Skip to main content

Seed Priming for Abiotic Stress Tolerance: An Overview

  • Chapter
  • First Online:
Abiotic Stress Physiology of Horticultural Crops

Abstract

Heat, drought, cold, and salt stress are some of the major kinds of stresses that crops usually face under adverse weather or soil conditions. Abiotic stresses are often interrelated, either individually or in combination; they cause morphological, physiological, biochemical, and molecular changes that affect plant growth and development and ultimately yield. Various methodologies are in vogue to evolve stress-tolerant varieties either through conventional breeding or through transgenics. However, alternatively, more simple and economical practices are also in race to address this problem. Seed priming is one such farmer’s friendly techniques recommended by many researchers for better crop stand establishment and growth even under adverse conditions. The present chapter deals with different seed priming methods and their scope in mitigating stress effects. Besides hydro-, osmo-, and halopriming, the relevance of nutrient priming and redox priming techniques for stress tolerance was also discussed. Further, how seed “priming-induced” biochemical and molecular changes regulate stress tolerance was amply explained in the light of the latest research work carried in this direction. Although the phenomenon of “priming-induced” stress tolerance appears complex, the present-day advanced techniques like proteomics, genomics, metabolomics, and transcriptomics made the task much simpler to understand these events clearly at subcellular level. Since priming mimics similar events happening under stress, the same can be exploited as a model system to decipher pathways that contribute stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal I, Rauf S, Basra SMA, Murtaza G (2008) Halopriming improves vigor metabolism of reserves and ionic contents in wheat seedlings under salt stress. Plant Soil Environ 54(9):382–388

    CAS  Google Scholar 

  • Ahment K, Murat U, Ali Riza D (2007) Treatment with acetyl salicylic acid protects muskmelon seedlings against drought stress. Acta Physiol Plant 29:503–508

    Article  CAS  Google Scholar 

  • Ait Barka E, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth promoting rhizobacterium Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali SKZ, Sandhya V, Minakshi Grover Kishore N, Venkateswara Rao L, Venkateswarlu B (2009) Pseudomonas sp strain AKM–P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    Article  CAS  Google Scholar 

  • Al-Mudaris MA, Jutzi SC (1999) The influence of fertilizer based seed priming treatment on emergence and seedling growth of Sorghum bicolor and Pennisetum glaucum in pot trials under greenhouse conditions. J Agron Crop Sci 182:135–141

    Article  CAS  Google Scholar 

  • Ansari O, Choghazardi HR, Sharif-Zadeh F, Nazarli H (2012) Seed reserve utilization and seedling growth of treated seeds of mountain ray (Secale montanum) as affected by drought stress. Cercet Agronomice Moldova 2(150):43–48

    Google Scholar 

  • Arrvin MJ, Kazemi Poor N (2003) Response of onion cultivation to drought and salinity stress at germination stage and seed priming by chemicals to improve germination. Iran J Hortic Sci Technol 4:95–104

    Google Scholar 

  • Atreya A, Vartak V, Bhargava S (2009) Salt priming improves tolerance to desiccation stress and to extreme salt stress in Bruguiera cylindrica. Int J Integr Biol 6(2):68–73

    CAS  Google Scholar 

  • Baek KH, Skinner DZ (2003) Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci 165:1221–1227

    Article  CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413

    Article  Google Scholar 

  • Begum MM, Sariah M, Puteh AB, Zainal Abidin MA, Rahman MA, Siddiqui Y (2010) Field performance of bio primed seeds to suppress Colletotrichum truncatum causing damping off and seedling strand of soybean. Biol Control 53:18–23

    Article  Google Scholar 

  • Behnamnia M, Kalantari M, Rezanejad F (2009) Exogenous application of brassinosteriods alleviates drought induced oxidative stress in Lycopersicon esculentum. Gen Appl Plant Physiol 35:22–24

    CAS  Google Scholar 

  • Besford RT, Richardson CM, Campos JL, Tiburcio AF (1993) Effects of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves. Planta 189:201–206

    Article  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bewley JD, Black M (1982) Physiology and biochemistry of seeds, vol 2, Viability Dormancy and Environmental Control. Springer, Berlin

    Google Scholar 

  • Bourgne S, Job C, Job D (2000) Sugarbeet seed priming: solubilization of the basic subunit of 11-S globulin in individual seeds. Seed Sci Res 10:153–156

    CAS  Google Scholar 

  • Breusegem FV, Vranova E, Dat JF, Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Article  Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Burnell JN (1990) Immunological study of carbonic anhydrase in C and C plants using antibodies to maize cytosolic and spinach chloroplastic carbonic anhydrase. Plant Cell Physiol 31:423–427

    CAS  Google Scholar 

  • Cakmak I (2000) Possible role of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1988) Increase in membrane permeability and exudation in roots of zinc deficient plants. J Plant Physiol 132:356–361

    Article  CAS  Google Scholar 

  • Catusse J, Meinhard J, Job C, Strub J, Fischer U, Pestsova E, West- hoff P, Van Dorsselaer A, Job D (2011) Proteomics reveals potential biomarkers of seed vigor in sugarbeet. Proteomics 11:1569–1580

    Article  CAS  PubMed  Google Scholar 

  • Cava F, Zafra O, da Costa MS, Berenguer J (2008) The role of the nitrate respiration element of Thermus thermophilus in the control and activity of the denitrification apparatus. Environ Microbiol 10:522–533

    Article  CAS  PubMed  Google Scholar 

  • Chouliaras V, Therios I, Molassiotis A, Patakas A, Diamantidis G (2004) Effect of iron deficiency on gas exchange and catalase and peroxidase activity in citrus. J Plant Nutr 27:2085–2099

    Article  CAS  Google Scholar 

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7–30

    Article  Google Scholar 

  • Christou A, Manganaris GA, Papadopoulos I, Fotopoulos V (2013) Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Exp Bot 64(7):1953–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Corbineau F, Ozbingol N, Vineland D, Come D (2000) Improvement of tomato seed germination by osmopriming as related to energy metabolism. In: Black M, Bradford KJ, Vasquez-Ramos J (eds) Seed biology advances and applications: proceedings of the sixth international workshop on seeds. CABI Cambridge, Merida, pp 467–474

    Chapter  Google Scholar 

  • Cuartero J, Bolarin MC, Asins MJ, Moreno V (2006) Increasing salt tolerance in tomato. J Exp Bot 57:1045–1058

    Article  CAS  PubMed  Google Scholar 

  • Davies PJ (2004) The plant hormones: their nature occurrence and function. In: Davies PJ (ed) Plant hormones biosynthesis signal transduction action. Kluwer, Dordrecht

    Google Scholar 

  • Derrick JW, Ryan MH (1998) Influence of seed phosphorus content on seedling growth in wheat: implications for organic and conventional farm management in South East Australia. Biol Agric Hortic 16:223–237

    Article  Google Scholar 

  • Downie B, Gurusinghe S, Dahal P, Thacker RR, Snyder JC, Nonogaki H, Yim K, Fukanaga K, Alvarado V, Bradford KJ (2003) Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. Plant Physiol 131:1347–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi R, Snehi Takkar PN (1974) Ribonuclease activity as an index of hidden hunger of zinc in crops. Plant and Soil 40:173–181

    Article  CAS  Google Scholar 

  • Farhoudi R, Sharifzadeh F (2006) The effects of NaCl priming on salt tolerance in canola (Brassica napus L) seedlings grown under saline conditions. Indian J Crop Sci 1(1–2):74–78

    Google Scholar 

  • Farooq M, Basra SMA, Hussain M, Rehman H, Saleem BA (2007) Incorporation of polyamines in the priming media enhances the germination and early seedling growth in hybrid sunflower (Helianthus annuus L). Int J Agric Biol 9:868–872

    CAS  Google Scholar 

  • Fincher GB (1989) Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu Rev Plant Physiol Plant Mol Biol 40:305–346

    Article  CAS  Google Scholar 

  • Frankow-Lindberg BE (2001) Adaptation to winter stress in nine white clover populations: changes in non-structural carbohydrates during exposure to simulated winter conditions and ‘spring’ regrowth potential. Ann Bot 88:745–751

    Article  CAS  Google Scholar 

  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerekhove J, Job D (2004) Proteomics of Arabidopsis seed germination and priming. In: Nicholas G (ed) The biology of seeds: recent advances. CABI, Cambridge, pp 199–209

    Google Scholar 

  • Gnan Y, Hu J, Wang X, Shao C (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological enhances under low temperature stress. J Zhejiang Univ Sci B 10(6):427–433

    Article  CAS  Google Scholar 

  • Harris D (2006) Development and testing of onfarm seed priming. Adv Agron 90:129–178

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Extreme temperatures oxidative stress and antioxidant defense in plants. In: Vahdati K, Leslie C (eds) Abiotic stress – plant responses and applications in agriculture. In Tech, Rijeka, pp 169–205

    Google Scholar 

  • Hil R (1954) The cytochrome b component of chloroplasts. Nature 174:501

    Article  Google Scholar 

  • Hopkins WG (1995) Introduction to plant physiology, 4th edn. Wiley, New York

    Google Scholar 

  • Imran MA, Mehmood V, Römheld G, Neumann (2013) Nutrient seed priming improves seedling development and increases grain yield of maize exposed to low root zone temperatures during early growth. Eur J Agron 49:141–148

    Article  CAS  Google Scholar 

  • Jakab G, Ton J, Flors V, Zimmerli L, Me’traux JP, Mauch-Mani B (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139:267–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janmohammadi M, Moradi Dezfuli P, Sharifzadeh F (2008) Seed invigoration techniques to improve germination and early growth of inbred line of maize under salinity and drought stress. Gen Appl Plant Physiol 34:215–226

    Google Scholar 

  • Jisha KC, Puthur JT (2015) Seed priming with BABA (β-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L) Wilczek. Protoplasma. doi:10.1007/s00709-015-0804-7

    PubMed  Google Scholar 

  • Kasper TC, Bland WI (1992) Soil temperature and root growth. Soil Sci 154:290–299

    Article  Google Scholar 

  • Kester ST, Geneve RL, Houtz RL (1997) Priming and accelerated ageing effect L-isoaspartylmethyltransferase activity in tomato (Lycopersicon esculentum Mill) seed. J Exp Bot 48:943–949

    Article  CAS  Google Scholar 

  • Khajeh-Hosseini M, Powell AA, Bimgham IJ (2003) The interaction between salinity stress and seed vigor during germination of soybean seeds. Seed Sci Technol 31:715–725

    Article  Google Scholar 

  • Kim TH, Bohmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid CO2 and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larbi A, Abadía A, Morales F, Abadía J (2004) Fe resupply to Fe-deficient sugar beet plants leads to rapid changes in the violaxanthin cycle and other photosynthetic characteristics without significant de novo chlorophyll synthesis. Photosynth Res 79:59–69

    Article  CAS  PubMed  Google Scholar 

  • Lee GJ, Pokala N, Vierling E (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem 270:10432–10438

    Article  CAS  PubMed  Google Scholar 

  • Lemanceau P, Bauer P, Kraemer S, Briat JF (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils plants and microbes. Plant Soil 321:513–535

    Article  CAS  Google Scholar 

  • Li F, Wu X, Tsang E, Cutler AJ (2005) Transcriptional profiling of imbibed Brassica napus seed. Genomics 86:718–730

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Lu GY, Zhang YK, Zou CS, Cheng Y, Zheng PY (2010) Improving drought tolerance of germinating seeds by exogenous application of GA3 in rapeseed. Seed Sci Technol 38:432–440

    Article  CAS  Google Scholar 

  • Ligterink WJ, Kodde M, Lammers H, Dassen AHM, van der Geest RA, De Maagd RA, Hilhorst HWM (2007) Stress-inducible gene expression and its impact on seed and plant performance: a microarray approach. In: Adkins S, Ashmore S, Navie SC (eds) Seeds: biology development and ecology. CAB International, Wallingford, pp 139–148

    Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc iron manganese and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot 94:481–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcia DP, Denise C, Luiz A, Eusdarardo FA (2009) Primed carrot seeds performance under water and temperature stress. Sci Agric 662:174–179

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, San Diego

    Google Scholar 

  • McDonald MB (2000) Seed priming. In: Black M, Bewley JD (eds) Seed technology and its biological basis. Sheffield Academic Press, Sheffield, pp 287–325

    Google Scholar 

  • Mehmet Y, Digdem K (2008) Alleviation of osmotic stress of water and salt in germination and seedling growth of triticale with seed priming treatments. Afr J Biotechnol 7(13):2156–2162

    Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2009) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress antioxidants and stress tolerance. Trends Plant Sci 9:405–410

    Article  Google Scholar 

  • Moosavi A, Tavakkol Afshari R, Sharif-Zadeh F, Aynehband A (2009) Seed priming to increase salt and drought stress tolerance during germination in cultivated species of Amaranth. Seed Sci Technol 37:781–785

    Article  Google Scholar 

  • Muhammad F, Abdul W, Dong JL (2009) Exogenous applied polyamines increases drought tolerance of rice by improving leaf water status photosynthesis and membrane properties. Acta Physiol Plant 31:937–945

    Article  CAS  Google Scholar 

  • Munns RA, Gardrer ML, Rawson HM (1988) Growth and development in NaCl treated plants II Do Na+ or Cl concentrations in dividing or expanding tissue determine growth in barley. Aust J Plant Physiol 15:529–540

    Article  CAS  Google Scholar 

  • Nemeth M, Janda T, Hovarth E, Paldi E, Szali G (2002) Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci 162:569–574

    Article  CAS  Google Scholar 

  • Niranjan RS, Shetty NP, Shetty HS (2004) Seed bio- priming with Pseudomonas fluorescens isolates enhances growth of pearl millet plants and induces resistance against downy mildew. Int J Pest Manag 50(1):41–48

    Article  Google Scholar 

  • Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69:3225–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parera CA, Cantliffe DJ (1994) Presowing seed priming. Hortic Rev 16:109–114

    Google Scholar 

  • Passam HC, Kakouriotis D (1994) The effect of osmo conditioning on germination and emergence and early plant growth of cucumber under saline conditions. Sci Hortic 57:233–240

    Article  Google Scholar 

  • Perur NG, Smith RL, Wiebe HH (1961) Effect of iron chlorosis on protein fraction on corn leaf tissue. Plant Physiol 36:736–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pill WG, Freett JJ, Morneau DC (1991) Germination and seedling emergence of primed tomato and asparagus seeds under adverse conditions. Hortic Sci 26:160–1162

    Google Scholar 

  • Pregitzer KS, King JS (2005) Effects of soil temperature on nutrient uptake. In: Bassiri Rad H (ed) Nutrient acquisition by plants: an ecological perspective. Springer, Berlin

    Google Scholar 

  • Randhir R, Shetty K (2005) Developmental stimulation of total phenolics and related antioxidant activity in light- and dark-germinated corn by natural elicitors. Process Biochem 40:1721–1732

    Article  CAS  Google Scholar 

  • Rao MSL, Kulkarni S, Lingaraaju S, Nadaf HL (2009) Bio priming of seeds: a potential tool in the integrated management of Alternaria blight of sunflower. Helia 32:107–114

    Article  Google Scholar 

  • Razmjoo K, Heydarizadeh P, Sabzalian MR (2008) Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomile. Int J Agric Biol 10:451–454

    Google Scholar 

  • Rengel Z, Graham RD (1995) Importance of seed Zn content for wheat growth on Zn deficient soil. II. Grain yield. Plant Soil 173:267–274

    Article  CAS  Google Scholar 

  • Roberts DR, Dumbroff EB, Thompson JE (1986) Exogenous polyamines alter membrane fluidity in bean leaves- a basis for their potential misinterpretation of their true physiological role. Planta 167(3):395–401

    Article  CAS  PubMed  Google Scholar 

  • Ros C, Bell RW, White PF (1997) Effect of seed phosphorus and soil phosphorus applications on early growth of rice (Oryza sativa L) cv IR66. Soil Sci Plant Nutr 43:499–509

    Article  CAS  Google Scholar 

  • Roy NK, Srivastava AK (1999) Effect of presoaking seed treatment on germination and amylase activity of wheat under salt stress condition. Rachis 18:46–51

    Google Scholar 

  • Sallam HA (1999) Effect of some seed soaking treatments on growth and chemical components on faba bean plants under saline conditions. Ann Agric Sci 44:159–171

    Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswaralu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP – P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Saravanakumar D, Kavino M, Raguchander T, Subbiah P, Samiyappan R (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209

    Article  CAS  Google Scholar 

  • Scaife MA, Smith R (1973) The phosphorus requirement of lettuce. II. A dynamic model of phosphorus uptake and growth. J Agric Sci 80:353–361

    Article  CAS  Google Scholar 

  • Shafi M, Bakht J, Hassan MJ, Raziuddin M, Zhang G (2009) Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L). Bull Environ Contam Toxicol 82:772–776

    Article  CAS  PubMed  Google Scholar 

  • Sharma PC, Kumar P (1999) Alleviation of salinity stress during germination in Brassica juncea by pre sowing chilling treatments to seeds. Biol Plant 42:451–455

    Article  CAS  Google Scholar 

  • Shinozaki K, Shinozaki YK (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Soltani A, Gholipoor M, Zeinali E (2006) Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environ Exp Bot 55:195–200

    Article  Google Scholar 

  • Sousa SF, Lopes AB, Fernandes PA, Ramos MJ (2009) The zinc proteome: a tale of stability and functionality. Dalton Trans 38:7946–7956

    Article  PubMed  CAS  Google Scholar 

  • Souza-Machado V, Pitblado R, Ali A, May P (1999) Paclobutrazol in tomato for improved tolerance to early transplanting and early harvest maturity. Acta Hortic 487:139–144

    Article  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Webb MS (1993) A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Steponkus PL (ed) Advances in low-temperature biology, vol 2. JAI Press, London, pp 211–312

    Google Scholar 

  • Sung FJM, Chang YH (1993) Biochemical activities associated with priming of sweet corn seeds to improve vigor. Seed Sci Technol 21:97–105

    Google Scholar 

  • Suzuki K, Nagasuga K, Okada M (2008) The chilling injury induced by high root temperature in the leaves of rice seedlings. Plant Cell Physiol 49:433–442

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138

    Article  CAS  Google Scholar 

  • Terry N, Abadia J (1986) Function of iron in chloroplasts. J Plant Nutr 9:609–646

    Article  CAS  Google Scholar 

  • Thomson CJ, Bolger TP (1993) Effects of seed phosphorus concentration on the emergence and growth of subterranean clover (Trifolium subterraneum L). Plant and Soil 156:285–288

    Article  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant growth promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbes Interact 12:951–959

    Article  CAS  Google Scholar 

  • Timperio AM, D’Amici GM, Barta C, Loreto F, Zolla L (2007) Proteomics pigment composition and organization of thylakoid membranes in iron-deficiency spinach leaves. J Exp Bot 13:3695–3710

    Article  CAS  Google Scholar 

  • Vari A, Mitrabinda S, Dadlani M, Sharma SP (2003) Physiological and biochemical changes associated with osmopriming in maize seeds Paper presented in II International Congress of Plant Physiology, 8–12 January 2003, New Delhi p 113

    Google Scholar 

  • Varier A, Vari AK, Dadlani M (2010) The subcellular basis of seed priming. Curr Sci 99(4):45–456

    Google Scholar 

  • Venkateswarlu B, Desai S, Prasad YG (2008) Agriculturally important microorganisms for stressed ecosystems: challenges in technology development and application. In: Kachatou-rians GG, Arora DK, Rajendran TP, Srivastava AK (eds) Agriculturally important microorganisms, vol 1. Academic World, Bhopal, pp 225–246

    Google Scholar 

  • Verslues PE, Batelli G, Grillo S, Agius F, Kim YS, Zhu J, Agarwal M, Katiyar-Agarwal S, Zhu JK (2007) Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Mol Cell Biol 27:7771–7780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidhyasekharan P, Muthamilan M (1995) Development of formulations of Pseudomonas fluorescens for control of chickpea wilt. Plant Dis 79:782–786

    Article  Google Scholar 

  • Vijayaraghavan H (1999) Effect of seed treatment with PGR on bhendi grown under sodic soil condition. Madras Agric J 86:247–249

    Google Scholar 

  • Vikas Yadav P, Sujata B, Surasanna (2009) Halopriming imparts to tolerance to salt and PEG induced drought stress in sugarcane. Agric Ecosyst Environ 134:24–28

    Article  CAS  Google Scholar 

  • Vollenweider P, Günthardt-Goerg MS (2005) Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ Pollut 137:455–465

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad M (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    Article  CAS  PubMed  Google Scholar 

  • Whalley RDB, Mckell CM, Green LR (1966) Seedling vigor and the early non-photo synthetic stage of seedling growth in grasses. Crop Sci 6:147–150

    Article  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Xu SC, Hu J, Li YP, Ma WG, Zheng YY, Zhu SJ (2011) Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regul 63(3):279–290

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants: a review. Agron Sustain Dev 30:515–527

    Article  CAS  Google Scholar 

  • Yeaoung YR, Wilson JR, Murray GA (1996) Germination performance and loss of LEA proteins during muskmelon seed priming. Seed Sci Technol 24:429–439

    Google Scholar 

  • Yeh YM, Chiu KY, Chen CL, Sung JM (2005) Partial vacuum extends the longevity of primed bitter gourd seeds by enhancing their anti-oxidative activities during storage. Sci Hortic 104:101–112

    Article  CAS  Google Scholar 

  • Yu Q, Osborne LD, Rengel Z (1999) Increased tolerance to Mn deficiency in transgenic tobacco over producing superoxide dismutase. Ann Bot 84:543–547

    Article  CAS  Google Scholar 

  • Zhang M, Nyborg M, Mcgill WB (1990) Phosphorus concentration in barley (Hordeum vulgare L) seed: influence on seedling growth and dry matter production. Plant Soil 122:79–83

    Article  CAS  Google Scholar 

  • Zhang Q, Rue K, Mueller J (2014) The effect of glycine betaine priming on seed germination of six turfgrass species under drought salinity or temperature stress. Hortic Sci 49:1454–1460

    CAS  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plants sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwiazek JJ, Blake TJ (1990) Effects of preconditioning on electrolyte leakage and lipid-composition in black spruce (Picea mariana) stressed with polyethylene-glycol. Physiol Plant 79:71–77

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bhanuprakash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Bhanuprakash, K., Yogeesha, H.S. (2016). Seed Priming for Abiotic Stress Tolerance: An Overview. In: Rao, N., Shivashankara, K., Laxman, R. (eds) Abiotic Stress Physiology of Horticultural Crops. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2725-0_6

Download citation

Publish with us

Policies and ethics