Adaptation of Marine and Estuarine Organisms

  • Abhijit Mitra
  • Sufia Zaman


The intertidal zone can be considered as the zone of intersection between land and the sea, which remains inundated during high tide and becomes naked (exposed to air only) during low tide. The region may be rocky (Fig. 8.1), sandy (Fig. 8.2) or muddy (Fig. 8.3).


Intertidal Zone Sandy Beach Rocky Shore Splash Zone Hydrothermal Vent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen, J. A. (1979). The adaptations and radiation of deep-sea bivalves. Sarsia, 64, 19–27.CrossRefGoogle Scholar
  2. Ansell, A. D., & Trueman, E. R. (1973). The energy cost of migration of the bivalve Donax on tropical sand beaches. Marine Behavior and Physiology, 2, 21–32.CrossRefGoogle Scholar
  3. Azocar, A., Rada, F., & Orozco, A. (1992). Relaciones hidricas e intercambio de gases en dos especies de mangle, con mecanismos contrastantes de regulacion de la salinidad interna. Ectropicos, 5(2), 11–19.Google Scholar
  4. Balsamo, R. A., & Thomson, W. W. (1995). Salt effects on membranes of the hypodermis and mesophyll cells of Avicennia germinans (Avicenniaceae): A freeze-fracture study. American Journal of Botany, 82(4), 435–440.CrossRefGoogle Scholar
  5. Barnes, A. T., Queten, L. B., Childress, J. J., & Pawson, D. L. (1976). Deep-sea macroplanktonic sea cucumbers: Suspended sediment feeders captured from deep submergence vehicle. Science, 194, 1083–1108.CrossRefGoogle Scholar
  6. Boaden, P. J. S. (1989). Meiofauna and the origins of the Metazoa. Zoological Journal of Linnaeus Society, 96, 217–227.CrossRefGoogle Scholar
  7. Boaden, P. J. S., & Platt, H. M. (1971). Daily migration patterns in an intertidal meiobenthic community. Thalassia Jugoslavica, 7, 1–12.Google Scholar
  8. Drennan, P. M., Berjak, P., & Pammenter, N. W. (1992). Ion gradients and adenosine triphosphatase localization in the salt glands of Avicennia marina (Forssk.) Vierh. South African Journal of Botany, 58(6), 486–490.CrossRefGoogle Scholar
  9. Fahn, A. (1979). Secretory tissues in plants. London: Academic.Google Scholar
  10. Fenchel, T. M., & Redl, R. J. (1970). The sulfide system: A new biotic community underneath the oxidized layer of marine sand bottoms. Marine Biology, 7, 255–268.CrossRefGoogle Scholar
  11. Gaill, F., & Hunt, S. (1991). The biology of annelid worms from high temperature hydrothermal vent Remons. Review of Aquatic Science, 4(2–3), 107–137.Google Scholar
  12. Hurd, C. L., Galvin, R. S., Norton, T. A., & Dring, M. J. (1993). Production of hyaline hairs by intertidal species of Fucus (Fucales) and their role in phosphate uptake. Journal of Phycology, 29, 160–165.CrossRefGoogle Scholar
  13. Karl, D. M., Knauer, G. A., Martin, J. H., & Ward, B. B. (1984). Bacterial chemolithotrophy in the ocean is associated with sinking particles. Nature, 309, 54–56.CrossRefGoogle Scholar
  14. Meyers, M. B., Fossing, H., & Powell, E. N. (1987). Micro-distribution of interstitial meiofauna, oxygen and sulfide gradients, and the tubes of macro-infauna. Marine Ecology Progress Series, 35, 223–241.CrossRefGoogle Scholar
  15. Naylor, E. (1985). Tidally rhythmic behaviour of marine animals. Symposium Society of experimental Biology, 39, 63–93.Google Scholar
  16. Nott, J. A. (1973). Settlement of the larvae of Spirorbis spirorbis L. Journal of Marine Biology Association, UK, 53, 437–453.CrossRefGoogle Scholar
  17. Odum, E. P. (1971). Fundamentals of ecology (3rd ed.). Philadelphia: W.B. Saunders Company. 574 pp.Google Scholar
  18. Oliver, P. G. (1979). Adaptations of some deep-sea suspension feeding bivalves (Limopsis and Bathyarca). Sarsia, 64, 33–36.CrossRefGoogle Scholar
  19. Reise, K., & Ax, P. (1979). A meiofaunal ‘thiobios’ limited to the anaerobic sulfide system of marine sand does not exist. Marine Biology, 54, 225–237.CrossRefGoogle Scholar
  20. Sanders, H. L. (1977). Evolutionary ecology and the deep-sea benthos. In C. E. Goulden (Ed.), The changing scenes in natural sciences 1776–1976 (pp. 223–243). Philadelphia: Academy of Natural Sciences Special Publication.Google Scholar
  21. Schmitz, K., & Srivastava, L. M. (1980). Long distance transport in Macrocystis integrifolia. III. Movement of THO. Plant Physiology, 66, 66–69.CrossRefGoogle Scholar
  22. Scholander, P. F., Hammel, H. T., Hemmingsen, E. A., & Cray, W. (1962). Salt balance in mangroves. Plant Physiology, 37, 722–729.CrossRefGoogle Scholar
  23. Smith, K. L., Jr., & Teal, J. M. (1973). Temperature and pressure effects on respiration of thecosomatous pteropods. Deep Sea Research, 20, 853–858.Google Scholar
  24. Tivey, M. A., & Johnson, H. P. (1989). High-resolution geophysical studies of oceanic hydrothermal systems. CRC Critical Review of Aquatic Science, 1, 473–496.Google Scholar
  25. Tomlinson, P. B. (1986). The botany of mangroves. Cambridge: Cambridge University Press. 413 pp.Google Scholar
  26. Turekian, K. K., Cochran, J. K., Kharkar, D. P., Cerrato, R. M., Vaisnys, J. R., Sanders, H. L., Grassle, J. F., & Allen, J. A. (1975). Slow growth rate of a deep-sea clam determined by 228Ra chronology. Proceedings of National Academy of Science of the United States of America, 72, 2829–2832.CrossRefGoogle Scholar
  27. Ugolini, A., Scapini, F., & Pardi, L. (1986). Interaction between solar orientation and landscape visibility in Talitrus saiwror Montagu (Crustacea-Amphipoda). Marine Biology, 90, 449–460.CrossRefGoogle Scholar
  28. Walter, H. (1961). Salinity problems in the acid zones. The adaptations of plants to saline soils. Arid Zone Research, 14, 65–68.Google Scholar
  29. Williams, J. A. (1983). The endogenous locomotor activity rhythm of four supralittoral peracarid crustaceans. Journal of the Marine Biological Association U.K., 63, 481–492.CrossRefGoogle Scholar

Annexures References

  1. Agastian, P., & Kingsley, S. J. (2000). Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica, 38, 287–290.CrossRefGoogle Scholar
  2. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts, polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1–15.CrossRefGoogle Scholar
  3. Burchett, M. D., Field, C. D., & Pulkownik, A. (1984). Salinity, growth and root respiration in the grey mangrove Avicennia marina. Physiologia Plantarum, 60, 113–118.CrossRefGoogle Scholar
  4. Chaudhuri, A. B., & Choudhury, A. (1994). Mangroves of the Sundarbans, India (Vol. I). Published by IUCN.Google Scholar
  5. Clough, B. F. (1984). Growth and salt balance of the mangroves Avicennia marina (Forsk.) Vierh, and Rhizoplhora slylosa griff. in relation to salinity. Australian Journal of Plant Physiology, 11, 419–430.CrossRefGoogle Scholar
  6. Clough, B. F. (1985). Effect of nutrient supply on photosynthesis in mangroves. In: The mangroves. Proceedings of the National Symposium on Biology, Utililization and Conservation of Mangroves. Shivaji University, Kolhapur, pp. 80–88.Google Scholar
  7. Connor, D. J. (1969). Growth of grey mangrove (Avicennia marina) in nutrient culture. Biotropica, 1, 36–40.CrossRefGoogle Scholar
  8. Downton, W. J. S. (1982). Growth and osmotic relabor.s 01 the mangrove Avicennia marina, as influenced by salinity. Australian Journal of Plant Physiology, 9, 519–528.CrossRefGoogle Scholar
  9. Field, C. (1995). Impacts of expected climate change on mangroves. Hydrobiologia, 295, 75–81.CrossRefGoogle Scholar
  10. Gadallah, M. A. A. (1999). Effects of proline and glycinebetaine on Vicia faba response to salt stress. Biology Plant, 42, 249–257.CrossRefGoogle Scholar
  11. Hazra, S., Ghosh, T., Dasgupta, R., & Sen, G. (2002). Sea level and associated changes in Sundarbans. Science and Culture, 68, 309–321.Google Scholar
  12. Hotta, M., Nemoto, S., & Mimura, T. (2000). Re-evaluation of role of vacuole during salt adaptation in higher plant cells. Plant Cell Physiology, 41, 79.Google Scholar
  13. Iyengar, E. R. R., & Reddy, M. P. (1996). Photosynthesis in high salt-tolerant plants. In M. Pesserkali (Ed.), Handbook of photosynthesis (pp. 56–65). Baten Rose: Marshal Dekar.Google Scholar
  14. Lovelock, C. E., & Ellison, J. C. (2007). Vulnerability of mangroves and tidal wetlands of the Great Barrier Reef to climate change. In J. E. Johnson & P. A. Marshall (Eds.), Climate change and the Great Barrier Reef: A vulnerability assessment (pp. 237–269). Australia: Great Barrier Reef Marine Park Authority and Australian Greenhouse Office.Google Scholar
  15. Mishra, S., & Das, A. B. (2003). Effect of NaCl on leaf salt secretion and antioxidative enzyme level in roots of a mangrove, Aegiceras corniculatum. Indian Journal of Experimental Biology, 41, 160–166.Google Scholar
  16. Mitra, A. (2000). The north-west coast of the Bay of Bengal and deltaic Sundarbans. Seas at the Millennium: An Environmental Evaluation, U.K., 2, 160.Google Scholar
  17. Mitra, A., Banerjee, K., & Bhattacharyya, D. P. (2004). The other face of mangroves. Department of Environment, Government of West Bengal Publication Kolkata (India).Google Scholar
  18. Mitra, A., Gangopadhyay, A., Dube, A., Schmidt, C. K., & Banerjee, K. (2009a). Observed changes in water mass properties in the Indian Sundarbans (Northwestern Bay of Bengal) during 1980–2007. Current Science, 97, 1445–1452.Google Scholar
  19. Mitra, A., Zaman, S., Chakraborty, R., Halder, P., & Banerjee, K. (2009b). Abiotic indicators of climate change in Indian Sundarbans. Indian Science Cruiser, 23(2), 53–56.Google Scholar
  20. Netondo, G. W., Onyango, J. C., & Beck, E. (2004). Sorghum and salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Science, 44, 797–805.CrossRefGoogle Scholar
  21. Parida, A. K., Das, A. B., & Mittra, B. (2003). Effects of NaCl stress on the structure, pigment complex composition and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica, 41, 191–200.CrossRefGoogle Scholar
  22. Parida, A. K., Das, A. B., & Mittra, B. (2004a). Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove Bruguiera parviflora. Trees-Structural Function, 18, 167–174.CrossRefGoogle Scholar
  23. Parida, A. K., Das, A. B., & Mohanty, P. (2004b). Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzymes. Journal of Plant Physiology, 161, 531–542.CrossRefGoogle Scholar
  24. Porra, R. J., Thompson, W. A., & Kriendemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophysics Acta, 975, 384–394.CrossRefGoogle Scholar
  25. Santiago, L. S., Lau, T. S., Melcher, P. J., Steele, O. C., & Goldstein, G. (2000). Morphological and physiological responses of Hawaiian Hibiscus tiliaceus population to light and salinity. International Journal of Plant Science, 161, 99–106.CrossRefGoogle Scholar
  26. Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research (3rd ed., pp. 321–356). New York: W. H. Freeman and Company.Google Scholar
  27. Takemura, T., Hanagata, N., Sugihara, K., Baba, S., Karube, I., & Dubinsky, Z. (2000). Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquatic Botany, 68, 15–28.CrossRefGoogle Scholar
  28. Tanaka, Y., Fukuda, A., Nakamura, A., Yamada, A., & Saito, T. (2000). Molecular cloning and characterization of mangrove Na+/H+ antiporter cDNA. Plant Cell Physiol, 41, 27.CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Abhijit Mitra
    • 1
  • Sufia Zaman
    • 2
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia
  2. 2.Department of OceanographyTechno India UniversityKolkataIndia

Personalised recommendations