Advertisement

Electronic Phase Separation and Glassy Behavior in Magnetic Perovskites

  • Asish K. Kundu
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

The electronic phase separation or segregation implies the presence of at least two distinct phases in the same system. But the relative fractions may vary anywhere from a dilute regime, involving small domains of the minor phase (or clusters) in the matrix of the major phase, to a situation in which the fractions of the two phases are comparable. The ferromagnetic clusters present randomly in an antiferromagnetic host matrix often give rise to a glassy behavior. As the ferromagnetic clusters in an antiferromagnetic matrix grow in size to become reasonably sized domains, due to effect of temperature, composition, or an applied magnetic field, the system acquires the characteristics of a genuine phase-separated system with interesting magnetic properties.

Keywords

Spin Glass Electron Transport Property Ferromagnetic Cluster Spin Glass Phase Perovskite Manganite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E.O. Wollan, W.C. Koehler, Phys. Rev. 100, 545 (1955); W.C. Koehler, E.O. Wollan, J. Phys. Chem. Solids 2, 100, (1957); C.N.R. Rao, A.K. Cheetham, R. Mahesh, Chem. Mater. 8, 2421 (1996); E.L. Nagaev, Phys. Usp 39, 781 (1996); C.N.R. Rao, Chem. Eur. J. 2, 1499 (1996); A.P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997); C.N.R. Rao, B. Raveau (eds.), Colossal Magnetoresistance, Charge-Ordering and Related Properties of Manganese Oxides (World Scientific, Singapore, 1998); A. Mareo, S. Yunoki, E. Dagotto, Science 283, 2034 (1999); C.N.R. Rao, A. Arulraj, A.K. Cheetham, B. Raveau, J. Phys.: Condens. Matter 12, R83 (2000); Y. Tokura, Colossal Magnetoresistive Oxides (Gordon and Breach, NewYork, 2000)Google Scholar
  2. 2.
    E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001); E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds (Springer, Berlin, New York, 2003); N.D. Mathur et al., Phys. Today 56, 25, (2003); C.N.R. Rao, A.K. Kundu, M.M. Seikh, L. Sudheendra, Dalton Trans. 19, 3003 (2004); V.B. Shenoy et al., Phys. Rev. Lett., 98, 097201 (2007); V.B. Shenoy, C.N.R. Rao, Phil. Trans. R. Soc. A 366, 63 (2008); V.B. Shenoy et al., Chem. Phys. Chem. 7, 2053, (2010); B. Raveau, M.M. Seikh, Cobalt Oxides: From Crystal Chemistry to Physics (Wiley-VCH, 2012)Google Scholar
  3. 3.
    L.M. Rodriguez-Martinez, J.P. Attfield, Phys. Rev. B 54, R15622 (1996); J.P. Attfield, Chem. Mater. 10, 3239 (1998)Google Scholar
  4. 4.
    J.M.D. Teresa, M.R. Ibarra, P.A. Algarabel, C. Ritter, C. Marquina, J. Blasco, J. Garcia, A.D. Moral, Z. Arnold, Nature 386, 256, (1997); D.E. Cox, P.G. Radealli, M. Marezio, S-W. Cheong, Phys. Rev. B 57, 3305 (1998); S. Marcone et al., Phys. Rev. B 68, 094422 (2003)Google Scholar
  5. 5.
    P.G. Radealli, R.M. Ibberson, D.N. Argyriou, H. Casalta, K.H. Andersen, S.-W. Cheong, J.F. Mitchell, Phys. Rev. B 63, 172419 (2001)CrossRefGoogle Scholar
  6. 6.
    G.S. Bhalla, S. Selcuk, T. Dhakal, A. Biswas, A.F. Hebard, Phys. Rev. Lett. 102, 077205 (2009); Y. Murakami et al., Nat. Nanotech. 5, 37 (2010); T.Z. Ward, Z. Gai, H.W. Guo, L.F. Yin, J. Shen, Phys. Rev. B 83, 125125 (2011); D. Niebieskikwiat, R.D. Sánchez, J. Phys.: Condens. Mater. 24, 436001 (2012)Google Scholar
  7. 7.
    A. Moreo, S. Yunoki, E. Dagotto, Science 283, 2034 (1999); M. Fäth et al., Science 285, 1540, (1999); M.R. Freeman et. al. Science 294, 1484, (2001); J. C. Loudon et al., Nature 420, 797, (2002); Ch. Renner, G. Aeppli, B.G. Kim, Y.A. Soh, S.W. Cheong, Nature 416, 518 (2002); L. Zhang et. al., Science 298, 805, (2002); L. Ghivelder, F. Parisi, Phys. Rev. B 71, 184425 (2005); E. Dagotto, Science, 309, 257 (2005); V. B. Shenoy et al., Phys. Rev. Lett. 98, 097201 (2007); J. Tao et al., Phys. Rev. Lett. 103, 097202 (2009); Liang et al., Nanoscale Res. Lett. 9, 325 (2014) and references thereinGoogle Scholar
  8. 8.
    C.N.R. Rao, A.R. Raju, V. Ponnambalam, S. Parashar, N. Kumar, Phys. Rev. B 61, 594 (2000); S. Srivastava, N.K. Pandey, P. Padhan, R.C. Budhani, Phys. Rev. B 62, 13868 (2001); R.C. Budhani, N.K. Pandey, P. Padhan, S. Srivastava, R.P.S. M. Lobo, Phys. Rev. B 65, 14429 (2002)Google Scholar
  9. 9.
    M. Uehara, S. Mori, C.H. Chen, S-W. Cheong, Nature (London) 399, 560 (1999); P.B. Littlewood, Nature (London) 399, 529 (1999). V. Podzorov, M. Uehara, M.E. Gershenson, T.Y. Koo, S.W. Cheong, Phys. Rev. B 61, R3784 (2000)Google Scholar
  10. 10.
    L. Sudheendra, C.N.R. Rao, J. Phys.: Condens. Mater. 15, 3029 (2003); A.K. Kundu, P.V. Vanitha, C.N.R. Rao, Solid State Comm. 125, 41 (2003)Google Scholar
  11. 11.
    A.M. Balagurov, VYu. Pomjakushin, D.V. Sheptyakov, V.L. Aksenov, P. Fischer, L. Keller, OYu. Gorbenko, A.R. Kaul, N.A. Babushkina, Phys. Rev. B 64, 24420 (2001)CrossRefGoogle Scholar
  12. 12.
    H. Terashita, J.J. Neumeier, Phys. Rev. B 63, 174436 (2001)CrossRefGoogle Scholar
  13. 13.
    J.M. de Teresa, M.R. Ibarra, J. Garcia, J. Blasco, C. Ritter, P.A. Algarabel, C. Marquina, A. del Moral, Phys. Rev. Lett. 76, 3392 (1996)CrossRefGoogle Scholar
  14. 14.
    I.G. Deac, S.V. Diaz, B.G. Kim, S.-W. Cheong, P. Schiffer, Phys. Rev. B 65, 174426 (2002)CrossRefGoogle Scholar
  15. 15.
    A.K. Kundu, M.M. Seikh, K. Ramesha, C.N.R. Rao, J. Phys.: Condens. Mater. 17, 4171 (2005); A.K. Kundu, P. Nordblad, C.N.R. Rao, J. Phys.: Condens. Mater. 18, 4809 (2006)Google Scholar
  16. 16.
    A. Maignan, C. Martin, M. Hervieu, B. Raveau, J. Hejtmanek, Solid State Commun. 107, 363 (1998); I.O. Troyanchuk, D.D. Khalyavin, S.V. Trukhanov, H. Szymczak, J. Phys.: Condens. Matter 11, 8707 (1999)Google Scholar
  17. 17.
    P.M. Woodward, D.E. Cox, T. Vogt, C.N.R. Rao, A.K. Cheetham, Chem. Mater. 11, 3528 (1999)CrossRefGoogle Scholar
  18. 18.
    C. Ritter, R. Mahendiran, M.R. Ibarra, L. Morellon, A. Maignan, B. Raveau, C.N.R. Rao, Phys. Rev. B 61, R9229 (2000)CrossRefGoogle Scholar
  19. 19.
    P.V. Vanitha, C.N.R. Rao, J. Phys.: Condens. Mater. 13, 11707 (2001)Google Scholar
  20. 20.
    H. Kuwahara, Y. Tomioka, A. Asamitgu, Y. Moritomo, Y. Tokura, Science 270, 961 (1995); P.V. Vanitha, R.S. Singh, S. Natarajan, C.N.R. Rao, J. Solid. State. Chem. 137, 365 (1998); P.V. Vanitha, A. Arulraj, A.R. Raju, C.N.R. Rao, C.R. Acad. Sci. Paris, 2, 595 (1999)Google Scholar
  21. 21.
    J.A. Mydosh, in Spin Glasses: An Experimental Introduction (Taylor and Francis, London, 1993); K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)Google Scholar
  22. 22.
    D.N.H. Nam, R. Mathieu, P. Nordblad, N.V. Khiem, N.X. Phuc, Phys. Rev. B 62, 1027 (2000)Google Scholar
  23. 23.
    A.K. Kundu, K. Ramesha, R. Seshadri, C.N.R. Rao, J. Phys.: Condens. Mater. 16, 7955 (2004); A.K. Kundu, P. Nordblad, C.N.R. Rao, Phys. Rev. B 72, 144423 (2005); A.K. Kundu, P. Nordblad, C.N.R. Rao, J. Solid State Chem. 179, 923 (2006)Google Scholar
  24. 24.
    C. He, S. El-Khatib, J. Wu, J.W. Lynn, H. Zheng, J.F. Mitchell, C. Leighton, Euro. Phys. Lett., 87, 27006 (2009); F. Guillou, Q. Zhang, Z. Hu, C.Y. Kuo, Y.Y. Chin, H.J. Lin, C.T. Chen, A. Tanaka, L.H. Tjeng, V. Hardy, Phys. Rev. B 87, 115114 (2013); D. Phelan, K.P. Bhatti, M. Taylor, S. Wang, C. Leighton, Phys. Rev. B 89, 184427 (2014) and references thereinGoogle Scholar
  25. 25.
    M. Itoh, I. Natori, S. Kubota, K. Matoya, J. Phys. Soc. Jpn. 63, 1486 (1994)CrossRefGoogle Scholar
  26. 26.
    J. Wu, J.W. Lynn, C.J. Glinka, J. Burley, H. Zheng, J.F. Mitchell, C. Leighton, Phys. Rev. Lett. 94, 037201 (2005); D. Fuchs et al., Phys. Rev. B 71, 92406 (2005); M.W. Haverkort et al., Phys. Rev. Lett. 97, 176405 (2006); A.K. Kundu et al., J. Solid State Chem. 180, 1318, (2007); J. Yu et al., Phys. Rev. B 80, 052402, (2009); C. He et al., Phys. Rev. B 80, 214411, (2009)Google Scholar
  27. 27.
    P.M. Raccah et al., Phys. Rev. 155, 932 (1967); V.G. Bhide, D.S. Rajoria, C.N.R. Rao, G.R. Rao, V.G. Jadhao, Phys. Rev. B 12, 2832 (1975); M.A. Senaris Rodriguez et al., J. Solid State Chem. 118, 323 (1995); V. G. Sathe et al., J. Phys.: Condens. Mater. 8, 3889 (1996); M. Imada et al., Rev. Mod. Phys. 70, 1039, (1998); R. Caciuffo et al., Phys. Rev. B 59, 1068 (1999); R. Ganguly et al., J. Phys. Condens. Matter 13, 10911, (2001); V.G. Prokhorov et al, Phys. Rev. B 66, 132410 (2002); R. Mahendiran et al., Phys. Rev. B 68, 24427, (2003); L. Sudheendra et al., Ferroelectrics 306, 227 (2004); A. Ghoshray et al., Phys. Rev. B 69, 064424, (2004); M.J.R. Hoch et al., Phys. Rev. B 69, 014425, (2004); S. Tsubouchi et al. Phys. Rev. B 69, 144406, (2004); A.K. Kundu et al., Solid State Commun. 134, 307, (2005); S.R. Giblin et al., Euro. Phys. Lett., 70, 677 (2005)Google Scholar
  28. 28.
    J. Wu, C. Leighton, Phys. Rev. B 67, 174408 (2003); P.L. Kuhns, M.J.R. Hoch, W.G. Moulton, A.P. Reyes, J. Wu, C. Leighton, Phys. Rev. Lett. 91, 127202 (2003)Google Scholar
  29. 29.
    N. Khan, P. Mandal, D. Prabhakaran, Phys. Rev. B 90, 024421 (2014)CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Indian Institute of Information Technology, Design and Manufacturing, JabalpurJabalpurIndia

Personalised recommendations