Advertisement

Decomposers of the Marine and Estuarine Ecosystems

  • Abhijit Mitra
  • Sufia Zaman
Chapter

Abstract

Decomposers are widely distributed in the salty blue soup of the planet Earth and occupy a key position in an ecological food chain/web. They are considered as ‘cleaners’ of the ecosystem as they are capable of degrading complex organic matter in to simpler forms. The vast volume of saltwater may be the reason behind the presence of wide variety and large number of decomposers in the marine and estuarine ecosystems.

Supplementary material

References

  1. Abdel-Lateff, A., Konig, G. M., Fisch, K. M., Holler, U., Jones, P. G., & Wright, A. D. (2002). New antioxidant hydroquinone derivatives from the algicolous marine fungus Acremonium sp. Journal of Natural Products, 65(11), 1605–1611.CrossRefGoogle Scholar
  2. Abdel-Lateff, A., Klemke, C., Konig, G. M., & Wright, A. D. (2003). Two new xanthone derivatives from the algicolous marine fungus Wardomyces anomalus. Journal of Natural Products, 66(5), 706–708.CrossRefGoogle Scholar
  3. Anderson, R. J., Wolfe, M. S., & Faulkner, D. J. (1974). Autotoxic antibiotic production by a marine Chromobacterium. Marine Biology, 27, 281–285.CrossRefGoogle Scholar
  4. Atlas, R. (1998). Chapter 2: Microbial evolution and biodiversity. In Microbial ecology: Fundamentals and applications (4th ed., p. 694). Menlo Park: Benjamin Cummings.Google Scholar
  5. Barcina, I., Lebaron, P., & Vives-Rego, J. (1997). Survival of allochthonous bacteria in aquatic systems: A biological approach. FEMS Microbiology Ecology, 23, 1–9.CrossRefGoogle Scholar
  6. Bhowmik, S. K., Roy, G. N., & Barman, S. (1985). A list 24 strains of bacteria from the decomposed litter of mangrove areas of Sundarbans complex. National Symposium on Biology, Utilization and Conservation of Mangroves. Abstract No. 72, p. 38.Google Scholar
  7. Bidle, K. D., & Fletcher, M. (1995). Comparison of free-living and particle-associated bacterial communities in the Chesapeake Bay by stable low-molecular-weight RNA analysis. Applied Environmental Microbiology, 61, 944–952. [PMC free article] [PubMed].Google Scholar
  8. Biswas, A., Bhowmik, S. K., & Roy, G. N. (1986). Chitinolytic bacteria of mangrove swamps of the Sundarbans. In L. J. Bhosale (Ed.), The Mangroves (pp. 382–384). Kolhapur: Shivaji University Press.Google Scholar
  9. Bouvier, T. C., & Del Giorgio, P. A. (2002). Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnological Oceanography, 47, 453–470.CrossRefGoogle Scholar
  10. Buck, J. D., Meyers, S. P., & Kamp, K. M. (1962). Marine bacteria with antiyeast activity. Science (New York), 138, 1339–1340.CrossRefGoogle Scholar
  11. Buckholder, P. R., Pfister, R. M., & Leitz, F. H. (1966). Production of a pyrrole antibiotic by a marine bacterium. Applied Microbiology, 14, 649–653.Google Scholar
  12. Campbell, N. (1993). Microbes: Concepts and applications. In Biology (3rd ed., p. 1190). Redwood City: Benjamin Cummings.Google Scholar
  13. Carte, B. K. (1996). Biomedical potential of marine natural products. BioScience, 46(4), 271–286.CrossRefGoogle Scholar
  14. Chaudhuri, A. B., & Choudhury, A. (1994). Mangroves of the Sundarbans. Bangkok: IUCN.Google Scholar
  15. Crump, B. C., Armbrust, E. V., & Baross, J. A. (1999). Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Applied Environmental Microbiology, 65, 3192–3204. [PMC free article] [PubMed].Google Scholar
  16. De Bie, M. J. M., Speksnijder, A., Kowalchuk, G. A., Schuurman, T., Zwart, G., Stephen, J. R., Diekmann, O. E., & Laanbroek, H. J. (2001). Shifts in the dominant populations of ammonia-oxidizing beta-subclass Proteobacteria along the eutrophic Schelde estuary. Aquatic Microbial Ecology, 23, 225–236.CrossRefGoogle Scholar
  17. Deming, J. W. (1985). Bacterial growth in deep-sea sediment trap and box core samples. Marine Ecology-Progress Series, 25, 305–312.CrossRefGoogle Scholar
  18. Deming, J. W. (1986). The biotechnological future for newly described, extremely thermophilic bacteria. Microbial Ecology, 12, 111–119.CrossRefGoogle Scholar
  19. Deming, J. W., & Colwell, R. R. (1985). Observations of barophilic microbial activity in samples of sediment and intercepted particulates from the Demerara Abyssal Plain. Applied and Environmental Microbiology, 50, 1002–1006.Google Scholar
  20. Devine, D. A., & Marsh, P. (2009). Prospects for the development of probiotics and prebiotics for oral applications. Journal of Oral Microbiology, 1, 1–11.CrossRefGoogle Scholar
  21. DeVugst, L., & Vandamme, E. J. (1994). Bacteriocins of lactic acid bacteria. Microbiology genetic application (Vol. 75, pp. 140174–140179). London: Blackie Acadamic & Profession.Google Scholar
  22. Erba, E., Bergamaschi, D., & Ronzoni, S. (1999). Mode of action at thiocoraline, a natural marine compound with anti-tumour activity. British Journal of Cancer, 80(7), 971–980.CrossRefGoogle Scholar
  23. Gasol, J. M., Comerma, M., Garcia, J. C., Armengol, J., Casamayor, E. O., Kojecka, E., & Simek, K. (2002). A transplant experiment to identify the factors controlling bacterial abundance, activity, production, and community composition in a eutrophic canyon-shaped reservoir. Limnological Oceanography, 47, 62–77.CrossRefGoogle Scholar
  24. Giovannoni, S. J., & Rappe, M. S. (2000). Evolution, diversity, and molecular ecology of marine prokaryotes. In D. L. Kirchman (Ed.), Microbial ecology of the oceans (pp. 47–84). New York: Wiley.Google Scholar
  25. Goddin, B. R., & Gorbach, S. L. (1992). Probiotics for humans. In R. Fuller (Ed.), Probiotics (pp. 355–376). London: Chapman and Hall.Google Scholar
  26. Guerriero, A., Amrosio, M. D., Cuomo, V., & Pietra, F. (1991). A novel, degraded polyketidic lactone, leptosphaerolide, and its likely diketone precursor, leptosphaerodione, isolation from cultures of teh marine ascomycete Leptosphaeria oeaemaris (Linder). Helvetica Chimica Acta, 74, 1445.CrossRefGoogle Scholar
  27. Hazra, S., Ghosh, T., Das Gupta, R., & Sen, G. (2002). Sea level and associated changes in the Sundarbans. Science and Culture, 68(9–12), 309–321.Google Scholar
  28. Hazra, S., Samanta, K., Mukhopadhyay, A., & Akhand, A. (2010). Temporal change detection (2001–2008) of the Sundarban. New Delhi: WWF-India.Google Scholar
  29. Hollibaugh, J. T., Wong, P. S., & Murrell, M. C. (2000). Similarity of particle-associated and free-living bacterial communities in northern San Francisco Bay, California. Aquatic Microbial Ecology, 21, 103–114.CrossRefGoogle Scholar
  30. Jana, H., Maity, C., Das, A., Pati, B. R., Mitra, A., & Mondal, K. C. (2013). Investigating the effect of storage temperature and hot-water treatment on the microbial dynamics in edible oyster (Saccostrea cucullata). International Journal of Postharvest Technology and Innovation, 3(4), 382–391.Google Scholar
  31. Jannasch, H. W., & Wirsen, C. O. (1982). Microbial activities in undercompressed and decompressed deep-seawater samples. Applied and Environmental Microbiology, 43, 1116–1124.Google Scholar
  32. Jha, R. K., & Zi-Rong, X. (2004). Biomedical compounds from marine organisms. Marine Drugs, 2, 123–146.CrossRefGoogle Scholar
  33. Kathiresan, K., & Thiruneelakandan, G. (2008). Prospects of lactic acid bacteria of marine origin. Indian Journal of Biotechnology, 7(2), 170–177.Google Scholar
  34. Krassil’nikova, E. N. (1961). Antibiotic properties of micro-organisms isolated from various depth of world oceans. Microbiologiya, 30, 545–550.Google Scholar
  35. Lawrence, R. N. (1999). Rediscovering natural product biodiversity. Drug Discovery Today, 4(10), 449–451.CrossRefGoogle Scholar
  36. Lebaron, P., Servais, P., Troussellier, M., Courties, C., Muyzer, G., Bernard, L., Schafer, H., Pukall, R., Stackebrandt, E., Guindulain, T., & Vives-Rego, J. (2001). Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: Changes in abundances, activity and composition. FEMS Microbiology Ecology, 34, 255–266. [PubMed].CrossRefGoogle Scholar
  37. Lemos, M. L., Teranzo, A. E., & Barja, J. L. (1985). Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microbial Ecology, 11, 149–163.CrossRefGoogle Scholar
  38. Lene, L. (1996). Microbial metabolites-an infinite source of novel Chemistry. Pure and Applied Chermistry, 68, 745–748.Google Scholar
  39. Lovell, F. M. (1966). The structure of a bromine rich antibiotic. Journal of the American Chemical Society, 88, 4510–4511.CrossRefGoogle Scholar
  40. McGee, C. D., Leecaster, M. K., Vainik, P. M., Noble, R. T., Walker, K. O., & Weisberg, S. B. (1997). Comparison of bacterial indicator measurements among southern California Marine Monitoring. Southern California Water Research Program Annual Report 1997/1998, California, pp. 187–198.Google Scholar
  41. Miralto, A., Barone, G. R., Poulet, S. A., Lanora, A., Russo, G. L., Buttino, I., Mazzarella, G., Laabir, M. C., & Giacobbe, M. G. (1999). The insidious effect of diatoms on copepod reproduction. Nature, 402, 173–176.CrossRefGoogle Scholar
  42. Misra, S., Dutta, J., Ghosh, A., & Choudhury, A. (1985). Role of hydrophobic components of leaves in the adaption of plants to periodic submersion by tidal water in mangrove ecosystem. Journal of Chemical Ecology, 11(3), 339–343.CrossRefGoogle Scholar
  43. Murray, A. E., Hollibaugh, J. T., & Orrego, C. (1996). Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments. Application of Environmental Microbiology, 62, 2676–2680. [PMC free article] [PubMed].Google Scholar
  44. Okami, Y. (1986). Marine micro-organisms as a source of bioactive agents. Microbial Ecology, 12, 65–78.CrossRefGoogle Scholar
  45. Pallenberg, A. J., & White, J. D. (1986). The synthesis and absolute configuration of (+)-leptosphaerin. Tetrahedron Letters, 27(46), 5591–5594.CrossRefGoogle Scholar
  46. Rickards, R. W., Rothschild, J. M., & Willis, A. C. (1999). Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. Tetrahedron, 55(47), 13513–13520.CrossRefGoogle Scholar
  47. Rosenfeld, W. D., & Zobell, C. E. (1947). Antibiotic production by marine microorganisms. Journal of Bacteriology, 54, 393–398.Google Scholar
  48. Saha, S. B., Bhattacharyya, S. B., Basu, S., Mitra, A., Zamadar, Y. A., & Choudhury, A. (1998). Primary production and ecological efficiency of brackishwater shrimp culture in the vicinity of Sundarbans mangrove ecosystem. Journal of Aquaculture in the Tropics, 13(2), 151–158.Google Scholar
  49. Schafer, H., Bernard, L., Courties, C., Lebaron, P., Servais, P., Pukall, R., Stackebrandt, E., Troussellier, M., Guindulain, T., Vives-Rego, J., & Muyzer, G. (2001). Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: Changes in the genetic diversity of bacterial populations. FEMS Microbiology Ecology, 34, 243–253. [PubMed].CrossRefGoogle Scholar
  50. Schiehser, G. A., White, J. D., Matsumoto, G., Pezzanite, J. O., & Clardy, J. (1986). The structure of leptosphaerin. Tetrahedron Letters, 27(46), 5587–5590.CrossRefGoogle Scholar
  51. Selje, N., & Simon, M. (2003). Composition and dynamics of particle-associated and free-living bacterial communities in the Weser estuary, Germany. Aquatic Microbial Ecology, 30, 221–237.CrossRefGoogle Scholar
  52. Stevenson, C. S., Capper, E. A., & Roshak, A. K. (2002a). Scytonemin—A marine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases. Inflammation Research, 51(2), 112–114.CrossRefGoogle Scholar
  53. Stevenson, C. S., Capper, E. A., & Roshak, A. K. (2002b). The iden-tification and characterization of the marine natural product scytonemin as a novel antiproliferative pharmacophore. Journal of Pharmacology and Experimental Therapeutics, 303(2), 858–866.CrossRefGoogle Scholar
  54. Thajuddin, N., & Subramanian, G. (2005). Cyanobacterial biodi-versity and potential applications in biotechnology. Current Science, 89(1), 47–57.Google Scholar
  55. Troussellier, M., Schafer, H., Batailler, N., Bernard, L., Courties, C., Lebaron, P., Muyzer, G., Servais, P., & Vives-Rego, P. (2002). Bacterial activity and genetic richness along an estuarine gradient (Rhone River plume, France). Aquatic Microbial Ecology, 28, 13–24.CrossRefGoogle Scholar
  56. Turner, J. T. (1979). Microbial attachment to copepod faecal pellets and its possible ecological significance. Transactions of the American Microscopic Society, 98, 131–135.CrossRefGoogle Scholar
  57. Van, H. E. J., Mooij, W., Van, M. P., Gons, A. H. J., & Laanbroek, H. J. (1999). Detritus-dependent development of the microbial community in an experimental system: Qualitative analysis by denaturing gradient gel electrophoresis. Application of Environmental Microbiology, 65, 2478–2484. [PMC free article] [PubMed].Google Scholar
  58. Wollowski, I., Rechkemmer, G., & Pool-Zobel, B. L. (2001). Protective role of probiotics and prebiotics in colon cancer. American Journal of Clinical Nutrition, 73(2), 451–455.Google Scholar

Annexure 7A: References

  1. APHA (American Public Health Association). (2001). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: APHA.Google Scholar
  2. Glasoe, S., & Aimee, C. (2004). Coastal urbanization and microbial contamination of shellfish growing areas (pp. 1–28). Olympia, WA: Puget Sound Action Team.Google Scholar
  3. Mitra, A., & Banerjee, K. (2005). Living resources of the sea: Focus Indian Sundarbans. Published by WWF-India Secretariat, Sunderbans Landscape Project, New Delhi, p. 120.Google Scholar
  4. Mitra, A., Choudhury, A., & Zamaddar, Y. A. (1992). Seasonal variations in metal content in the gastropod Cerithedia (Cerithideopsis) cingulata. Proceedings of the Zoological Society, 45, 497–500.Google Scholar
  5. Pommepuy, M. (1996). Behaviour of pathogenic microorganisms in coastal areas. Applied Enviromental Microbiology, 62, 4621–4626.Google Scholar

Annexure 7B: References

  1. APHA (American Public Health Association). (1998). Standard methods for the examination of water and wastewater (20th ed., pp. 1–200). Washington, DC: American Public Health Association, American Water Works Association, and the Water Environment Federation.Google Scholar
  2. Basemer, K., Markus, M. M., Jesus, M. A., Gerhard, J. H., & Peter, P. (2005). Complexity of Bacterial communities in a River-floodplain System (Danube, Austria). Applied Environmental Microbiolgy, 71, 609–620.CrossRefGoogle Scholar
  3. Bell, B. P., Goldoft, M., & Griffin, P. M. (1994). A multistate outbreak of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers: The Washington experience. JAMA, 272, 1349–1353.CrossRefGoogle Scholar
  4. Blake, P. A., Weaver, R. E., & Hollis, D. G. (1980). Diseases of humans (other than cholera) caused by vibrios. Annual Review Microbiology, 34, 341–367.CrossRefGoogle Scholar
  5. Brewster, D. H., Brown, M. I., Robertson, D., Houghton, G. L., Bimson, J., & Sharp, J. C. M. (1994). An outbreak of Escherichia coli O157 associated with a children’s paddling pool. Epidemiology Infection, 112, 441–447.CrossRefGoogle Scholar
  6. Carlson, G. F., Jr., Woodard, F. E., Wentworth, D. F., & Sproul, O. J. (1968). Virus inactivation on clay particles in natural waters. Journal of Water Pollution, Control Federation, 40, R89–R106.Google Scholar
  7. Christensen, V., Jian, X., & Ziegler, A. (2000). Regression analysis and real-time water quality monitoring to estimate constituent concentrations, loads and yields in the Little Arkansas River, South Central Kansas, 1995–1999. USGS Water Resources Investigations report 00–4126, Lawrence.Google Scholar
  8. Cieslak, P. R., Barrett, T. J., & Griffin, P. M. (1993). Escherichia coli O157:H7 infection from a manured garden. Lancet, 342, 367.CrossRefGoogle Scholar
  9. Eleria, A. L. (2002). Forecasting fecal coliform bacteria in the Charles River Basin. Master’s thesis, Tufts University, Medford, pp. 5–38.Google Scholar
  10. Francy OS, Gifford AM, Darner RA, 2002. Escherichia coli at Ohio bathing beaches: distribution, sources, wastewater indicators, and predictive modelling. In cooperation with the Ohio Water Department Authority, U.S. Dept. of the Interior, U.S. Geological Survey, Columbus/Denver, p. 121.Google Scholar
  11. Gerba, C. P., & Schaiberger, G. E. (1975). Effect of particulates on virus survival in seawater. Journal of Water Pollution Control Federation, 47, 93–103.Google Scholar
  12. Grimes, D. J. (1975). Release of sediment-bound fecal coli-forms by dredging. Applied Microbiology, 29, 109–111.Google Scholar
  13. Kelsey, H., Porter, D. E., Scott, G., Neet, M., & White, D. (2004). Using geographic information systems and regression analysis to evaluate relationships between land use and fecal coliform bacterial pollution. Journal of Expedition Marine Biology Ecology, 298, 197–209.CrossRefGoogle Scholar
  14. Kirschner, A. K. T., Gerhard, G. K., Branko, V., Robert, L. M., Regina, S., & Andreas, H. F. (2009). Microbiological water quality along the Danube River: Integrating data from two whole-river surveys and a transnational monitoring network. Water Research, 43(15), 3673–3684. doi: 10.1016/j.watres.2009.05.034.
  15. Mallin, M. A., Williams, K. E., Esham, E. G., & Low, R. P. (2000). Effect of human development on bacteriological water quality in coastal watersheds. Ecology Applied, 10(4), 1047–1056.CrossRefGoogle Scholar
  16. Manja, K. S., Maurya, M. S., & Rao, K. M. (1982). A simple test for the detection of faecal pollution in drinking water. Bulletin World Health Organisation, 60(5), 797–801.Google Scholar
  17. Oppenheimer, C., & Wood, E. J. F. (1962). Note on the effect of contamination on a marine slough and the vertical distribution of unicellular plants in the sediment. Z. allg. Microbiology, 2, 45–47.CrossRefGoogle Scholar
  18. Raveendran, O., Gore, P. S., Iyer, T. S. G., Varma, P. R. G., & Sankaranarayanan, V. N. (1990). Occurrence of enteric bacteria in seawater and mussels along the south west coast of India. Indian Jounal of Marine Science, 19, 282–284.Google Scholar
  19. Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of seawater analysis. 2 (Ed.). Journal of Fish Research Board Canada, 167, 1–310.Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Abhijit Mitra
    • 1
  • Sufia Zaman
    • 2
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia
  2. 2.Department of OceanographyTechno India UniversityKolkataIndia

Personalised recommendations