Skip to main content

Abstract

Tomato (Solanum lycopersicum L.) is an important vegetable crop widely grown in both temperate and tropical regions. Abiotic stresses like heat, cold, salinity and flood have become major constraints for the tomato growth and yield. This chapter deals with the effects of the various stresses on tomato crop and the technologies developed to cope with these stresses to get optimum yield and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla AA, Verkerk K (1968) Growth, flowering and fruit set of the tomato at high temperature. Neth J Agric Sci 16:71–76

    Google Scholar 

  • Abdelmageed AHA, Gruda N (2007) Influence of heat shock pretreatment on growth and development of tomatoes under controlled heat stress conditions. J Appl Bot Food Qual 81:26–28

    Google Scholar 

  • Abdul-Baki AA (1991) Tolerance of tomato cultivars and selected germplasm to heat stress. J Am Soc Hortic Sci 116(6):1113–1116

    Google Scholar 

  • Abou Qamar S, Luo H, Laluk K, Mickelbart VM, Mengiste T (2009) Crosstalk between biotic and abiotic stress responses in tomato is mediated by AIM1 transcription factor. Plant J 58:1–13

    Article  Google Scholar 

  • Adams SR, Cockshull KE, Cave CRJ (2001) Effect of temperature on the growth and development of tomato fruits. Ann Bot 88:869–877

    Article  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • AVRDC (2001) Asian vegetable research and development center. In: AVRDC report 2000, Shanhua, Tainan, vii+ pp 152

    Google Scholar 

  • Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Berry SZ, Uddin MR (1988) Effect of high temperature on fruit-set in tomato cultivars and selected germplasm. HortSci 23:606–608

    Google Scholar 

  • Bhatt RM, Upreti KK, Divya MH, Srilakshmi Bhat, Pavithra CB, Sadashiva AT (2015) Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Sci Hortic 182:8–17

    Article  Google Scholar 

  • Bolarin MC, Cuartero EG, Cruz V, Cuartero J (1991) Salinity tolerance in four wild tomato species using vegetative yield-salinity response curves. J Am Soc Hortic Sci 116:286–290

    Google Scholar 

  • Bolarin MC, Perez-Alfocea F, Cano EA, Estan MT, Carol M (1993) Growth, fruit yield and ion concentration in tomato genotypes after pre- and post-emergence salt treatments. J Am Soc Hortic Sci 118:655–660

    CAS  Google Scholar 

  • Breto MP, Asins MJ, Carbonell EA (1994) Salt tolerance in Lycopersicon species. III. Detection of QTLs by means of molecular markers. Theor Appl Genet 88:395–401

    Google Scholar 

  • Cao X, Wu Z, Jiang F, Zhou R, Yang Z (2014) Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis. BMC Genomics 15:1130

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandra U, Gupta PN (1994) Evaluation of tomato germplasm adaptable to abiotic stress conditions of Northern India. Indian J Plant Genet Res 7(2):165–172

    Google Scholar 

  • Cheng TS, Floros JD, Shewfelt RL, Chang CJ (1988) The effect of high-temperature stress on ripening of tomatoes (Lycopersicon esculentum). J Plant Physiol 132(4):459–464

    Article  CAS  Google Scholar 

  • Cossins AR (1994) Homeoviscous adaptation of biological membranes and its functional significance. In: Cossins AR (ed) Temperature adaptation of biological membranes. Portland Press, London, pp 63–76

    Google Scholar 

  • Cruz V, Cuartero J, Bolarin MC, Romero M (1990) Evaluation of characters for ascertaining salt stress responses in Lycopersicon species. J Am Soc Hortic Sci 115:1000–1003

    CAS  Google Scholar 

  • Cuartero J, Fernandez-Munoz R (1999) Tomato and salinity. Sci Hortic 78:83–125

    Article  CAS  Google Scholar 

  • Cuartero J, Bolarıin MC, Asıins MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57(5):1045–1058

    Article  CAS  PubMed  Google Scholar 

  • Daie J (1980) Determination of the temperature response curves for abscisic acid and its derivatives in economically important horticultural crops, PhD thesis, Utah State University, Logan

    Google Scholar 

  • Drew MC (1979) Plant responses to anaerobic conditions in soil and solution culture. Curr Adv Plant Sci 36:1–14

    Google Scholar 

  • Else MA, Janowiak F, Atkinson CJ, Jackson MB (2009) Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Ann Bot 103:313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fariduddin Q, Mir BA, Ahmad A (2012) Physiological and biochemical traits as tools to screen sensitive and resistant varieties of tomatoes exposed to salt stress. Braz J Plant Physiol 24(4):281–292

    Article  CAS  Google Scholar 

  • Favati F, Lovelli S, Galgano F, Miccolis V, Di Tommaso T, Candido V (2009) Processing tomato quality as affected by irrigation scheduling. Sci Hortic 122:562–571

    Google Scholar 

  • Foolad MR (2005) Breeding for abiotic stress tolerances in tomato. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. The Haworth Press, New York, pp 613–684

    Google Scholar 

  • Foolad MR, Chen FQ (1999) RFLP mapping of QTLs conferring salt tolerance during vegetative stage in tomato. Theor Appl Genet 99:235–243

    Google Scholar 

  • Foolad MR, Stoltz T, Dervinis C, Rodriguez RL, Jones RA (1997) Mapping QTLs conferring salt tolerance during germination in tomato by selective genotyping. Mol Breed 3:269–277

    Article  CAS  Google Scholar 

  • Foolad MR, Chen FQ, Lin GY (1998) RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor Appl Genet 97:1133–1144

    Article  CAS  Google Scholar 

  • Foolad MR, Zhang LP, Lin GY (2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44:444–454

    Article  CAS  PubMed  Google Scholar 

  • Gisbert C, Rus AM, Bolarin MC, Lopez-Coronado M, Arrillaga I, Montesinos C, Caro M, Serrano R, Moreno V (2000) The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol 123:393–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumi AM, Aliero AA, Shehu K, Danbaba A (2013) Effects on growth, biochemical parameters and ion homeostasis in Solanum lycospersicum L. (Cv. Dan eka). Cent Eur J Exp Biol 2(3):20–25

    Google Scholar 

  • Hanna HY, Hernandez TP (1982) Response of six tomato genotypes under summer and spring weather conditions in Louisiana. Hortic Sci 17:758–9

    Google Scholar 

  • Hayata S, Hasana SA, Fariduddina Q, Ahmad A (2008) Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. J Plant Interact 3(4):297–304

    Article  Google Scholar 

  • Hazra P, Samsul HA, Sikder D, Peter KV (2007) Breeding tomato (Lycopersicon esculentum Mill) resistant to high temperature stress. Int J Plant Breed 1(1):31–40

    Google Scholar 

  • Hazra P, Ansary SH, Dutta AK, Balacheva E, Atanassova B (2009) Breeding tomato tolerant to high temperature stress. Acta Hortic 830:241–248

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Heuvelink E (1989) Influence of day and night temperature on the growth of young tomato plants. Sci Hortic 38:11–22

    Article  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurd RG, Grave CJ (1985) Some effects of air and root temperatures on the yield and quality of glasshouse tomatoes. J Hort Sci 60:359–371

    Google Scholar 

  • Kadirvel P (2010) Molecular breeding in vegetable crops: opportunities and challenges presented. In: 2nd national workshop on marker-assisted selection for crop improvement. ICRISAT, Patancheru

    Google Scholar 

  • Keatinge JDH, Lin LJ, Ebert AW, Chen WY, Hughes J’A, Luther GC, Wang JF, Ravishankar M (2014) Overcoming biotic and abiotic stresses in the Solanaceae through grafting: current status and future perspectives. Biol Agric Hortic Int J Sustain Prod Syst 30(4):272–287

    Article  Google Scholar 

  • Klay I, Pirrello J, Riahi L, Bernadac A, Cherif A, Bouzayen M, Bouzid S (2014) Ethylene response factor Sl-ERF.B.3 is responsive to abiotic stresses and mediates salt and cold stress response regulation in tomato. Sci World J Article ID 167681, 12 pages. http://dx.doi.org/10.1155/2014/16768

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer PJ (1951) Causes injury to plants resulting from flooding of the soil. Plant Physiol 26:722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo DG, Tsay JS, Chen BW, Lin PY (1982) Screening for flooding tolerance in the genus Lycopersicon. HortSci 17(1):6–78

    Google Scholar 

  • Langton FA, Lumsden PJ, Horridge J (1997) Are gibberellins involved in temperature-mediated stem extension responses in tomato? Acta Hortic 435:105–112

    Article  CAS  Google Scholar 

  • Lin KH, Lo HF, Leo SP, Kuo CG, Chen JT, Yeh WL (2006) RAPD markers for the identification of yield traits in tomatoes under heat stress via bulked segregant analysis. Hereditas 143:142–154

    Article  PubMed  Google Scholar 

  • Liu N, Ko S, Yeh KC, Charng Y (2006) Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Sci 170:976–985

    Article  CAS  Google Scholar 

  • Lynch DV, Thompson GA Jr (1982) Low temperature-induced alterations in the chloroplast and microsomal membrane of Dunaliella salina. Plant Physiol 69:1369–1375

    Google Scholar 

  • Lyon C (1941) Responses of two species of tomatoes and the F1 generation to sodium sulphate in the nutrient medium. Bot Gazette 103:107–122

    Article  CAS  Google Scholar 

  • Miroshnichenko S, Tripp J, Nieden U, Neumann D, Conrad U, Manteuffel R (2005) Immunomodulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. Plant J 41:269–281

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2002) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: increased activities of antioxidant enzymes in root plastids. Free Radic Res 36:195–202

    Article  CAS  PubMed  Google Scholar 

  • Monforte AJ, Asins MJ, Carbonell EA (1997) Salt tolerance in Lycopersicon species. V. Does genetic variability at quantitative trait loci affect their analysis? Theor Appl Genet 95:284–293

    Article  CAS  Google Scholar 

  • Nahar K, Gretzmacher R (2002) Effect of water stress on nutrient uptake, yield and quality of tomato (Lycopersicon esculentum Mill.) under subtropical conditions. Die Bodenkultur 53(1):45–51

    CAS  Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem ii from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patade VY, Khatri D, Kumari M, Grover A, Gupta SM, Ahmed Z (2013) Cold tolerance in Osmotin transgenic tomato (Solanum lycopersicum L.) is associated with modulation in transcript abundance of stress responsive genes. Springer Plus 2:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearce RS (2001) Plant freezing and damage. Ann Bot 87:417–424

    Article  CAS  Google Scholar 

  • Peet MM, Willits DH, Gardner R (1997) Response of ovule development and postpollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. J Exp Bot 48(306):101–111

    Article  CAS  Google Scholar 

  • Rao ES, Kadirvel P, Symonds RC, Ebert AW (2013) Relationship between survival and yield related traits in Solanum pimpinellifolium under salt stress. Euphytica 190:215–228

    Article  Google Scholar 

  • Rick CM (1979) Potential improvement of tomatoes by controlled introgression of genes from wild species. In: Proceedings, conference on broadening genetic base crops. Pudoc, pp 167–173

    Google Scholar 

  • Rivero RM, Ruiz JM, Garcia PC, Lopez-Lefebre LR, Sanchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–321

    Article  CAS  PubMed  Google Scholar 

  • Rosales MA, Rubio-Wilhelmi MM, Castellano R, Castilla N, Ruiz JM, Romero L (2007) Sucrolytic activities in cherry tomato fruits in relation to temperature and solar radiation. Sci Hortic 113:244–249

    Article  Google Scholar 

  • Sarad N, Rathore M, Singh NK, Kumar N (2004) Genetically engineered tomatoes: new vista for sustainable agriculture in High altitude regions. In: 4th international crop Science Congress, Brisbane

    Google Scholar 

  • Saranga Y, Zamir D, Marani A, Rudich J (1991) Breeding tomatoes for salt tolerance field-evaluation of Lycopersicon germplasm for yield and dry-matter production. J Am Soc Hortic Sci 116:1067–1071

    Google Scholar 

  • Sato S, Peet MM, Thomas JF (2002) Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. J Exp Bot 53:1187–1195 [PubMed]

    Google Scholar 

  • Sato S, Kamiyama M, Iwata T, Makita N, Furukawa H, Ikeda H (2006) Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann Bot 97:731–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamim F, Saqlan SM, Habib-Ur-Rehman A, Waheed A (2014) Screening and selection of tomato genotypes/cultivars for drought tolerance using multivariate analysis. Pak J Bot 46(4):1165–1178

    Google Scholar 

  • Shivashankara KS, Pavithra KC, Laxman RH, Sadashiva AT, George Christopher M (2014) Genotypic variability in tomato for total carotenoids and lycopene content during summer and response to post harvest temperature. J Hortic Sci 9:98–102

    Google Scholar 

  • Sibomana IC, Aguyoh JN, Opiyo AM (2013) Water stress affects growth and yield of container grown tomato (Lycopersicon esculentum Mill) plants. GJBB 2(4):461–466

    Google Scholar 

  • Tal M, Shannon MC (1983) Salt tolerance in two wild relatives of the cultivated tomato: responses of Lycopersican esculentum, L. cheesmani, L. peruvianum, Solanum pennelli and F1 hybrids of high salinity. Aust J Plant Physiol 10:109–117

    Article  Google Scholar 

  • Tari I, Jolan Csiszar J, Szalai G, HorvĂ¡th F, PĂ©csvĂ¡radi A, Kiss G, Szepesi A, Szabo M, Erdei L (2002) Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment. Acta Biol Szeged 46(3–4):55–56

    Google Scholar 

  • Wargent JJ, Pickup DA, Paul ND, Roberts MR (2013) Reduction of photosynthetic sensitivity in response to abiotic stress in tomato is mediated by a new generation plant activator. BMC Plant Biol 13:108. doi:10.1186/1471-2229-13-108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner RM, Erwin JE (2005) Naturally occurring variation in high temperature induced floral bud abortion across Arabidopsis thaliana accessions. Plant Cell Environ 28:1255–1266

    Article  Google Scholar 

  • Whitaker BD (1994) A reassessment of heat treatment as a means of reducing chilling injury in tomato fruit. Postharvest Biol Technol 4:75–83

    Article  Google Scholar 

  • Wudiri BB, Henderson DW (1985) Effects of water stress on flowering and fruit set in processing-tomatoes. Sci Hortic 27(3–4):189–198

    Article  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Sadashiva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Sadashiva, A.T., Singh, A., Kumar, R.P., Sowmya, V., D’mello, D.P. (2016). Tomato. In: Rao, N., Shivashankara, K., Laxman, R. (eds) Abiotic Stress Physiology of Horticultural Crops. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2725-0_7

Download citation

Publish with us

Policies and ethics