with 2′-deoxyguanosine. Chem Res Toxicol 24(12):2200–2206

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Han R (2014) He-Ne laser treatment improves the photosynthetic efficiency of wheat exposed to enhanced UV-B radiation. Laser Phys 24:105602–105608

    Article  CAS  Google Scholar 

  • Chow WS, Strid A, Anderson JM (1992) Short term treatment of pea plants with supplementary ultraviolet-B radiation: recovery time-courses of some photosynthetic functions and components. In: Murata N (ed) Research in photosynthesis, vol 4. Kluwer Academic Publishers, Dordrecht, pp 361–364

    Google Scholar 

  • Corlett JE, Stephen J, Jones HG, Woodfin R, Mepsted R, Paul ND (1997) Assessing the impact of UV-B radiation on the growth and yield of field crops. In: Lumsden PJ (ed) Plants and UV-B: responses to environmental change society for experimental biology, vol 64. Cambridge University Press, Cambridge

    Google Scholar 

  • Correia CM, Areal ELV, Torres-Pereira MS, Torres- Pereira JMG (1998) Intraspecific variation in sensitivity to ultraviolet-B radiation in maize grown under field conditions. I. Growth and morphological aspects. Field Crops Res 59:81–89

    Article  Google Scholar 

  • Courdavault S, Baudouin C, Charveron M et al (2004) Larger yield of cyclobutane dimers than 8 oxo-7,8-dihydroguanine in the DNA of UV-A-irradiated human skin cells. Mutat Res 556:135–142

    Article  CAS  PubMed  Google Scholar 

  • Creed D (1984a) The photophysics and photochemistry of the near-UV absorbing amino acids .2. Tyrosine and its simple derivatives. Photochem Photobiol 39(4):563–575

    Article  CAS  Google Scholar 

  • Creed D (1984b) The photophysics and photochemistry of the near-UV absorbing amino-acids.3. Cystine and its simple derivatives. Photochem Photobiol 39:577–583

    Article  CAS  Google Scholar 

  • Culligan K, Tissier A, Britt A (2004) ATR regulates a G2-Phase cell-cycle checkpoint in Arabidopsis thaliana. Plant Cell 16:1091–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danon A, Gallois P (1998) UV-C radiation induces apoptotic-like changes in Arabidopsis thaliana. FEBS Lett 437:131–136

    Article  CAS  PubMed  Google Scholar 

  • Danon A, Delorme V, Mailhac N, Gallois P (2000) Plant programmed cell death: a common way to die. Plant Physiol Biochem 38:647–655

    Article  CAS  Google Scholar 

  • Danon A, Rotari VI, Gordon A, Mailhac N, Gallois P (2004) Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and defender against apoptotic death. J Biol Chem 279:779–787

    Article  CAS  PubMed  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Davies MJ (2004) Reactive species formed on proteins exposed to singlet oxygen. Photochem Photobiol Sci 3(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Deckmyn G, Impens I (1997) The ratio UV-B photosynthetically active radiation (PAR) determines the sensitivity of rye to increased UV-B radiation. Environ Exp Bot 37:3–12

    Article  CAS  Google Scholar 

  • Del Rio LA, Sandalio LM, Palma JM, Bueno P, Cospus FJ (1992) Metabolism of oxygen radicals in peroxisomes and cellular implications. J Free Radic Biol Med 13:557–580

    Article  Google Scholar 

  • Donkor VA, Hader DP (1996) Effects of ultraviolet radiation on photosynthetic pigments in some filamentous cyanobacteria. Aquat Microb Ecol 11(143–149):19

    Google Scholar 

  • Doughty JC, Hope AB (1973) Effect of ultraviolet radiation on the membranes of Chara coralline. J Membr Biol 13:185–198

    Article  CAS  Google Scholar 

  • Douki T, Cadet J (2003) Formation of the spore photoproduct and other dimeric lesions between adjacent pyrimidines in UVC-irradiated dry DNA. Photochem Photobiol Sci 2:433–436

    Article  CAS  PubMed  Google Scholar 

  • Douki T, Perdiz D, Moustacchi E, Cadet J, Sage E (1999) Oxidation of guanine in cellular DNA by solar UV radiation: biological role. Photochem Photobiol 70:184–190

    Article  CAS  PubMed  Google Scholar 

  • Douki T, Reynaud-Angelin A, Cadet J, Sage E (2003) Bipyrimidine photoproducts rather than oxidative lesions are the main type DNA damage involved in the genotoxic effect of solar UV-A radiation. Biochemistry 42:9221–9226

    Article  CAS  PubMed  Google Scholar 

  • Du H, Liang Y, Pei K, Ma K (2011) UV radiation-responsive proteins in rice leaves: a proteomic analysis. Plant Cell Physiol 52(2):306–316

    Article  CAS  PubMed  Google Scholar 

  • Dubest S, Gallego ME, White CI (2002) Role of the AtRad1p endonuclease in homologous recombination in plants. EMBO Rep 3:1049–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Ghissassi F, Baan R, Straif K et al (2009) A review of human carcinogens—part D: radiation. Lancet Oncol 10:51–52

    Article  Google Scholar 

  • Elstner EF (1987) Metabolism of activated oxygen species. In: Davies DD (ed) Biochemistry of plants. Academic Press, London, pp 253–315

    Google Scholar 

  • Fagerberg WR, Bornman JF (2005) Modification of leaf cytology and anatomy in Brassica napus grown under above ambient levels of supplemental UV-B radiation. Photochem Photobiol Sci 4(3):275–279

    Article  CAS  PubMed  Google Scholar 

  • Fedina I, Hidema J, Velitchkova M, Georgieva K, Nedeva D (2010) UV-B induced stress responses in three rice cultivars. Biol Plant 54(3):571–574

    Article  CAS  Google Scholar 

  • Fell LJ, Paul ND, McMillan TJ (2002) Role for non-homologous end-joining in the repair of UV-A-induced DNA damage. Int J Radiat Biol 78:1023–1027

    Article  CAS  PubMed  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Zheng Y, Slusser JR, Heisler GM, Grant RH, Xu J, He D (2004) Effects of supplementary ultraviolet-B irradiance on maize yield and qualities: a field experiment. Photochem Photobiol 80:127–131

    Article  CAS  PubMed  Google Scholar 

  • Garcia V, Bruchet H, Camescasse D, Granier F, Bouchez D, Tissier A (2003) AtATM is essential for meiosis and the somatic response to DNA damage in plants. Plant Cell 15:119–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard PM, Francesconi S, Pozzebon M, Graindorge D, Rochette P, Drouin R, Sage E (2011) UV-A-induced damage to DNA and proteins: direct versus indirect photochemical processes. J Phys: Con Ser 261:1–11

    Google Scholar 

  • Girard M, Lariviere R, Parfitt DA et al (2012) Mitochondrial dysfunction and Purkinje cell loss in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). Proc Natl Acad Sci U S A 109:1661–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girotti AW (2001) Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects and cytoprotective mechanisms. J Photochem Photobiol B 63:103–113

    Article  CAS  PubMed  Google Scholar 

  • Gorczyca W, Tuziak T, Kram A, Melamed MR, Darzynkiewicz Z (1994) Detection of apoptosis-associated DNA strand breaks in fine-needle aspiration biopsies by in situ end labeling of fragmented DNA. Cytometry 15(2):169–175

    Article  CAS  PubMed  Google Scholar 

  • Greinert R, Volkmer B, Henning S, Breitbart EW, Greulich KO, Cardoso MC, Rapp A (2012) UV-A-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damage. Nucleic Acids Res 40(20):10263–10273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grether-Beck S, Bonizzi G, Schmitt-Brenden H, Felsner I, Timmer S, Sies H, Johnson JP, Piette J, Krutmann J (2000) Nonenzymatic triggering of the ceramide signalling cascade by solar UV-A radiation. EMBO J 19(21):5793–5800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper JV, Anderson JA, O’Neill P (2010) Radiation induced DNA DSB: contribution from stalled replication forks? DNA Repair 9:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hart PH, Gorman S, Finlay-Jones JJ (2011) Modulation of the immune system by UV radiation: more than just the effects of vitamin D? Nat Rev Immunol 11:584–596

    Article  CAS  PubMed  Google Scholar 

  • He YY, Pi J, Huang JL, Diwan BA, Waalkes MP, Chignell CF (2006) Chronic UV-A radiation of human HaCaT keratinocytes induces malignant transformation associated with acquired apoptotic resistance. Oncogene 25:3680–3688

    Article  CAS  PubMed  Google Scholar 

  • Heck DE, Vetrano AM, Mariano TM et al (2003) UV-B light stimulates production of reactive oxygen species: unexpected role for catalase. J Biol Chem 278(25):22432–22436

    Article  CAS  PubMed  Google Scholar 

  • Hidema J, Kumagai T (1998) UVB-induced cyclobutyl pyrimidine dimer and photorepair with progress of growth and leaf age in rice. J Photochem Photobiol B Biol 43:121–127

    Article  CAS  Google Scholar 

  • Hidema J, Makino A, Mae T, Ojima T (1991) Photosynthetic characteristics of rice leaves under different irradiances from full expansion through senescence. Plant Physiol 97:1287–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidema J, Kang HS, Kumagai T (1996) Differences in the sensitivity to UV-B radiation of two cultivars of rice (Oryza sativa L.). Plant Cell Physiol 37:742–747

    Article  CAS  Google Scholar 

  • Hidema J, Kumagai T, Sutherland JC, Sutherland BM (1997) Ultraviolet B–sensitive rice cultivar deficient in cyclobutyl pyrimidine dimer repair. Plant Physiol 113:39–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidema J, Taguchi T, Ono T, Teranishi M, Yamamoto K, Kumagai T (2007) UV-B resistance and CPD photolyase activity in rice. Plant J 50:70–79

    Article  CAS  PubMed  Google Scholar 

  • Hiraku Y, Ito K, Hirakawa K, Kawanishi S (2007) Photosensitized DNA damage and its protection via a novel mechanism. Photochem Photobiol 83:205–212

    Article  CAS  PubMed  Google Scholar 

  • Holló sy F (2002) Effect of ultraviolet radiation on plant cells. Micron 33:179–197

    Article  Google Scholar 

  • Houot V, Etienne P, Petitot AS, Barbier S, Blein JP, Suty L (2001) Hydrogen peroxide induces programmed cell death features in cultured tobacco B4-2 cells in a dose-dependent manner. J Exp Bot 52(361):1721–1730

    CAS  PubMed  Google Scholar 

  • http://www.who.int/uv/health/en/

  • Hu Z, Li H, Chen S, Yang Y (2006) Interaction of UV radiation with other components of solar radiation. Physiol Plant 58:401–407

    Google Scholar 

  • Huffaker RC (1982) Biochemistry and physiology of leaf proteins. In: Parthier B, Bolter D (eds) Encyclopedia of plant physiology. SpringerVerlag, Berlin, pp 370–400

    Google Scholar 

  • Hunter JR, Kaupp SE, Taylor JH (1981) Effects of solar and artificial ultraviolet-B radiation on larval northern anchovy, engraulis mordax. Photochem Photobiol 34:477–486

    Article  Google Scholar 

  • Hutchinson F (1987) A review of some topics concerning mutagenesis by ultraviolet light. Photochem Photobiol 45:897–903

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson F, Yamamoto K, Stein J, Wood RD (1987) Effect of photoreactivation on mutagenesis of lambda phage by ultraviolet light. J Mol Biol 202:593–601

    Article  Google Scholar 

  • Idso K, Idso SB (1994) Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 year’s research. Agric Forste meteorol 69:153–203

    Article  Google Scholar 

  • Ilwanzik W, Tevini M, Dohnt G, Vos M, Weiss W, Gra¨ber P, Renger G (1983) Action of UV-B radiation on photosynthetic primary reaction in spinach chloroplasts. Physiol Plant 58:401–407

    Article  Google Scholar 

  • Jackson AL, Loeb LA (2001) The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat Res 477:7–21

    Article  CAS  PubMed  Google Scholar 

  • Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135

    Article  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Rabbi M, Kim M, Ke C, Lee W, Clark RL, Mieczkowski PA, Marszalek PE (2009) UV-A generates pyrimidine dimers in DNA directly. Biophys J 96(3):1151–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Wang Y, Bjorn LO, Li S (2011) UV-B induced DNA damage mediates expression changes of cell cycle regulatory genes in Arabidopsis root tips. Planta 233:831–841

    Article  CAS  PubMed  Google Scholar 

  • Jordan BR (1993) The molecular biology of plants exposed to ultraviolet B radiation and the interaction with other stresses. In: Jackson MB, Black CR (eds) Interacting stresses on plants in a changing climate, vol 16, NATO ASI Series. Springer, Berlin, pp 153–170

    Chapter  Google Scholar 

  • Jordan BR, James PE, Strid A, Anthony RG (1994) The effect of UV-B radiation on gene expression and pigment composition in etiolated and green pea leaf tissue: UV-B induced changes in gene expression are gene specific and dependent upon tissue development. Plant Cell Environ 17:45–54

    Article  CAS  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Mohammed AR (2003) Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann Bot 91:817–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kambayashi H, Odake Y, Takada K, Funasaka Y, Ichihashi M (2003) Involvement of changes in stratum corneum keratin in wrinkle formation by chronic ultraviolet radiation in hairless mice. Exp Dermatol 12(Suppl 2):22–27

    Article  CAS  PubMed  Google Scholar 

  • Karin M (1998) Mitogen-activated protein kinase cascades as regulators of stress responses. Ann N Y Acad Sci 851:139–146

    Article  CAS  PubMed  Google Scholar 

  • Kasai H, Yamaizumi Z, Berger M, Cadet J (1992) Photosensitized formation of 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-hydroxy-2′-deoxyguanosine) in DNA by riboflavin: a non singlet oxygen mediated reaction. J Am Chem Soc 114:9692–9694

    Article  CAS  Google Scholar 

  • Kataria S, Jajoo A, Guruprasad KN (2014) Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. J Photochem Photobiol B Biol 137:55–66

    Article  CAS  Google Scholar 

  • Kerwin BA, Remmele RL Jr (2007) Protect from light: photodegradation and protein biologics. J Pharmac Sci 96(6):468–1479

    Article  CAS  Google Scholar 

  • Khoroshilova EV, Repeyev YA, Nikogosyan DN (1990) UV photolysis of aromatic amino acids and related dipeptides and tripeptides. J Photochem Photobiol 7:159–172

    Article  CAS  Google Scholar 

  • Kielbassa C, Roza L, Epe B (1997) Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18:811–816

    Article  CAS  PubMed  Google Scholar 

  • Klem K, Alexander AC, Holuba P, Kovca D, Spundaa V, Robsonb M, Urbana O (2012) Interactive effect of PAR and UV radiation on the physiology, morphology and leaf optical properties of two barley varieties. Environ Exp Bot 75:52–64

    Article  CAS  Google Scholar 

  • Kolb CA, Laser MA, Kopecky J, Zotz G, Riederer M, Pfundel EE (2001) Effects of natutral intensities of visible and UV radiation on epidermal UV-screening and photosynthesis in grape leaves (vitis vinifera cv. Silvaner). Plant Physiol 127:863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer GF, Norman HA, Krizek DT, Mirecki RM (1991) Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber. Phytochemistry 30:2101–2108

    Article  CAS  Google Scholar 

  • Kubasek WL, Shirley BW, Mckillop A, Goodman HM, Briggs W, Ausubel FM (1992) Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. Plant Cell 4(10):1229–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulandaivelu G, Nedunchezhian N, Annamalainathan K (1991) Ultraviolet-B (280–320 nm) radiation induced changes in photochemical activities and polypeptide components of C3 and C4 chloroplasts. Photosynthetica 25:333–339

    CAS  Google Scholar 

  • Kuluncsics Z, Perdiz D, Brulay E et al (1999) Wavelengths dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts. J Photochem Photobiol B 49:71–80

    Article  CAS  PubMed  Google Scholar 

  • Kumagai T, Sato T (1992) Inhibitory effect of increase in near-UV radiation on the growth of Japanese rice cultivars (Oryza sativa L.) in a phytotron and recovery by exposure to visible radiation. Jpn J Breed 42:545–552

    Article  CAS  Google Scholar 

  • Kunz BA, Anderson HJ, Osmond MJ, Vonarx E (2005) Components of nucleotide excision repair and DNA damage tolerance in Arabidopsis thaliana. Environ Mol Mutagen 45:115–127

    Article  CAS  PubMed  Google Scholar 

  • Kvam E, Tyrrell RM (1997) Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis 18:2379–2384

    Article  CAS  PubMed  Google Scholar 

  • Lam E, Pozo O (2000) Caspase-like protease involvement in the control of plant cell death. Plant Mol Biol 44:417–428

    Article  CAS  PubMed  Google Scholar 

  • Lam E, Pontier D, del Pozo O (1999) Die and let live: programmed cell death in plants. Curr Opin Plant Biol 2:502–507

    Article  CAS  PubMed  Google Scholar 

  • Landry LG, Stapleton AE, Lim J, Hoffman P, Hays J, Walbot V, Last R (1997) An Arabidopsis photolyase mutant is hypersensitive to ultraviolet-B radiation. Proc Natl Acad Sci U S A 94:328–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HC, Wei YH (2000) Mitochondrial role in life and death of the cell. J Biomed Sci 7:2–15

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lidon FC (2012) UV-B radiation in rice:interaction between micronutrients accumulation and the photosynthetic performance. J Plant Inter 7(1):19–28

    CAS  Google Scholar 

  • Lidon FC, Ramalho JC (2011) Impact of UV-B radiation on photosynthetic performance and chloroplast membrane components in Oryza sativa L. J Photochem Photobiol B Biol 104:457–466

    Article  CAS  Google Scholar 

  • Lima-Bessa KM, Armelini MG, Chiganças V, Jacysyn JF, Amarante-Mendes GP, Sarasin A, Menck CF (2008) CPDs and 6-4PPs play different roles in UV induced cell death in normal and NER-deficient human cells. DNA Repair 7(2):303–312

    Article  PubMed  CAS  Google Scholar 

  • Lindo SJ, Seeley SD, Caldwell MM (1978) Effect of ultraviolet-B radiation on the abscisic acid status of Rumex patientia leaves. Physiol Plant 45:67–72

    Article  Google Scholar 

  • Liu Z, Hossain GS, Islas-Osuna MA, Mitchell DL, Mount DW (2000) Repair of UV damage in plants by nucleotide excision repair: Arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae Rad1. Plant J 21:519–552

    Article  CAS  PubMed  Google Scholar 

  • Loft S, Poulsen HE (1996) Cancer risk and oxidative DNA damage in man. J Molec Med 74:297–312

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Zhu F, Cho YY, Tang F, Zykova T, Ma WY, Bode AM, Dong Z (2006) Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Mol Cell 23:121–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lytvyn DI, Yemets AI, Blume YB (2010) UV-B overexposure induces programmed cell death in a BY-2 tobacco cell line. Environ Exp Bot 68:51–57

    Article  CAS  Google Scholar 

  • Mackerness S, John CF, Jordan B, Thomas B (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242

    Article  CAS  Google Scholar 

  • Marwood CA, Greenberg BM (1996) Effect of supplementary UV-B radiation on chlorophyll synthesis and accumulation of photosynthesis during chloroplast development in Spirodela oligorrhiza. Photochem Photobiol 64:664–670

    Article  CAS  Google Scholar 

  • Masaki H, Izutsu Y, Yahagi S, Okano Y (2009) Reactive oxygen species in HaCaT keratinocytes after UV-B radiation are triggered by intracellular Ca2+ levels. J Invest Dermatol Sym Proc 14:50–52

    Article  CAS  Google Scholar 

  • Mazza CA, Boccalandro HE, Giordano CV, Battista D, Zima AM, Scopel AL, Ballare CL (2000) Functional significance and induction by solar radiation of ultraviolet-absorbing sunscreens in field-grown soybean crops. Plant Physiol 122:117–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCabe PF, Levine A, Meijer PJ, Tapon NA, Penell RI (1997) A programmed cell death pathway activated in carrot cells cultured at low cell density. Plant J 12:267–280

    Article  CAS  Google Scholar 

  • Meguro S, Arai Y, Masukawa K, Uie K, Tokimitsu I (1999) Stratum corneum lipid abnormalities in UV-B-irradiated skin. Photochem Photobiol 69:317–321

    Article  CAS  PubMed  Google Scholar 

  • Mirecki RM, Teramura AH (1984) Effects of ultraviolet-B irradiance on soybean. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol 74:475–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra RK, Singhal GS (1992) Function of photosynthetic apparatus of intact wheat leaves under high light and heat stress and its relationship with peroxidation of thylakoid lipids. Plant Physiol 98:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Lam E (1996) Sacrifice in the face of foes: pathogen-induced programmed cell death in plants. Trends Microbiol 4:10–15

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network in plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Miziorko HM, Lorimer GH (1983) Ribulose-1,5-bisphosphate carboxylaseoxygenase. Annu Rev Biochem 52:507–535

    Article  CAS  PubMed  Google Scholar 

  • Mohammed AR, Tarpley L (2009) Effects of elevated ultraviolet-B radiation on productive tillers, spikelet sterility and grain characteristics of southern US rice (Oryza sativa L.) cultivars. J Agron Crop Sci 195:292–300

    Article  Google Scholar 

  • Moldau H (1999) Ozone detoxification in the mesophyll cell wall during a simulated oxidative burst. Free Radic Res 31:S19–S44

    Article  CAS  PubMed  Google Scholar 

  • Molinier J, Lechner E, Dumbliauskas E, Genschik P (2008) Regulation and role of Arabidopsis CUL4-DDB1A-DDB2 in maintaining genome integrity upon UV stress. PLoS Genet 4:e1000093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2006) Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UV-A radiation. Proc Natl Acad Sci U S A 103:13765–13770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouret S, Philippe C, Gracia-Chantegrel J, Banyasz A, Karpati S, Markovitsi D, Douki T (2010) UV-A-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism ? Org Biomol Chem 8(7):1706–1711

    Article  CAS  PubMed  Google Scholar 

  • Mpoloka SW (2008) Effect of prolonged UV-B exposure in plants. Afr J Biotech 7(25):4874–4883

    CAS  Google Scholar 

  • Murphy TM (1990) Effect of broad-band ultraviolet and visible radiation on hydrogen peroxide formation by cultured rose cells. Physiol Plant 80:63–68

    Article  CAS  Google Scholar 

  • Murphy MG, Byczko Z (1990) Effects of polyunsaturated fatty acids on adenosine receptor function in N 1 Ell5 neuroblastoma cells. Can J Biochem Cell Biol 34:56–67

    Google Scholar 

  • Murphy TM, Vu H (1996) Photoactivation of superoxide synthases of the plasma membrane from rose (Rosa damascene Mill.) cells. Photochem Photobiol 64:106–109

    Article  CAS  Google Scholar 

  • Murphy TM, Wilson C (1982) The UV-stimulated K+ efflux from rose cells. Plant Physiol 70:709–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy TM, Hurrel HC, Sasaki TL (1985) Wavelength dependence of ultraviolet radiation-induced mortality and K+ efflux in cultured cells of Rosa damascena. Photochem Photobiol 42:281–286

    Article  Google Scholar 

  • Musil CF, Chimphango SBM, Dakora FD (2002) Effects of elevated ultraviolet-B radiation on native and cultivated plants of southern Africa. Annu Bot 90:127–137

    Article  CAS  Google Scholar 

  • Nakajima S, Sugiyama M, Iwai S, Hitomi K, Otoshi E, Kim S, Jiang CZ, Todo T, Britt AB, Yamamoto K (1998) Cloning and characterization of a gene (UVR3) required for photorepair of 6–4 photoproducts in Arabidopsis thaliana. Nucleic Acids Res 26:638–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawkar GM, Maibam P, Park JH, Sahi VP, Lee SY, Kang CH (2013) UV-Induced cell death in plants. Int J Mol Sci 14:1608–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negash L, Björn LO (1986) Stomatal closure by ultraviolet radiation. Physiol Plant 66:360–364

    Article  Google Scholar 

  • Neves-Peterson MT, Gajula GP, Peterson SB (2007) UV light effects on proteins: from photochemistry to nanomedicine. Mol Phytochem 186:128–163

    Google Scholar 

  • Nishiyama Y, Yamamoto H, Allakhverdiev SI, Inaba M, Yokota A, Murata N (2001) Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J 20:5587–5594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogue’s S, Allen DJ, Morison JIL, Baker NR (1999) Characterization of stomatal closure caused by Ultraviolet-B radiation. Plant Physiol 121:489–496

    Article  Google Scholar 

  • Ogawa F, Sander CS, Hansel A, Oehrl W, Kasperczyk H, Elsner P, Shimizu K, Stefan H, Heinemann SH, Thiele JJ (2006) The repair enzyme peptide Methionine-S-Sulfoxide reductase is expressed in human epidermis and upregulated by UV-A radiation. J Invest Dermatol 126:1128–1134

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi T, Takahashi A, Nagamatsu A, Omori K, Suzuki H, Shimazu T, Ishioka N (2009) Detection of space radiation-induced double strand breaks as a track in cell nucleus. Biochem Biophys Res Commun 390(3):485–488

    Article  CAS  PubMed  Google Scholar 

  • Osipov AN, Smetanina NM, Pustovalova MV, Arkhangelskaya E, Klokov D (2014) The formation of DNA single-strand breaks and alkali-labile sites in human blood lymphocytes exposed to 365-nm UV-A radiation. Free Radic Biol Med 73:34–40

    Article  CAS  PubMed  Google Scholar 

  • Pakker H, Beekman CAC, Breeman AM (2000) Efficient photoreactivation of UV-BR-induced DNA damage in the sublittoral macroalga Rhodymenia pseudopalmata (Rhodophyta). Eur J Phycol 35:109–114

    Article  Google Scholar 

  • Panagopoulos I, Bornmann JF, Björn LO (1990) Effect of ultraviolet radiation and visible light on growth, fluorescence induction, ultraweak luminiscence and peroxidase activity in sugar beet plants. Photochem Photobiol 8:73–87

    Article  CAS  Google Scholar 

  • Pattison DI, Davies MJ (2006) Action of ultraviolet light on cellular structures. In: Bignold LP (ed) Cancer: Cell structures, carcinogens and genomic instability. Birkhäuser, Virlag

    Google Scholar 

  • Peak MJ, Peak JG (1982) Single-strand breaks induced in Bacillus subtilis DNA by ultraviolet light: action spectrum and properties. Photochem Photobiol 35:675–680

    Article  CAS  PubMed  Google Scholar 

  • Peak MJ, Peak JG (1990) Hydroxyl radical quenching agents protect against DNA breakage caused by both 365-nm UV-A and by gamma radiation. Photochem Photobiol 51(6):649–652

    CAS  PubMed  Google Scholar 

  • Peak MJ, Peak JG, Moehring MP, Webb RB (1984) Ultraviolet action spectrum for DNA dimer induction, lethality, and mutagenesis in Escherichia coli with emphasis on the UV-B region. Photochem Photobiol 40:613–620

    Article  CAS  PubMed  Google Scholar 

  • Pearse AD, Gaskell SA, Marks R (1987) Epidermal changes in human skin following radiation with either UV-B or UV-A. J Invest Dermatol 88:83–87

    Article  CAS  PubMed  Google Scholar 

  • Petersen MTN, Jonson PH, Petersen SB (1999) Amino acid neighbours and detailed conformational analysis of cysteins in proteins. Protein Eng Des Sel 12(7):535–548

    Article  CAS  Google Scholar 

  • Pfundel EE, Pan RS, Dilley RA (1992) Inhibition of violaxanthin deep oxidation by ultraviolet-B radiation in isolated chloroplasts and intact leaves. Plant Physiol 98:1372–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillipson RP, Tobi SE, Morris JA, McMillan TJ (2002) UV-A induces persistent genomic instability in human keratinocytes through an oxidative stress mechanism. Free Radic Biol Med 32:474–480

    Article  CAS  PubMed  Google Scholar 

  • Pouget J-P, Douki T, Richard M-J, Cadet J (2000) DNA damage induced in cells by and UV-A radiation as measured by HPLC/GC-MS and HPLC-EC and comet assay. Chem Res Toxicol 13(7):541–549

    Article  CAS  PubMed  Google Scholar 

  • Predieri S, Norman HA, Krizek DT, Pillai P, Mirecki RM, Zimmerman RH (1995) Influence of UV-B radiation on membrane lipid composition and ethylene evolution in (Doyenne D’ Hiver) pear shoots grown in vitro under different photosynthetic photon fluxes. Environ Exp Bot 35:151–160

    Article  CAS  Google Scholar 

  • Quaite FE, Sutherland BM, Sutherland JC (1992) Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion. Nature 358:576–578

    Article  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapp A, Greulich KO (2004) After double-strand break induction by UV-A, homologous recombination and nonhomologous end joining cooperate at the same DSB if both systems are available. J Cell Sci 117:4935–4945

    Article  CAS  PubMed  Google Scholar 

  • Rastogi RP, Richa KA, Tyagi MB, Sinha RP (2010) Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acid 56:1–32

    Article  CAS  Google Scholar 

  • Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B Biol 63:88–102

    Article  CAS  Google Scholar 

  • Reape TJ, McCabe PF (2008) Apoptotic-like programmed cell death in plants. New Phytol 180:13–26

    Article  CAS  PubMed  Google Scholar 

  • Rebeiz CA, Montazerzouhoor A, Mayasich JM, Tripathy BC, Wu SM, Rebeiz CC (1988) Photodynamic herbicides – recent developments and molecular basis of selectivity. Crit Rev Plant Sci 6:385–436

    Article  CAS  Google Scholar 

  • Regensburger J, Knak A, Maisch T, Landthaler M, Baumler W (2012) Fatty acids and vitamins generate singlet oxygen under UV-B radiation. Exp Dermatol 21:135–139

    Article  CAS  PubMed  Google Scholar 

  • Renger G, Völker M, Eckert HJ, Fromme R, Hohm-Veit S, Gräber P (1989) On the mechanism of photosystem II deterioration by UV-B radiation. Photochem Photobiol 49:97–105

    Article  CAS  Google Scholar 

  • Ries G, Heller W, Puchta H, Sandermann H, Seidlitz HK, Hohn B (2000) Elevated UV-B radiation reduces genome stability in plants. Nature 406:98–101

    Article  CAS  PubMed  Google Scholar 

  • Rizzo JL, Dunn J, Rees A, Runger TM (2011) No formation of DNA double-strand breaks and no activation of recombination repair with UV-A. J Invest Dermatol 131:1139–1148

    Article  CAS  PubMed  Google Scholar 

  • Roleda MY, Hanelt D, Wiencke C (2006a) Exposure to ultraviolet radiation delays photosynthetic recovery in Arctic kelp zoospores. Photosynth Res 88:311–322

    Article  CAS  PubMed  Google Scholar 

  • Roleda MY, Hanelt D, Wiencke C (2006b) Growth and DNA damage in young Laminaria sporophytes exposed to ultraviolet radiation: implication for depth zonation of kelps in Helgoland (North Sea). Mar Biol 148:1201–1211

    Article  CAS  Google Scholar 

  • Ros J, Tevini M (1995) Interaction of UV radiation and IAA during growth of seedlings and hypocotyls segments of sunflower. J Plant Physiol 146:295–302

    Article  CAS  Google Scholar 

  • Rousseaux MC, Ballare CL, Giordano CV, Scopel AL, Zima AM, Swarcberg-Brachitta M, Searles PS (1999) Ozone depletion and UV-B radiation: impact on plant DNA damage in southern South America. Proc Natl Acad Sci U S A 96:15310–15315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozema J, van de Staaij J, Bjorn LO, Caldwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28

    Article  CAS  PubMed  Google Scholar 

  • Saewan N, Jimtaisong A (2013) Photoprotection of natural flavonoids. J Appl Pharm Sci 3(09):129–141

    Google Scholar 

  • Sage E (1993) Distribution and repair of photolesions in DNA: genetic consequences and the role of sequence context. Photochem Photobiol 57:163–174

    Article  CAS  PubMed  Google Scholar 

  • Salama HMH, Al Watban AA, Al-Fughom AT (2011) Effect of ultraviolet radiation on chlorophyll, carotenoid, protein and praline contents of some annual desert plants. Saudi J Biol Sci 18:79–86

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Kumagai T (1993) Cultivar differences in resistance to the inhibitory effect of near-UV radiation among Asian ecotype and Japanese lowland and upland cultivars of rice. Jpn J Breed 43:61–68

    Article  Google Scholar 

  • Savitch LV, Pocock T, Krol M, Wilson KE, Greenberg BM, Huner NPA (2001) Effect of growth under UV-A radiation on CO2 assimilation, carbon partitioning, PSII photochemistry and resistance to UV-B radiation in Brassica napus cv Topas. Aust J Plant Physiol 28:203–212

    CAS  Google Scholar 

  • Schuch AP, da Silva Galhardo R, de Lima-Bessa KM, Schuch NJ, Menck CF (2009) Development of a DNA-dosimeter system for monitoring the effect of solar-ultraviolet radiation. Photochem Photobiol Sci 8:111–120

    Article  CAS  PubMed  Google Scholar 

  • Schuch AP, Lago JC, Yagura T, Carlos Frederico Martins Menck CFM (2012) DNA dosimetry assessment for sunscreen genotoxic photoprotection. PlosOne 7(6):e40344

    Article  CAS  Google Scholar 

  • Shorrocks J, Paul ND, McMillan TJ (2008) The dose rate of UV-A treatment influences the cellular response of HaCaT keratinocytes. J Invest Dermatol 128:685–693

    Article  CAS  PubMed  Google Scholar 

  • Sileman TA, Nicholson WL (2000) Artificial and solar UV radiation induces strand breaks and cyclobutane pyrimidine dimers in Bacillus subtilis spore DNA. Appl Environ Microbiol 66:199–205

    Article  Google Scholar 

  • Singh R, Singh S, Tripathi R, Agrawal SB (2011) Supplemental UV-B radiation induced changes in growth, pigments and antioxidant pool of bean (Dolichos lablab) under field conditions. J Environ Biol 32:139–145

    CAS  PubMed  Google Scholar 

  • Sinha RP, Häder DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1(4):225–236

    Article  CAS  PubMed  Google Scholar 

  • Sinha RP, Margit Dautz M, Häder D-P (2001) A simple and efficient method for the quantitative analysis of thymine dimers in cyanobacteria, phytoplankton and macroalgae. Acta Protozool 40:187–195

    CAS  Google Scholar 

  • Skórska E (2000) Responses of some crop plants on UV-B radiation (in Polish), Rozprawy, 192. Agricultural University Press, Szczecin

    Google Scholar 

  • Spreitzer RJ (1993) Genetic dissection of Rubisco structure and function. Annu Rev Plant Physiol Plant Mol Biol 44:411–434

    Article  CAS  Google Scholar 

  • Staehelin J, Dütsch HU (1989) Zeigen die Schweizerischen Messungen eine Gefährdung der Ozonschicht? Chimia 43:338–348

    CAS  Google Scholar 

  • Staehelin J, Blumthaler M, Ambach W, Torhorst J (1990) Skin cancer and the ozone shield. Lancet 336:502

    Article  CAS  PubMed  Google Scholar 

  • Stein JC, Hansen G (1999) Mannose induces an endonuclease responsible for DNA laddering in plant cells. Plant Physiol 121:71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein B, Rahmsdorf HJ, Steffen A, Litfin M, Herrlich P (1989) UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type 1, collagenase, c-fos, and metallothionein. Mol Cell Biol 9:5169–5181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strid A, Chow WS, Anderson JM (1990) UV-B damage and protection at the molecular level in plants. Photosynth Res 39:475–489

    Article  Google Scholar 

  • Sullivan JH (1997) Effects of increasing UV-B radiation and atmospheric CO2 on photosynthesis and growth implications for terrestrial ecosystems. Plant Ecol 128:194–206

    Article  Google Scholar 

  • Sullivan JH, Teramura AH (1989) The effects of ultravioletB radiation on loblolly pine. I. Growth, photosynthesis and pigment production in greenhouse-grown seedlings. Physiol Plantarum 77:202–207

    Article  CAS  Google Scholar 

  • Sutherland JC, Griffin KP (1981) Absorption spectrum of DNA for wavelengths greater than 300 nm. Radiat Res 86:399–409

    Article  CAS  PubMed  Google Scholar 

  • Szilárd A, Sass L, Deák Z, Vass I (2007) The sensitivity of Photosystem II to damage by UV-B radiation depends on the oxidation state of the water-splitting complex. Biochim Biophys Acta 1767:876–882

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi A, Yamaguchi T, Hidema J, Strid A, Kumagai T (2002) Changes in synthesis and degradation of Rubisco and LHCII with leaf age in rice (Oriza sativa L.) growing under supplementary UV-B radiation. Plant Cell Environ 25:695–706

    Article  CAS  Google Scholar 

  • Teramura AH (1983) Effect of ultraviolet-B radiation on the growth and yield of crop plants. Physiol Plant 58:415–427

    Article  CAS  Google Scholar 

  • Teramura AH, Murali NS (1986) Intraspecific differences in growth and yield of soybean exposed to ultraviolet-B radiation under greenhouse and field conditions. Environ Exp Bot 26:89–95

    Article  Google Scholar 

  • Teramura AH, Sullivan JH (1991) Potential effects of increased solar UV-B on global plant productivity. In: Riklis E (ed) Photobiology. Plenum Press, New York, pp 625–634

    Chapter  Google Scholar 

  • Teramura AH, Sullivan JH (1994) Effects of UV-B radiation on photosynthesis and growth of terrestrial plants. Photosynth Res 39:463–473

    Article  CAS  PubMed  Google Scholar 

  • Tevini M (1993) Effect of enhanced UV-B radiation on terrestrial plants. In: Tevini M (ed) UV-B radiation and ozone depletion: effect on humans, animals, plants, microorganisms, and materials. Lewis Publishers, Boca Raton, pp 125–153

    Google Scholar 

  • Tevini M, Teramura AH (1989) UV-B effect on terrestrial plants. Photochem Photobiol 50:479–487

    Article  CAS  Google Scholar 

  • Tevini M, Iwanzik W, Thoma U (1981) Some effect of enhanced ultraviolet radiation on the growth and composition of plants: barley, maize, kidney beans, radishes. Planta 153:388–394

    Article  CAS  PubMed  Google Scholar 

  • Tosserams M, Visser A, Groen M, Kalis G, Magendans E, Rozema J (2001) Combined effects of CO2 concentration and enhanced UV-B radiation on faba bean. Plant Ecol 154:195–210

    Article  Google Scholar 

  • Tsukaguchi T, Iida Y (2008) Effects of assimilate supply and high temperature during grain-filling period on the occurrence of various types of chalky kernels in rice plants (Oryza sativa L.). Plant Prod Sci 11:203–210

    Article  Google Scholar 

  • Tyrrell RM, Pidoux M (1989) Singlet oxygen involvement in the inactivation of cultured human fibroblasts by UV-A (334 nm, 365 nm) and near-visible (405 nm) radiations. Photochem Photobiol 49(4):407–412

    Article  CAS  PubMed  Google Scholar 

  • Tyrrell RM, Sage E (2011) Handbook of photochemistry and photobiology, 3rd edn. CRC Press. ISBN 9781439899335–CAT#K14351

    Google Scholar 

  • Tyrrell RM, Ley RD, Webb RB (1974) Induction of single-strand breaks (alkali-labile bonds) in bacterial and phage DNA by near UV (365 nm) radiation. Photochem Photobiol 20:395–398

    Article  CAS  PubMed  Google Scholar 

  • UNEP (1994) Environmental effect of ozone depletion: 1994 assessment. In: Madronich S, Mckenzie RL, Caldwell MM, Björn LO (eds) Changes in ultraviolet radiation reaching the Earth’s surface. Stratospheric Ozone and Human Health Project, United Nations Environment Programme (UNEP)

    Google Scholar 

  • Van Breusegem F, Vranova E, Dat JF, Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:404–414

    Google Scholar 

  • Van Rensen JJS, Vredenberg WJ, Rodrigues GC (2007) Time sequence of the damage to the acceptor and donor sides of photosystem II by UV-B radiation as evaluated by chlorophyll a fluorescence. Photosynth Res 94:291–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vigh L, Los DA, Horvath I, Murata N (1993) The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc Natl Acad Sci U S A 90:9090–9094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vile GF, Tyrrell RM (1995) UV-A radiation-induced oxidative damage to lipids and proteins in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen. Free Radic Biol Med 18(4):721–730

    Article  CAS  PubMed  Google Scholar 

  • von Sonntag C (2006) Free-radical-induced DNA damage and its repair. Springer, Berlin

    Book  Google Scholar 

  • Vu CV, Allen LH Jr, Garrard LA (1982) Effect of supplemental UV-B radiation on primary photosynthetic carboxylating enzymes and soluble proteins in leaves of C3 and C4 crop plants. Physiol Plant 55(1):11–16

    Article  CAS  Google Scholar 

  • Vu CV, Allen LH, Gaward LH (1984) Effects of enhanced UV-B radiation (280–320 nm) on ribulose-1.5-bisphosphate carboxylase in pea and soybean. Environ Exp Bot 24:131–144

    Article  CAS  Google Scholar 

  • Vu CV, Allen LH, Gaward LH (1984) Effects of enhanced UV-B radiation (280–320 nm) on ribulose-1.5-bisphosphate carboxylase in pea and soybean. Environ. Exp. Bot. 24:131–144

    Google Scholar 

  • Wang Q-W, Hidema J, Hikosaka K (2014) Is UV-induced DNA damage greater at higher elevation? Am J Bot 101(5):796–802

    Article  PubMed  Google Scholar 

  • Warner CW, Caldwell MM (1983) Influence of photon flux density in the 400-700 nm waveband of inhibition of photosynthesis by UV-B (280-320 nm) radiation in soybean leaves: separation of indirect and immediate effects. Photochem Photobiol 38:341–346

    Article  CAS  Google Scholar 

  • Whitmore SE, Potten CS, Chadwick CA, Strickland PT, Morison WL (2001) Effect of photoreactivating light on UV radiation-induced alterations in human skin. Photodermatol. Photoimmunol Photomed 17(5):213–217

    Article  CAS  Google Scholar 

  • Wondrak GT, Jacobson MK, Jacobson EL (2006) Endogenous UV-A-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci 5:215–237

    Article  CAS  PubMed  Google Scholar 

  • Wright LA, Murphy TM, Travis RL (1981) The effect of ultraviolet radiation on wheat root vesicles enriched in plasma membrane. Photochem Photobiol 33:343–348

    Article  CAS  Google Scholar 

  • Yagura T, Makita K, Yamamoto H, Menck C, Schuch AP (2011) Biological sensors for solar ultraviolet radiation. Sensors 11:4277–4294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Hu X, Henkow L, Jordan BR, Strid A (1994) The effect of ultraviolet-B radiation on the CF0F1-ATP-ase. Biochim Biophys Acta 1185:295–302

    Article  CAS  Google Scholar 

  • Zhang XS, Rosenstein BS, Wang Y et al (1997) Induction of 8-oxo-7,8-dihydro-2′-deoxyguanosine by ultraviolet radiation in calf thymus DNA and HeLa cells. Photochem Photobiol 65:119–124

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Sen Mandi, S. (2016). UV Radiation-Induced Damage at Molecular Level. In: Natural UV Radiation in Enhancing Survival Value and Quality of Plants. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2767-0_3

Download citation

Publish with us

Policies and ethics