Bismuth-Centered Perovskite Multiferroics

  • Asish K. Kundu
Part of the Engineering Materials book series (ENG.MAT.)


Multifunctional materials (multiferroics, magneto-dielectric, spintronics etc.) have attracted increasing attention due to their possible applications towards storage materials and intriguing fundamental physics. Among the naturally existing oxides, the presence of both ferromagnetism and ferroelectricity is a rare phenomenon, due to the incompatibility between magnetism and ferroelectricity. This incongruity could be at the origin of a limited number of multiferroics, though the researchers are looking for such materials from more than six decades. This phenomenon often occurs in perovskite oxide having the general formula ABO3 and the most well-known examples of existing perovskite multiferroics are BiFeO3 and BiMnO3.


Dielectric Response Magnetotransport Property Extrinsic Effect Boundary Capacitance Pnma Space Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. K. Baltzer, H. W. Lahmann, M. Robbins, Phys. Rev. Lett. 15, 493 (1965); G. A. Prinz, J. Mag. Mag. Mater. 200, 57 (1999)Google Scholar
  2. 2.
    N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)CrossRefGoogle Scholar
  3. 3.
    N. A. Hill, A. Filipetti, J. Magn. Magn. Mater. 242–245, 976 (2002); A. M. Santos, S. Parashar, A. R. Raju, Y. S. Zhao, A. K. Cheetham, C. N. R. Rao, Solid State Commun. 122, 49 (2002); A. M. Santos, A. K. Cheetham, T. Atou, Y. Syono, Y. Yamaguchi, K. Ohoyama, H. Chiba, C. N. R. Rao, Phys. Rev. B 66, 064425 (2002)Google Scholar
  4. 4.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)CrossRefGoogle Scholar
  5. 5.
    T. Kimura, S. Kawamoto, Y. Yamada, M. Azuma, M. Takano, Y. Tokura, Phys. Rev. B 67, 180401(R) (2003)CrossRefGoogle Scholar
  6. 6.
    D.V. Efremov, J. van den Brink, D.I. Khomskii, Nature Mater. 3, 853 (2004)CrossRefGoogle Scholar
  7. 7.
    M. Fiebig, J. Phys. D 38, R123 (2005)CrossRefGoogle Scholar
  8. 8.
    W. Prellier, M.P. Singh, P. Murugavel, J. Phys.: Condens. Matter 17, R803 (2005)Google Scholar
  9. 9.
    N.S. Rogado, J. Li, A.W. Sleight, M.A. Subramanian, Adv. Mat. 17, 2225 (2005)CrossRefGoogle Scholar
  10. 10.
    G. T. Rado, Phys. Rev. Lett. 6, 609 (1961); T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature (London) 426, 55 (2003); T. Goto et al., Phys. Rev. Lett. 92, 257201 (2004); N. Hur, S. Park, P. A. Sharma, S. Guha, S. W. Cheong, Phys. Rev. Lett. 93, 107207 (2004); C. R. Serrao et al., Phys. Rev. B, 72, 220101(R) (2005); N. Ikeda et al., Nature, 436, 1136 (2005); I. A. Sergienko, E. Dagotto, Phys. Rev. B, 73, 094434 (2006); I. A. Sergienko, C. Sen, E. Dagotto, Phys. Rev. Lett. 97, 227204 (2006); O. Heyer et al., J. Phys.: Condens. Matter 18, L471 (2006); J. R. Sahu, C. R. Serrao, N. Ray, U. V. Waghmare, C. N. R. Rao, J. Mater. Chem. 17, 42 (2007); W. Eerenstein, M. Wiora, J. L. Prieto, J. F. Scott, N. D. Mathur, Nature Mater. 6, 348 (2007); W. Wu, et al., Phys. Rev. Lett. 101, 137203 (2008); B. Kundys, A. Maignan, C. Simon, Appl. Phys. Lett. 94, 072506, (2009); T. Kimura, Nature Mater. 7, 291 (2008); G. Catalan, J. F. Scott, Adv. Mat. 21, 2463 (2009); C. N. R. Rao et al., J. Phys. Chem. Lett. 3, 2237 (2012); R. D. Johnson et al., Phys. Rev. Lett. 108, 067201 (2012); N. Lee et al., Phys. Rev. Lett. 110, 137203 (2013); K. Singh et al., Phys. Rev. B 88, 094438 (2013); D. K. Pratt et al., Phys. Rev. B 90, 140401(R) (2014); R. Saha et al., Mater. Horiz. 1, 20 (2014); T. Basu et al., Sci. Rep. 4, 5636 (2014); A. K. Kundu, M. M. Seikh, P. Nautiyal, J. Magn. Magn. Mater. 378, 506, (2015)Google Scholar
  11. 11.
    C. Felser, G.H. Fecher, B. Balke, Angew. Chem. Int. Ed. 46, 668 (2007)CrossRefGoogle Scholar
  12. 12.
    D.J. Singh, C.H. Park, Phys. Rev. Lett. 100, 087601 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, M. Takano, J. Am. Chem. Soc. 127, 8889 (2005)CrossRefGoogle Scholar
  14. 14.
    I.O. Troyanchuk, O.S. Mantytskaja, H. Szymczak, M.Y. Shvedun, Low. Temp. Phys. 28, 569 (2002)CrossRefGoogle Scholar
  15. 15.
    Y.D. Zhao, J. Park, R.J. Jung, H.J. Noh, S.J. Oh, J. Mag. Mag. Mater. 280, 404 (2004)CrossRefGoogle Scholar
  16. 16.
    M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy, A. Fert, Nature Mater. 6, 296 (2007)CrossRefGoogle Scholar
  17. 17.
    C.-H. Yang, S.-H. Lee, C. Song, T.Y. Koo, Y.H. Jeong, Phys. Rev. B 75, 140104(R) (2007)CrossRefGoogle Scholar
  18. 18.
    A.K. Kundu, V. Pralong, V. Caignaert, C.N.R. Rao, B. Raveau, J. Mater. Chem. 17, 3347 (2007)CrossRefGoogle Scholar
  19. 19.
    A.K. Kundu, R. Ranjith, B. Kundys, N. Nguyen, V. Caignaert, V. Pralong, W. Prellier, B. Raveau, Appl. Phys. Lett. 93, 052906 (2008); V.K. Jha, P. Nautiyal, M.M. Seikh, R. Chatterjee, R. Mahendiran, A.K. Kundu, J. Mater. Sci. 48, 7629 (2013)Google Scholar
  20. 20.
    R. Ranjith, A.K. Kundu, M. Filippi, B. Kundys, W. Prellier, B. Raveau, J. Laverdiere, M.P. Singh, S. Jandl, Appl. Phys. Lett. 92, 062909 (2008)CrossRefGoogle Scholar
  21. 21.
    M. Filippi, B. Kundys, R. Ranjith, A.K. Kundu, W. Prellier, Appl. Phys. Lett. 92, 212905 (2008)CrossRefGoogle Scholar
  22. 22.
    A.K. Kundu, R. Ranjith, V. Pralong, V. Caignaert, B. Raveau, J. Mater. Chem. 18, 4280 (2008)CrossRefGoogle Scholar
  23. 23.
    G. Anjum, R. Kumar, S. Mollah, D.K. Shukla, S. Kumar, C.G. Lee, J. Appl. Phys. 107, 103916 (2010)CrossRefGoogle Scholar
  24. 24.
    A.K. Kundu, M.M. Seikh, A. Srivastava, S. Mahajan, R. Chatterjee, V. Pralong, B. Raveau, J. Appl. Phys. 110, 073904 (2011)CrossRefGoogle Scholar
  25. 25.
    A.K. Kundu, V.K. Jha, M.M. Seikh, R. Chatterjee, R. Mahendiran, J. Phys.: Condens. Matter. 24, 255902 (2012)Google Scholar
  26. 26.
    K. Vijayanandhini, C. Simon, V. Pralong, Y. Bréard, V. Caignaert, B. Raveau, P. Mandal, A. Sundaresan, C. N. R. Rao, J. Phys.: Condens. Matter. 21, 486002 (2009); M. E. Villafuerte-Castrej et al., Inorg. Chem. 50, 8340 (2011); P. Mandal et al., RSC Advances, 2, 292 (2012)Google Scholar
  27. 27.
    P. A. Joy, Y. B. Khollam, S. K. Date, Phys. Rev. B 62, 8608 (2000); R. I. Dass, J. B. Goodenough, Phys. Rev. B 67, 014401 (2003)Google Scholar
  28. 28.
    C.L. Bull, D. Gleeson, K.S. Knight, J. Phys.: Condens. Matter 15, 4927 (2003); P. Mandal et al., Phys. Rev. B 82, 100416 (2010); P. Mandal et al., J. Mater. Chem. 20, 1646 (2010); S. Ghara et al., Phys. Rev. B 90, 024413 (2014)Google Scholar
  29. 29.
    W. Prellier, A. Fouchet, B. Mercey, J. Phys.: Condens. Matter 15, R1583 (2003)Google Scholar
  30. 30.
    D.N.H. Nam, R. Mathieu, P. Nordblad, N.V. Khiem, N.X. Phuc, Phys. Rev. B 62, 1027 (2000)CrossRefGoogle Scholar
  31. 31.
    A.K. Kundu, P. Nordblad, C.N.R. Rao, J. Phys.: Condens. Matter 18, 4809 (2006)Google Scholar
  32. 32.
    K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)CrossRefGoogle Scholar
  33. 33.
    J.A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor and Francis, London, 1993)Google Scholar
  34. 34.
    A.K. Kundu, P. Nordblad, C.N.R. Rao, J. Solid State Chem. 179, 923 (2006)CrossRefGoogle Scholar
  35. 35.
    J.B. Goodenough, A. Wold, R.J. Arnott, N. Menyuk, Phys. Rev. 124, 373 (1961); G.H. Jonker, J. Appl. Phys. 37, 1424 (1966)Google Scholar
  36. 36.
    N.Y. Vasanthacharya, P. Ganguly, J.B. Goodenough, C.N.R. Rao, J. Phys. C: Solid State Phys. 17, 2745 (1984)CrossRefGoogle Scholar
  37. 37.
    S. Hebert, C. Martin, A. Maignan, R. Retoux, M. Hervieu, N. Nguyen, B. Raveau, Phys. Rev. B 65, 104420 (2002)CrossRefGoogle Scholar
  38. 38.
    H.Z. Guo, A. Gupta, T.G. Calvarese, M.A. Subramanian, Appl. Phys. Lett. 89, 262503 (2006)CrossRefGoogle Scholar
  39. 39.
    G. Blasse, J. Phys. Chem. Solids 26, 1969 (1965); V. L. J. Joly, P. A. Joy, S. K. Date, C. S. Gopinath, Phys. Rev. B 65, 184416 (2002); R. I. Dass, J. Q. Yan, J. B. Goodenough, Phys. Rev. B 68, 064415 (2003)Google Scholar
  40. 40.
    M. Sakai, A. Masuno, D. Kan, M. Hashisaka, K. Takata, M. Azuma, M. Takano, Y. Shimakawa, Appl. Phys. Lett. 90, 072903 (2007)CrossRefGoogle Scholar
  41. 41.
    P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 172102 (2004)CrossRefGoogle Scholar
  42. 42.
    Lunkenheimer, V. Bobnar,A. V. Pronin, A. I. Ritus, A. A. Volkov, A. Loidl, Phys. Rev. B 66, 052105 (2002)Google Scholar
  43. 43.
    F. Bordi, C. Cametti, R.H. Colby, J. Phys.: Condens. Matter 16, R1423–R1463 (2004). references thereinGoogle Scholar
  44. 44.
    D. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)CrossRefGoogle Scholar
  45. 45.
    T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B 73, 094124 (2006)CrossRefGoogle Scholar
  46. 46.
    A.I. Ritus, A.V. Pronin, A.A. Volkov, P. Lunkenheimer, A. Loidl, A.S. Shcheulin, A.I. Ryskin, Phys. Rev. B 65, 165209 (2002)CrossRefGoogle Scholar
  47. 47.
    N. Biškup, A. de Andrés, J.L. Martinez, C. Perca, Phys. Rev. B 72, 024115 (2005)CrossRefGoogle Scholar
  48. 48.
    R. Cabassi, F. Bolzoni, A. Gauzzi, E. Gilioli, A. Prodi, F. Licci, Phys. Rev. B 74, 045212 (2006)CrossRefGoogle Scholar
  49. 49.
    G. Catalan, J.F. Scott, Nature (London) 448, E4–E5 (2007)CrossRefGoogle Scholar
  50. 50.
    G. Catalan, Appl. Phys. Lett. 88, 102902 (2006)CrossRefGoogle Scholar
  51. 51.
    J.F. Scott, J. Mater. Res. 22, 2053 (2007)CrossRefGoogle Scholar
  52. 52.
    J.F. Scott, Phys. Rev. B 16, 2329 (1977)CrossRefGoogle Scholar
  53. 53.
    E. Granado, A. Garcia, J.A. Sanjurjo, C. Rettori, I. Torriani, E. Prado, R.D. Sanchez, A. Canerio, S.B. Oseroff, Phys. Rev. B 60, 11879 (1999)CrossRefGoogle Scholar
  54. 54.
    J. Laverdiere, S. Jandl, A.A. Mukhin, VYu. Ivanov, V.G. Ivanov, M.N. Iliev, Phys. Rev. B 73, 214301 (2006)CrossRefGoogle Scholar
  55. 55.
    F. Sriti, A. Maignan, C. Martin, B. Raveau, Chem. Mater. 13, 1746 (2001)CrossRefGoogle Scholar
  56. 56.
    N.F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1990)Google Scholar
  57. 57.
    H. Chiba, T. Atou, T. Syono, J. Solid State Chem. 132, 139 (1997)CrossRefGoogle Scholar
  58. 58.
    A.K. Kundu, K. Ramesha, R. Seshadri, C.N.R. Rao, J. Phys.: Condens. Matter 16, 7955 (2004). references thereinGoogle Scholar
  59. 59.
    M.H. Cohen, J.B. Neaton, L. He, D. Vanderbilt, J. Appl. Phys. 94, 3299 (2003); J. Liu, C. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, J. Appl. Phys. 98, 093703 (2005)Google Scholar
  60. 60.
    F.M.A. Da Costa, A.J.C. Dos Santos, Inorg Chim Acta 140, 105 (1987)CrossRefGoogle Scholar
  61. 61.
    S. D. Bhame, Joly V. L. Joseph, P. A. Joy, Phys Rev B 72, 054426 (2005); K. De, R. Ray, R. N. Panda, S. Giri, H. Nakamura, T. Kohara, J. Magn. Magn. Mater. 288, 339 (2005)Google Scholar
  62. 62.
    M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1979)Google Scholar
  63. 63.
    P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag, O. Eriksson, Phys. Rev. B 74, 224412 (2006). references thereinCrossRefGoogle Scholar
  64. 64.
    A.K. Jonscher, J. Mater. Sci. 16,2037 (1981); A.K. Jonscher, J. Phys. D 32, R57 (1999)Google Scholar
  65. 65.
    R.A. Ricciardo, A.J. Hauser, F.Y. Yang, H. Kim, W. Lu, P.M. Woodward, Mater. Res. Bull. 44, 239 (2009)CrossRefGoogle Scholar
  66. 66.
    P. Nautiyal, M.M. Seikh, V. Pralong, A.K. Kundu, J. Magn. Magn. Mater. 347, 111 (2013)CrossRefGoogle Scholar
  67. 67.
    Y. Bai, Y. Xia, H. Li, L. Han, Z. Wang, X. Wu, S. Lv, X. Liu, J. Meng, J. Phys. Chem. C 116, 16841 (2012)CrossRefGoogle Scholar
  68. 68.
    Y. Bai, X. Liu, Y. Xia, H. Li, X. Deng, L. Han, Q. Liang, X. Wu, Z. Wang, J. Meng, Appl. Phys. Lett. 100, 222907 (2012)CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Indian Institute of Information Technology, Design and Manufacturing, JabalpurJabalpurIndia

Personalised recommendations