Skip to main content

Physiological and Morphological Responses of Horticultural Crops to Abiotic Stresses

  • Chapter
  • First Online:
Abiotic Stress Physiology of Horticultural Crops

Abstract

The crop-environment interaction in horticultural crops is receiving increased attention in the context of changing climatic conditions. Environmental stresses can cause morpho-anatomical, physiological and biochemical changes in crops, resulting in a strong profit reduction. A clear understanding of environmental factors and their interaction with physiological processes is extremely important for improving horticultural practices. Drought, excess moisture, salinity and heat stress are amongst the most important environmental factors influencing crop growth, development and yield processes. A comprehensive understanding of the impact of these stress factors will be critical in evaluating the impact of climate change and climate variability on horticultural crop production. Environmental stresses influence an array of processes including physiology, growth, development, yield and quality of crop. A clear understanding of environmental factors and their interaction with physiological processes is extremely important for improving horticultural practices. This review presents the most recent findings about the effects of the main abiotic environmental factors (water, temperature, salinity) on whole plant physiology of horticultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abass M, Rajashekar CB (1993) Abscisic-acid accumulation in leaves and cultured cells during heat acclimation in grapes. HortSci 28:50–52

    CAS  Google Scholar 

  • Abdalla AA, Verkerk K (1968) Growth, flowering and fruit-set of the tomato at high temperature. Neth J Agric Sci 16:71–76

    Google Scholar 

  • Almeida AAF, Valle RR (2007) Ecophysiology of cacao tree. Braz J Plant Physiol 19:425–448

    Article  Google Scholar 

  • Aloni B, Karni L, Zaidman Z, Schaffer AA (1996) Changes of carbohydrates in pepper (Capsicum annuum L.) flowers in relation to their abscission under different shading regimes. Ann Bot 78:163–168

    Article  CAS  Google Scholar 

  • Arquero O, Barranco D, Benlloch M (2006) Potassium starvation increases stomatal conductance in olive trees. HortSci 41:433–436

    CAS  Google Scholar 

  • Ashraf M, Arfan M (2005) Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging. Biol Plant 49:459–462

    Article  Google Scholar 

  • Ashraf M, Rehman H (1999) Mineral nutrient status of corn in relation to nitrate and long-term waterlogging. J Plant Nutr 22:1253–1268

    Article  CAS  Google Scholar 

  • Behboudian MH, Mills TM (1997) Deficit irrigation in deciduous orchards. Hort Rev 21:105–131

    Google Scholar 

  • Bell J, Duffy P, Covey C, Sloan L (2000) Comparison of temperature variability in observations and sixteen climate models simulations. Geophys Res Lett 27:261–264

    Article  Google Scholar 

  • Bhardwaj J, Yadav SK (2012) Genetic mechanisms of drought stress tolerance, implications of transgenic crops for agriculture. agro-eco and strate, for climate change. Sustain Agric Rev 8:213–235

    Google Scholar 

  • Bhatt RM, Rao NKS, Upreti KK, Shobha HS (2009) Floral abscission and changes in sucrose phosphate synthase and invertase activities in water deficit tomato. Indian J Plant Physiol 14:370–376

    CAS  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Plant Sci 218:443–448

    CAS  Google Scholar 

  • Bradford KJ, Hsiao TC (1982) Physiological responses to moderate water stress. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, vol 12b, New series. Springer, New York, pp 263–324

    Google Scholar 

  • Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged plants. Plant Physiol 65:322–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray EA (2002) Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential gene expression. Ann Bot 89:803–811

    Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. ASPP, Rockville, pp 1158–1249

    Google Scholar 

  • Capiati DA, Pais SM, Tellez-Inon MT (2006) Wounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signalling. J Exp Bot 57:2391–2400

    Article  CAS  PubMed  Google Scholar 

  • Chaikiattiyos S, Menzel CM, Rasmussen TS (1994) Floral induction in tropical fruit trees: effects of temperature and water supply. J Hortic Sci 69:397–415

    Article  Google Scholar 

  • Chartzoulakis K, Patakas A, Bosabalidis AM (1999) Changes in water relations, photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars. Environ Exp Bot 42:113–120

    Article  Google Scholar 

  • Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87:547–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullis CA (1991) Breeding for resistance for physiological stress. In: Murray DR (ed) Advanced methods in plant breeding and biotechnology. CAB International, Wallingford, pp 340–351

    Google Scholar 

  • DaCosta M, Huang BR (2006) Osmotic adjustment associated with variation in bentgrass tolerance to drought stress. J Am Soc Hortic Sci 131:338–344

    Google Scholar 

  • Davies FS, Flore JA (1986a) Short-term flooding effects on gas exchange and quantum yield of rabbiteye blueberry (Vaccinium ashei Reade). Plant Physiol 81(1):289–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies FS, Flore JA (1986b) Gas exchange and flooding stress of high bush and rabbiteye blueberries. J Am Soc Hortic Sci 111:565–571

    Google Scholar 

  • Demirevska K, Zasheva D, Dimitrov R, Simova-Stoilova L, Stamenova M, Feller U (2009) Drought stress effects on Rubisco in wheat: changes in the Rubisco large subunit. Acta Physiol Plant 31:1129–1138

    Article  CAS  Google Scholar 

  • Drew MC (1979) Plant responses to anaerobic conditions in soil and solution culture. Curr Adv Plant Sci 36:1–14

    Google Scholar 

  • Duan B, Yang Y, Lu Y, Korpelainen H, Berninger F, Li C (2007) Interactions between drought stress, ABA and genotypes in Picea asperata. J Exp Bot 58:3025–3036

    Article  CAS  PubMed  Google Scholar 

  • Erickson AN, Markhart AH (2002) Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environ 25:123–130

    Article  Google Scholar 

  • FAO (2002) Le the salt of the earth: hazardous for food production. In: Word Food Summit. Five years later, FAO, Rome, Italy, 10–13 June 2012

    Google Scholar 

  • Folzer H, Dat J, Capelli N, Rieffel D, Badot PM (2006) Response to flooding of sessile oak seedlings (Quercus petraea) to flooding: an integrative study. Tree Physiol 26:759–766

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue Organ Cult 76:101–119

    Google Scholar 

  • Foolad MR (2005) Breeding for abiotic stress tolerances in tomato. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. The Haworth Press, New York, pp 613–684

    Google Scholar 

  • Galán-Saúco VG, Rodríguez-Pastor MCR (2007) Greenhouse cultivation of papaya. Acta Horticult 740:191–195

    Article  Google Scholar 

  • Hazra P, Samsul HA, Sikder D, Peter KV (2007) Breeding tomato (Lycopersicon Esculentum Mill) resistant to high temperature stress. Int J Electron Plant Breed 1:31–40

    Google Scholar 

  • Higuchi H, Utsunomiya N, Sakuratani T (1998) High temperature effects on cherimoya fruit set, growth and development under greenhouse conditions. Sci Hortic 77:23–31

    Article  Google Scholar 

  • Hsiao TC, Xu LK (2000) Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot 51:1596–1616

    Article  Google Scholar 

  • Issarakraisila M, Ma Q, Turner DW (2007) Photosynthetic and growth responses of juvenile Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachinensis) to waterlogging and water deficit. Sci Hortic 111:107–113

    Article  CAS  Google Scholar 

  • Jackson MB, Kowalewska AKB (1983) Positive and negative messages from roots induce foliar desiccation and stomatal closure in flooded pea plants. J Exp Bot 34:493–506

    Article  CAS  Google Scholar 

  • Jones RA (1986) High salt tolerance potential in Lycopersicon species during germination. Euphytica 35:575–582

    Article  CAS  Google Scholar 

  • Jones HG, Tardieu F (1998) Modelling water relations of horticultural crops: a review. Sci Hortic 74:21–46

    Article  Google Scholar 

  • Kawase M (1981) Anatomical and morphological adaptation of plants to water logging. HortSci 16:30–34

    CAS  Google Scholar 

  • Kositsup B, Montpied P, Kasemsap P, Thaler P, Ameglio T, Dreyer E (2009) Photosynthetic capacity and temperature responses of photosynthesis of rubber trees (Hevea brasiliensis Müll. Arg.) acclimate to changes in ambient temperatures. Tree Physiol 23:357–365

    Article  CAS  Google Scholar 

  • Kumar K, Rashid R, Bhat JA, Bhat ZA (2011) Effects of high temperature on fruit crops. Elixir Appl Bot 39:4745–4747

    Google Scholar 

  • Kuo CG, Chen BW (1980) Physical responses of tomato cultivars to flooding. J Am Soc Hortic Sci 105:751–755

    CAS  Google Scholar 

  • Kuo CG, Tsay JS, Chen BW, Lin PY (1982) Screening for flooding tolerance in the genus Lycopersicon. Hortic Sci 17:76–78

    Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 4th edn. Springer, Berlin

    Book  Google Scholar 

  • Larson KD, Schaffer B, Davies FS (1993) Physiological, morphological and growth responses of mango trees to flooding. Acta Horticult 342:152–159

    Article  Google Scholar 

  • Ledesma NA, Nakata M, Sugiyama N (2008) Effect of high temperature stress on the reproductive growth of strawberry cvs. ‘Nyoho’ and ‘Toyonoka’. Sci Hortic 116:186–193

    Article  Google Scholar 

  • Lei Y, Yin C, Li C (2006) Differences in some morphological, physiological and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plant 127:182–191

    Article  CAS  Google Scholar 

  • Liao CT, Lin CH (1994) Effect of flooding stress on photosynthetic activities of Momordica charantia. Plant Physiol Biochem 32:1–5

    Google Scholar 

  • Liao CT, Lin CH (1996) Photosynthetic responses of grafted bitter melon seedlings to flooding stress. Environ Exp Bot 36:167–172

    Google Scholar 

  • Lizaso JI, Meléndez LM, Ramírez R (2001) Early flooding of two cultivars of tropical maize. II. Nutritional responses. J Plant Nutr 24:997–1011

    Article  CAS  Google Scholar 

  • Lombardini L (2006) Ecophysiology of plants in dry environments. In: D’Odorico P, Porporato A (eds) Dryland ecohydrology. Springer, Berlin, pp 47–66

    Chapter  Google Scholar 

  • Mano Y, Omori F (2007) Breeding for flooding tolerant maize using “teosinte” as a germplasm resource. Plant Roots 1:17–21

    Article  CAS  Google Scholar 

  • Marcelis LFM, Heuvenlink E, Goudriaan J (1998) Modeling biomass production and yield of horticultural crops: a review. Sci Hortic 74:83–111

    Article  Google Scholar 

  • Marsal J, Girona J (1997) Effects of water stress cycles on turgor maintenance processes in pear leaves (Pyrus communis). Tree Physiol 17:327–333

    Article  PubMed  Google Scholar 

  • Mitchell PD, Chalmers DJ (1982) The effect of reduced water supply on peach tree growth and yield. J Am Soc Hortic Sci 107:853–856

    Google Scholar 

  • Mitchell PD, Jerie PH, Chalmers DJ (1984) The effects of regulated water deficits on pear tree growth, flowering, fruit growth, and yield. J Am Soc Hortic Sci 109:604–606

    Google Scholar 

  • Mitra J (2001) Genetics and genetic improvement of drought resistance in crop plants. Curr Sci 80:758–763

    CAS  Google Scholar 

  • Olasantan FO (2007) Vegetable production in tropical africa: status and strategies for sustainable management. J Sustain Agric 30:41–70

    Article  Google Scholar 

  • Pandey CB, Srivastava RC, Singh RK (2009) Soil nitrogen mineralization and microbial biomass relations; and nitrogen conservation in humid tropics. Soil Sci Soc Am J 73:1142–1149

    Google Scholar 

  • Rao R, Li YC (2003) Management of flooding effects on growth of vegetable and selected field crops. HortTechnology 13:610–616

    Google Scholar 

  • Raviv M, Blom TJ (2001) The effect of water availability and quality on photosynthesis and productivity of soil-less grown cut roses. Sci Hortic 88:257–276

    Article  CAS  Google Scholar 

  • Roitsch T (1999) Source-sink regulation by sugar and stress. Curr Opin Plant Biol 2:198–206

    Article  CAS  PubMed  Google Scholar 

  • Sage R, Kubien D (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Peet MM, Thomas JF (2002) Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. J Exp Bot 53:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Schaffer B, Anderson PC (1994) Handbook of environmental physiology of fruit crops, vol 2, Subtropical and Tropical Crops. CRC Press, Boca Raton, p 310

    Google Scholar 

  • Sinha SK (1986) Drought resistance in crop plants: a physiological and biochemical analysis. In: Chopra VL, Paroda RS (eds) Approaches for incorporating drought and salinity resistance in crop plants. Oxford/IBH, New Delhi, pp 56–86

    Google Scholar 

  • Spreer W, Nagle M, Neidhart S, Carle R, Ongprasert S, Müller J (2007) Effect of regulated deficit irrigation and partial rootzone drying on the quality of mango fruits (Mangifera indica L., cv. ‘Chok Anan’). Agric Water Manag 88:173–180

    Article  Google Scholar 

  • Stevens MA, Rudich J (1978) Genetic potential for overcoming physiological limitations on adaptability, yield, and quality in tomato. HortSci 13:673–678

    CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Tamura F, Tanabe K, Katayama M, Itai A (1996) Effects of flooding on ethanol and ethylene production by pear rootstocks. J Jpn Soc Hortic Sci 65:261–266

    Article  CAS  Google Scholar 

  • Tardieu F, Davies WJ (1992) Stomatal response to abscisic acid is a function of current plant water status. Plant Physiol 98:540–545

    Google Scholar 

  • Topa MA, Cheeseman JM (1992) Effects of root hypoxia and a low P supply on relative growth, carbon dioxide exchange rates and carbon partitioning in Pinus serotina seedlings. Physiol Plant 86:136–144

    Article  CAS  Google Scholar 

  • Vu CV, Yelenosky G (1991) Photosynthetic responses of citrus trees to soil flooding. Physiol Plant 81(1):7–14

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Walter S, Heuberger H, Schnitzler WS (2004) Sensibility of different vegetables of oxygen deficiency and aeration with H2O2 in the rhizosphere. Acta Horticult 659:499–508

    Article  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Weis E, Berry JA (1988) Plants and high temperature stress. Soc Exp Biol 42:329–346

    CAS  Google Scholar 

  • Wentworth M, Murchie EH, Gray JE, Villegas D, Pastenes C, Pinto M, Horton P (2006) Differential adaptation of two varieties of common bean to abiotic stress. II. Acclimation of photosynthesis. J Exp Bot 57:699–709

    Article  CAS  PubMed  Google Scholar 

  • Wien HC (1997) The physiology of vegetable crops. CAB International, Wallingford, p 672

    Google Scholar 

  • Wien HC, Turner AD, Yang SF (1989) Hormonal basis for low light intensity-induced flower bud abscission of pepper. J Am Soc Hortic Sci 114:981–985

    Google Scholar 

  • Xiong L, Wang RG, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue GP, McIntyre CL, Glassop D, Shorter R (2008) Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. Plant Mol Biol 67:197–214

    Google Scholar 

  • Yamada MH, Yamane T, Hirabayashi T (1986) Studies on cross breeding of Japanese Persimmon (Diospyros Kaki Thumb) 5.Variation of fruit cracking under calyx. Bull Fruit Tree Res Sta E 6:11–20

    Google Scholar 

  • Yamada M, Hidaka T, Fukamachi H (1996) Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Sci Hortic 67:39–48

    Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  CAS  PubMed  Google Scholar 

  • Yordanova R, Christov K, Popova L (2004) Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot 51:91–101

    Article  Google Scholar 

  • Yordanova R, Christov K, Popova L (2004) Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot 51:93–101

    Google Scholar 

  • Zhang J, Davies WJ (1987) ABA in roots and leaves of flooded pea plants. J Exp Bot 38:649–659

    Article  CAS  Google Scholar 

  • Zhang JH, Huang WD, Liu YP, Pan QH (2005) Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. J Integr Plant Biol 47:959–970

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Srinivasa Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Rao, N.K.S., Laxman, R.H., Shivashankara, K.S. (2016). Physiological and Morphological Responses of Horticultural Crops to Abiotic Stresses. In: Rao, N., Shivashankara, K., Laxman, R. (eds) Abiotic Stress Physiology of Horticultural Crops. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2725-0_1

Download citation

Publish with us

Policies and ethics