Skip to main content

Stability Analysis of Haptic Virtual Environment Systems for Active Interactions in Surgical Robot Simulators

  • Conference paper
CAD/CAM, Robotics and Factories of the Future

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 3842 Accesses

Abstract

A haptic interface is a link between a human operator and a virtual environment and conveys a kinesthetic sense of presence in the virtual environment to the operator. The combined system includes a virtual environment simulated in a digital computer, a human operator and a haptic display that are actual physical systems. Such interfaces are commonly used in tele-surgical simulators and other systems to get a better feel for the user. For this system, stability is a prime concern because it may be affected by three major factors that are communication delay, controller discretization, and active operator intervention. In this paper, the stability of these systems is analysed and a framework which allows operator to interact actively with the virtual environment is proposed for telesurgical applications using surgical robots. Study of the simultaneous effect of all three de-stabilizing factors are carried out via the proposed framework. The well-known Colgate’s stability condition for a 1-user haptic system with a passive operator is reproduced and then extended to the case which allows each operator to behave actively. Another extension to Colgate’s condition comes by allowing communication delays to exist in the system. Simulations confirm the validity of the proposed conditions for stability of sampled-data Haptic Virtual Environment (HVE) systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artigas, J., Preusche, C., Hirzinger, G., Borghesan, G., & Melchiorri, C. (2008). Bilateral energy transfer in delayed teleoperation on the time domain. In Proceedings of IEEE International Conference on Robotics and Automation, Pasadena, CA, USA (pp. 671–676).

    Google Scholar 

  • Colgate, J., & Schenkel, G. (1997). Passivity of a class of sampled data systems: Application to haptic interfaces. Journal of Robotic Systems, 14(1), 37–47.

    Article  Google Scholar 

  • Dyck, M., Jazayeri, A., & Tavakoli, M. (2013). Is the human operator in a teleoperation system passive? In Proceedings of IEEE World Haptics Conference, Daejeon, Korea (pp. 683–688).

    Google Scholar 

  • Fotoohi, M., Sirouspour, S., & Capson, D. (2007). A multi-rate control approach to haptic interaction in multi-user virtual environments. In Proceedings of IEEE International Conference on Robotics and Automation, Rome, Italy (pp. 99–104).

    Google Scholar 

  • Gil, J., Avello, A., Rubio, A., & Florez, J. (2004). Stability analysis of a 1-DoF haptic interface using the Routh-Hurwitz criterion. IEEE Transactions on Control Systems Technology, 12(4), 583–588.

    Article  Google Scholar 

  • Glencross, M., Jay, C., Feasel, J., Kohli, L., Whitton, M., & Hubbold, R. (2007). Effective cooperative haptic interaction over the internet. In Proceedings of IEEE Virtual Reality Conference, Charlotte, NC, USA (pp. 115–122).

    Google Scholar 

  • Goncharenko, I., Svinin, M., Matsumoto, S., Masui, Y., Kanou, Y., & Hosoe, S. (2004). Cooperative control with haptic visualization in shared virtual environments. In Proceedings of International Conference on Information Visualization, London, UK (pp. 533–538).

    Google Scholar 

  • Haidegger, T., et al. (2009). Force Sensing and Force Control for Surgical Robots. In Proceedings of the 7th IFAC Symposium on Modelling and Control in Biomedical Systems.(pp. 413–418). Denmark: IFAC.

    Article  Google Scholar 

  • Hannaford, B., & Ry, J. H. (2002). Time-domain passivity control of haptic interfaces. IEEE Transactions on Robotics and Automation, 18(1), 1–10.

    Article  Google Scholar 

  • Ishii, C., et al. (2010). Robotic Forceps Manipulator with a Novel Bending Mechanism. IEEE/ASME Transactions on Mechatronics, 5(15), 671–684.

    Article  Google Scholar 

  • Jazayeri, A., & Tavakoli, M. (2011). A passivity criterion for sampled data bilateral teleoperation systems. In Proceedings of IEEE World Haptics Conference, Istanbul, Turkey (pp. 487–492).

    Google Scholar 

  • Leung, G., & Francis, B. (1992). Bilateral control of teleoperators with time delay through a digital communication channel. In Proceedings of the Thirtieth Annual Allerton Conference on Communication, Control and Computing, Urbana, IL, USA(pp. 692–701).

    Google Scholar 

  • Lum Mitchell, J. H., et al. (2009). The RAVEN: design and validation of a telesurgical system. The International Journal of Robotics Research, 28, 1183–1197.

    Article  Google Scholar 

  • Minsky, M. Ming, O.-Y., Steele, O., Brooks, Jr., F. P., & Behensky, M. (1990). Feeling and seeing: Issues in force display. In Proceedings of the 1990 Symposium on Interactive 3D Graphics, New York, NY, USA (pp. 235–241).

    Google Scholar 

  • Orozco, M., Silva, A. P. E., & El Saddik, J. (2012). The role of haptics in games. Haptics Rendering and Application, 2, 1221–1226.

    Google Scholar 

  • Parker, W. H. (2010). Laparoscopic and robotic myoectomy. Retrieved April 25, 2011, from http://www.fibroidsecondopinion.com/laparoscopic-myomectomy.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asokan Thondiyath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khandelwal, R., Thondiyath, A. (2016). Stability Analysis of Haptic Virtual Environment Systems for Active Interactions in Surgical Robot Simulators. In: Mandal, D.K., Syan, C.S. (eds) CAD/CAM, Robotics and Factories of the Future. Lecture Notes in Mechanical Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2740-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2740-3_46

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2738-0

  • Online ISBN: 978-81-322-2740-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics