Producers of the Marine and Estuarine Ecosystems

  • Abhijit Mitra
  • Sufia Zaman


In the marine and estuarine ecosystems, the producer communities act as the converter of solar energy into other utilizable forms of energy. However, in terms of productivity (preferably net primary productivity), the order is estuaries, swamps, and marshes > coastal zone > open ocean (Fig. 5.1).


Salt Marsh Mangrove Forest Seagrass Meadow Mangrove Species Salt Gland 


  1. Azocar, A., Rada, F., & Orozco, A. (1992). Water relations and gas exchange in two mangrove species with contrasting mechanisms of salt regulation. Ecotropicos, 5, 11–19.Google Scholar
  2. Babin, M., Morel, A., & Gentili, B. (1996). Remote sensing of sea surface sun-induced chlorophyll fluorescence: Consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence. International Journal of Remote Sensing, 17, 2417–2448.CrossRefGoogle Scholar
  3. Balsamo, R. A., & Thomson, W. W. (1995). Salt effects on membranes of the hypodermis and mesophyll cells of Avicennia germinans (Avicenniaceae): A freeze-fracture study. American Journal of Botany, 82, 435–440.CrossRefGoogle Scholar
  4. Behrenfeld, M. J., Randerson, J. T., McClain, C. R., Feldman, G. C., Los, S., Tucker, C., Falkowski, P. G., Field, C. B., Frouin, R., Esaias, W., Kolber, D., & Pollack, N. (2001). Biospheric primary production during an ENSO transition. Science, 291, 2594–2597.CrossRefGoogle Scholar
  5. Behrenfeld, M. J., O’Malley, R., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R., & Boss, E. S. (2006a). Climate-driven trends in contemporary ocean productivity. Nature, 444, 752–755.CrossRefGoogle Scholar
  6. Behrenfeld, M. J., Worthington, K., Sherrell, R. M., Chavez, F. P., Strutton, P., McPhaden, M., & Shea, D. M. (2006b). Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics. Nature, 442, 1025–1028.CrossRefGoogle Scholar
  7. Behrenfeld, M. J., Halsey, K., & Milligan, A. J. (2008). Evolved physiological responses of phytoplankton to their integrated growth environment. Philosophical Transactions of the Royal Society of London, 363, 2687–2703. doi: 10.1098/rstb.2008.0019.CrossRefGoogle Scholar
  8. Briggs, S. V. (1977). Estimates of biomass in a temperate mangrove community. Australian Journal of Ecology, 2, 369–373.CrossRefGoogle Scholar
  9. Bunt, J. S. (1992). Introduction. In A. I. Robertson & D. M. Alongi (Eds.), Tropical mangrove ecosystem (pp. 1–6). Washington, DC: American Geophysical Union.Google Scholar
  10. Chaudhuri, A. B., & Choudhury, A. (1994). Mangroves of the Sundarbans (Vol. 1, p. 165). Bangkok: IUCN—The World Conservation Union.Google Scholar
  11. Chung, I. K., Oak, J. H., Lee, J. A., Shin, J. A., Kim, J. G., & Park, K.-S. (2013). Installing kelp forests/seaweed beds for mitigation and adaptation against global warming: Korean project overview. ICES Journal of Marine Science Advance Access. doi: 10.1093/icesjms/fss206. pp. 1–7.Google Scholar
  12. Cleveland, J. S., & Perry, M. J. (1987). Quantum yield, relative specific absorption and fluorescence in nitrogen limited, Chaetoceros gracilis. Marine Biology, 94, 489–497.CrossRefGoogle Scholar
  13. Cullen, J. J. (1982). The deep chlorophyll maximum: Comparing vertical profiles of chlorophyll a. Canadian Journal of Fishery and Aquatic Science, 39, 791–803.CrossRefGoogle Scholar
  14. Cullen, J. J., Ciotti, A. M., Davis, R. F., & Neale, P. J. (1997). Relationship between near-surface chlorophyll and solar-stimulated fluorescence: Biological effects, Ocean Optics XIII. Proceedings SPIE, 2963, 272–277.CrossRefGoogle Scholar
  15. Drennan, P., & Pammenter, N. W. (1982). Physiology of salt secretion in the mangrove Avicennia marina (Forsk.) Vierh. New Phytology, 91, 1000–1005.CrossRefGoogle Scholar
  16. Duarte, C. M., Middelburg, J. J., & Caraco, N. (2005). Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences, 2, 1–8. doi: 10.5194/bgd-2-1-2005.CrossRefGoogle Scholar
  17. Falkowski, P. G., & Kiefer, D. A. (1985). Chlorophyll a fluorescence in phytoplankton: Relationship to photosynthesis and biomass. Journal of Plankton Research, 7, 715–731.CrossRefGoogle Scholar
  18. Falkowski, P. G., & Kolber, Z. (1995). Variations in chlorophyll fluorescence yields in phytoplankton in the world oceans. Australian Journal of Plant Physiology, 22, 341–355.CrossRefGoogle Scholar
  19. Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. G. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281, 237–240.CrossRefGoogle Scholar
  20. Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marba, N., & Holmer, M. (2012). Seagrass ecosystems as a globally significant carbon stock. National Geoscience, 5, 505–509. doi: 10.1038/NGEO1477.CrossRefGoogle Scholar
  21. Gouda, R., & Panigrahy, R. C. (1996). Ecology of phytoplankton in coastal water of Gopalpur, East coast of India. Indian Journal of Marine Science, 2, 13–18.Google Scholar
  22. Gregg, W. W., Casey, N. W., & McClain, C. R. (2005). Recent trends in global ocean chlorophyll. Geophysics Research Letter, 32, L03606. doi: 10.1029/2004GL021808.Google Scholar
  23. Hemminga, M. A., & Duarte, C. M. (2000). Seagrass ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Huot, Y., Babin, M., Bruyant, F., Grob, C., Twardowski, M. S., & Claustre, H. (2007). Relationship between photosynthetic parameters and different proxies of phytoplankton biomass in the subtropical ocean. Biogeosciences, 4, 853–868.CrossRefGoogle Scholar
  25. Kathiresan, K., & Bingham, B. L. (2001). Biology of mangrove ecosystems. Advances in Marine Biology, 40, 81–251.CrossRefGoogle Scholar
  26. Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., & Holmer, M. (2010). Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochemical Cycles, 24, 1–8.CrossRefGoogle Scholar
  27. Krause, G. H., & Weis, E. (1991). Chlorophyll fluorescence and photosynthesis: The basics. Annual Review Plant Physiology Plant Molecular Biology, 42, 313–349.CrossRefGoogle Scholar
  28. McGlathery, J. K., Reynolds, L. K., Cole, L. W., Orth, R. J., & Marion, S. R. (2012). Recovery trajectories during state change from bare sediment to eelgrass dominance. Marine Ecology Programme Series, 448, 209–221. doi: 10.3354/meps09574.CrossRefGoogle Scholar
  29. Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., & Bjork, M. (2011). A blueprint for blue carbon: Toward an improvement understanding of the role of vegetated coastal habitats in sequestering CO2. Frontal Ecology Environment, 9, 552–560. doi: 10.1890/110004.CrossRefGoogle Scholar
  30. Mitra, A., & Banerjee, K. (2005). In Published by WWF India (Eds.), Living resources of the sea: Focus Indian Sundarbans (p. 96). West Bengal: Col S.R. Banerjee, carry field office, 24 Parganas (S).Google Scholar
  31. Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., & Fourqurean, J. W. (2006). A global crisis for seagrass ecosystems. Bioscience, 56, 987–996. Pub Med: 16775979.CrossRefGoogle Scholar
  32. Scholander, P. F. (1968). How mangroves desalinate water. Physiologia Plantarum, 21, 251–261.CrossRefGoogle Scholar
  33. Scholander, P. F., Hammel, H. T., Hemmingsen, E., & Garey, W. (1962). Salt balance in mangroves. Plant Physiology, 37, 722–729.CrossRefGoogle Scholar
  34. Scholander, P. F., Hammel, H. T., Hemmingsen, E. A., & Bradstreet, E. D. (1964). Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proceedings of the National Academy of Sciences, USA, 52, 119–125.CrossRefGoogle Scholar
  35. Schwamborn, R., & Saint-Paul, U. (1996). Mangroves–forgotton forests? Natural Resources and Development, 43/44, 13–36.Google Scholar
  36. Spalding, M., Blasco, F., & Field, C. (1997). World mangrove atlas (p. 178). Okinawa: The International Society for Mangrove Ecosystems.Google Scholar
  37. Tomlinson, P. B. (1986). The botany of mangroves. London: Cambridge University Press.Google Scholar
  38. Twilley, R. R., Chen, R. H., & Hargis, T. (1992). Carbon sinks in mangrove forests and their implications to the carbon budget of tropical coastal ecosystems. Water, Air, and Soil Pollution, 64, 265–288.Google Scholar
  39. Van Eijk, M. (1939). Analyse der Wirkung des NaCl auf die Entwicklung Sukhulenz and Transpiration bei Salicornia herbacea, Sowie untersuchungen uber den Einfluss der Salzauf Nahme auf die Wurzelatmung bei Aster tripolium. Recueil des Travaux. Botaniques Neerlandais, 36, 559–657.Google Scholar
  40. Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., & Dennison, W. C. (2009). Accelerating loss of seagrass across the globe threatens coastal ecosystems. Proceedings of National Academy of Science, USA, 106, 12377–12381.CrossRefGoogle Scholar

Annexure 5A: References

  1. Banerjee, K., Roy Chowdhury, M., Sengupta, K., Sett, S., & Mitra, A. (2012). A. Influence of anthropogenic and natural factors on the mangrove soil of Indian Sundarban Wetland. Archives of Environmental Science, 6, 80–91.Google Scholar
  2. Bellinger, E., & Benhem, B. (1978). The levels of metals in Dockyard sediments with particular reference to the contributions from ship bottom paints. Environmental Pollution Assessment, 15(1), 71–81.Google Scholar
  3. Conley, L. M., Dick, R. I., & Lion, L. W. (1991). An assessment of the root zone method of waste-water treatment. Research Journal of Water Pollution Control Federation, 63(3), 239–247.Google Scholar
  4. Danielsson, L. G., Magnusson, B., & Westerlund, S. (1978). An improved metal extraction procedure for the determination of trace metals in seawater by atomic absorption spectrometry with electrothermal atomization. Analytical Chemical Acta, 98, 45–57.CrossRefGoogle Scholar
  5. Delaune, R. D., Pezeshki, S. R., Pardue, J. H., Whitcomb, J. H., & Patrick, W. H., Jr. (1990). Some influences of sediment addition to a deteriorating salt marsh in the Mississippi River Deltaic plain: A pilot study. Journal of Coastal Research, 6, 181–188.Google Scholar
  6. Gambrell, R. P. (1994). Trace and toxic metals in wet-lands: A review. Journal of Environmental Quality, 23, 883–891.CrossRefGoogle Scholar
  7. Giblin, A. E., Bourg, A., Valiela, I., & Teal, J. M. (1980). Uptake and losses of heavy metals in sewage sludge by a New England saltmarsh. American Journal of Botany, 67, 1059–1068.CrossRefGoogle Scholar
  8. Goldberg, E. D. (1975). The mussel watch—A first step in global marine monitoring. Marine Pollution Bulletin, 6, 111.CrossRefGoogle Scholar
  9. Kanokporn, B., Somkiat, P., & Pipat, P. (2002). The use of a mangrove plantation as a constructed wetland for municipal wastewater treatment. Journal of Science Research, Chula. University, 27, 1.Google Scholar
  10. Kraus, M. L. (1988). Accumulation and excretion of five heavy metals by the saltmarsh cordgrass Spartina alterniflora. Bulletin of the New Jersey Academy of Sciences, 33, 39–43.Google Scholar
  11. Kraus, M. L., Weis, P., & Crow, J. H. (1986). The excretion of heavy metals by the salt marsh cord grass, Spartina alterniflora, and Spartina’s role in mercury cycling. Marine Environmental Research, 20, 307–316.CrossRefGoogle Scholar
  12. Krishnamurti, C. R., & Viswanathan, P. (Eds.). (1991). Toxic metals in the environment (p. 246). New Delhi: Tata McGraw-Hill Publishing Company Ltd.Google Scholar
  13. Lithor, G. (1975). Methods for detection measurement and monitoring of water pollution (p. 41). Rome: FAO.Google Scholar
  14. Malo, B. A. (1977). Partial extraction of metals from aquatic sediments. Environmental Science and Technology, 11, 277–288.CrossRefGoogle Scholar
  15. Manahan, S. E. (1994). Environmental chemistry (4th ed., p. 597). Boston: Willard Grant Press.Google Scholar
  16. Manskaya, S. M., & Drozdova, T. V. (1968). Geochemistry of organic substances. In L. Shapiro & I. A. Breger (Eds.), Geochemistry of organic substances (International series of monographs in earth sciences, Vol. 28). NewYork: Pergamon. 345p.Google Scholar
  17. Mitra, A. (1998). Status of coastal pollution in West Bengal with special reference to heavy metals. Journal Indian Ocean Studies, 5(2), 135–138.Google Scholar
  18. Mitra, A., & Choudhury, A. (1992). Trace metals in macrobenthic molluscs of the Hooghly estuary. Indian Marine Pollution Bulletin UK, 26(9), 521–522.CrossRefGoogle Scholar
  19. Mitra, A., & Ghosh, R. (2014). Bioaccumulation pattern of heavy metals in commercially important fishes in and around Indian Sundarbans. Global Journal of Animal Scientific Research, 2(1), 33–44.Google Scholar
  20. Mitra, A., Banerjee, K., & Bhattacharya, D. P. (2004). The other face of mangroves. West Bengal: Department of Environment, Government of West Bengal.Google Scholar
  21. Mitra, A., Chowdhury, R., & Banerjee, K. (2011). Concentrations of some heavy metals in commercially important finfish and shellfish of the River Ganga. Environmental Monitoring and Assessment. doi: 10.1007/s10661-011-2111-x.Google Scholar
  22. Panigrahy, P. K., Nayak, B. B., Acharya, B. C., Das, S. N., Basu, S. C., & Sahoo, R. K. (1997). Evaluation of heavy metal accumulation in coastal sediments of northern Bay of Bengal. In C. S. P. Iyer (Ed.), Advances in environmental science (pp. 139–146). New Delhi: Educational Publishers and Distributors.Google Scholar
  23. Sahu, K. C., & Bhosale, U. (1991). Heavy metal pollution around the island city of Bombay, India, part-I: Quantification of heavy metal pollution of aquatic sediments and recognition of environment discriminates. Chemical Geology, 91, 263–268.CrossRefGoogle Scholar
  24. Sanders, J. G., & Osman, R. W. (1985). Arsenic incorporation in a saltmarsh ecosystem. Estuarine and Coastal Shelf Science, 20, 387–392.CrossRefGoogle Scholar
  25. Tam, N. F. Y., & Yao, M. W. Y. (1998). Normalization and heavy metal contamination in mangrove sediments. Science of the Total Environment, 216(1–2), 33–39.CrossRefGoogle Scholar
  26. Trieff, R. A. (1980). Environment and health. Ann Arbor Science Publishers Inc., The Butterworth Group.Google Scholar
  27. UNEP. (1982). Pollution and the marine environment in the Indian Ocean. Geneva: UNEP Regional Seas Programme Activity Centre.Google Scholar
  28. Williams, T. P., Bubb, J. M., & Lester, J. N. (1994). Metal accumulation within salt marsh environments: A review. Marine Pollution Bulletin, 38, 277–290.CrossRefGoogle Scholar
  29. Wong, Y. S., Lam, C. Y., Che, S. H., Li, X. R., & Tam, N. F. Y. (1995). Effect of wastewater discharge on nutrient contamination of mangrove soil and plants. Hydrobiologia, 295, 243–254.CrossRefGoogle Scholar
  30. Young, D. R., Alexander, G. V., & McDermott-Ehrlich, D. (1979). Vessel related contamination of southern California harbours by copper and other metals. Marine Pollution Bulletin, 10, 50–56.CrossRefGoogle Scholar

Annexure 5B: References

  1. Aksomkoae, S. (1975). Structure regeneration and productivity of mangroves in Thailand. PhD dissertation, Michigan State University, pp. 1–109.Google Scholar
  2. Bitterlich, W. (1984). The relaskop idea slough: Commonwealth agricultural Bureause, Farnham Royal, England. Indian Forester, 127(2), 144–153.Google Scholar
  3. Brown, S., & Lugo, A. E. (1984). Biomass of tropical forests: A new estimate based on forest volumes. Science, 223, 1290–1293.CrossRefGoogle Scholar
  4. Canadell, J. G., Pitelka, L. F., & Ingram, J. S. I. (1995). The effects of elevated [CO2] on plant-soil carbon below-ground: A summary and synthesis. Plant and Soil, 187, 391–400.CrossRefGoogle Scholar
  5. Chaudhuri, A. B., & Choudhury, A. (1994). Mangroves of the Sundarbans (Vol. 1, p. 165). Bangkok: IUCN—The World Conservation Union.Google Scholar
  6. Chidumaya, E. N. (1990). Aboveground woody biomass structure and productivity in a Zambezian woodland. Forest Ecology and Management, 36, 33–46.CrossRefGoogle Scholar
  7. Clark, D. A., Brown, S., Kiicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., Ni, J., & Holland, E. A. (2001). Measuring net primary production in forest: An evaluation and synthesis of existing field data. Ecological Applications, 11, 371–384.CrossRefGoogle Scholar
  8. Clough, B. F., & Scott, K. (1989). Allometric relationship for estimating above ground biomass in six mangrove species. Forest Ecology and Management, 27, 117–127.CrossRefGoogle Scholar
  9. Constanza, R., et al. (1997). The value of the world’s ecosystem service and natural capital. Ecological Economics, 25, 3–15.CrossRefGoogle Scholar
  10. de la Cruz, A. A., & Banaag, B. F. (1967). The ecology of a small mangrove patch in Matabungkay Beach Batangas Province. Natural and Applied Science Bulletin, 20, 486–494.Google Scholar
  11. Duke, N. C., Bunt, J. S., & Williams, W. T. (1981). Mangrove litterfall in north-eastern Australia, annual totals by component in selected species. Australian Journal of Botany, 29, 547–553.CrossRefGoogle Scholar
  12. Dwyer, J. F., Mcpherson, E., Gregory, S., Herbert, W., & Rowan, A. (1992). Assessing the benefits and costs of the urban forest. Journal of Arboriculture, 18, 227–234.Google Scholar
  13. Egli, P., Maurer, S., Gunthardt-Georg, M., & Korner, C. (1998). Effects of elevated CO2 and soil quality on leaf gas exchange and above ground growth in beech-spruce model ecosystems. New Phytologist, 140, 185–196.CrossRefGoogle Scholar
  14. Fearnside, P. M. (1999). Forests and global warming mitigation in Brazil opportunities in the Brazilian forest sector for responses to global warming under the “clean development mechanism”. Biomass and Bioenergy, 16, 171–189.CrossRefGoogle Scholar
  15. Gattuso, J. P., Frankignoulle, M., & Wollast, R. (1998). Carbon and carbonate metabolism in coastal ecosystems. Annual Review of Ecological Systems, 29, 405–434.CrossRefGoogle Scholar
  16. Gong, W. K., & Ong, J. E. (1990). Plant biomass and nutrient flux in a managed mangrove forest in Malaysia. Estuarine, Coastal and Shelf Science, 31, 519–530.CrossRefGoogle Scholar
  17. Hair, D., & Sampson, R. N. (1992). Climate change-history, prospects, and possible impacts. In D. Hair & R. N. Sampson (Eds.), Forests and global change volume one: Opportunities for increasing forest cover (pp. 1–10). Washington, DC: American Forests.Google Scholar
  18. Hardiwinoto, S., Nakasuga, T., & Igarashi, T. (1989). Litter production and decomposition of mangrove forest at Ohura Bay, Okinawa. Research Bulletins of the College Experiment Forest Hokkaido University, 46(3), 577–594.Google Scholar
  19. Hazra, S. I., Ghosh, T., Dasgupta, R., & Sen, G. (2002). Sea level and associated changes in the Sundarbans. Science and Culture, 68, 309–321.Google Scholar
  20. Hyun-Kil, J., & Gregory McPherson, E. (2001). Carbon storage and flux in urban residential greenspace. Journal of Environmental Management, 61, 165–177.Google Scholar
  21. Jeffrie, F. M., & Tokuyama, A. (1998). Litter production of mangrove forests at the Gesashi River. Bulletin of the College of Science, University of the Ryukyus, 65, 73–79.Google Scholar
  22. Kishimoto, T., Miyajima, H., Nakasuga, T., & Baba, S. (1987). Zonation of mangrove forest (III) litterfall and its seasonal change. Transactions of the Japanese Forest Society, 98, 301–302 (in Japanese).Google Scholar
  23. Komiyama, A., Ogino, K., Aksomkoae, S., & Sabhasri, S. (1987). Root biomass of a mangrove forest in southern Thailand 1. Estimation by the trench method and the zonal structure of root biomass. Journal of Tropical Ecology, 3, 97–108.CrossRefGoogle Scholar
  24. Komiyama, A., Havanond, S., Srisawatt, W., Mochida, Y., Fujimoto, K., & Ohnishi, T. (2000). Top root biomass ratio of secondary mangrove (Ceriops tagal (Perr.) C.B Rob.) forest. Forest Ecology and Management, 139, 127–134.CrossRefGoogle Scholar
  25. Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89, 128–137.CrossRefGoogle Scholar
  26. Koul, D. N., & Panwar, P. (2008). Prioritizing land management option for carbon sequestration potential. Current Science, 95(5), 658–663.Google Scholar
  27. Krishnamurthy, K. (1985). The changing landscape of the Indian mangroves. Proceedings natural symposium biology, utilization and conservation of mangroves, Tamil Nadu, pp. 119–126.Google Scholar
  28. Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic matter dynamics in mangrove ecosystems. Aquatic Botany, 89(2), 201–219.CrossRefGoogle Scholar
  29. Lee, Y. S. (1990). Primary productivity and particulate organic matter flow in an estuarine a mangrove wetland in Hongkong. Marine Ecology, 106, 453–463.Google Scholar
  30. Mackenzie, F. T., Lerman, A., & Andersson, A. J. (2004). Past and present of sediment of carbon biogeochemical cycling models. Biogeosciences, 1, 11–32.CrossRefGoogle Scholar
  31. Mall, L., Singh, V. P., & Garge, A. (1991). Study of biomass, litterfall, litter decomposition and soil respiration monogeneric and mixed mangrove forest of Andaman Island. Tropical Ecology, 32, 235–249.Google Scholar
  32. McKee, K. L. (1995). Interspecific variation in growth biomass partitioning and defensive characteristics of neotropical mangrove seedlings response to light and nutrient availability. American Journal of Botony, 82, 299–307.CrossRefGoogle Scholar
  33. Mitra, A., & Banerjee, K. (2004). In Col S. R. Banerjee (Ed.), Living resources of the sea: Focus Indian Sundarbans (p. 96). West Bengal: Canning Field Office, 24 Parganas (S).Google Scholar
  34. Mitra, A., Banerjee, K., & Bhattacharya, D. P. (2004). The other face of mangroves. West Bengal: Department of Environment, Government of West Bengal.Google Scholar
  35. Mitra, A., Banerjee, K., Sengupta, K., & Gangopadhyay, A. (2009). Pulse of climate change in Indian Sundarbans: A myth or reality? National Academy Science Letters, 32, 1–2.Google Scholar
  36. Mmochi, A. J. (1993). Ecology of mangrove ecosystems: Role of mangrove in dissolved inorganic nutrient fluxes, sediment budgets and litter supplies to Gesashi Bay, Higashi Village, Okinawa, Japan. Thesis Master of Science, College of Science University of the Ryuykyus, p. 82.Google Scholar
  37. Odum, E. P. (1968). A research challenge: Evaluating the productivity of coastal and estuarine waters. Proceedings of the 2nd sea grant conference, University of Rhode Island Kingston, pp. 63–64.Google Scholar
  38. Odum, W. E., & Heald, E. J. (1972). Trophic analysis of an estuarine mangrove community. Bulletin of Marine Science, 22, 671–738.Google Scholar
  39. Ong, J. E., Gong, W. K., & Clough, B. F. (1995). Structure and productivity of a 20-year old stand of Rhizophora apiculata BL mangrove forest. Journal of Biogeography, 55, 417–424.Google Scholar
  40. Pandey, D. N. (2002). Global climate change and carbon management in multifunctional forests. Current Science, 83, 593–602.Google Scholar
  41. Peterson, E., Hall, J. M., Rattray, E. A. S., Griffiths, B. S., Ritz, K., & Killham, K. (1997). Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Global Change Biology, 3, 363–377.CrossRefGoogle Scholar
  42. Pressler, M. (1895). Das Gesetz der stambildung Leipzig, p. 153.Google Scholar
  43. Putz, F. E., & Chan, H. T. (1986). Tree growth dynamics and productivity in a mature mangrove forest in Malaysia. Forest Ecology and Management, 17, 211–230.CrossRefGoogle Scholar
  44. Robertson, A. I., & Phillips, M. J. (1995). Mangroves as filters of shrimp pond effluent: Prediction and biogeochemical research needs. Hydrobiology, 295, 311–321.CrossRefGoogle Scholar
  45. Sampson, R. N., Moll Gary, A., & Kielbaso, J. J. (1992). Opportunities to increase urban forests and the potential impacts on carbon storage and conservation. In D. Hair & R. Neil Sampson (Eds.), Global change volume one: Opportunities for increasing forest cover (pp. 51–72). Washington, DC: American Forests.Google Scholar
  46. Schimel, D. S. (1995). Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1, 77–91.CrossRefGoogle Scholar
  47. Schlesinger, W. H. (1990). Evidence from chronosequence studies for a low carbon storage potential of soils. Nature, 348, 232–234.CrossRefGoogle Scholar
  48. Steinke, T. D., & Charles, L. M. (1984). Productivity and phenology of Avicennia marina and Bruguiera gymnorrhiza in Mgeni estuary, South Africa. In H. J. Teas (Ed.), Physiology and management of mangroves (pp. 25–36). The Hague: Dr. W. Junk Publisher.CrossRefGoogle Scholar
  49. Tamai, S., Nakasuga, T., Tabuchi, R., & Ogino, K. (1986). Standing biomass of mangrove forests in Southern Thailand. Journal of Japanese Forest Society, 68, 384–388.Google Scholar
  50. Twilley, R., Lugo, A. E., & Zucca, C. P. (1986). Litter production and turnover in basin mangrove forest in South- West Florida, USA. Ecology, 67(3), 670–683.CrossRefGoogle Scholar
  51. Twilley, R. R., Chen, R. H., & Hargis, T. (1992). Carbon sinks in mangrove forests and their implications to the carbon budget of tropical coastal ecosystems. Water, Air, and Soil Pollution, 64, 265–288.Google Scholar
  52. Vermatt, J. E., & Thampanya, U. (2006). Mangroves mitigate tsunami damage: A further response. Estuarine, Coastal and Shelf Science, 69, 1–3.CrossRefGoogle Scholar
  53. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.CrossRefGoogle Scholar
  54. William, N. (2005). Tsunami insight to mangrove value. Current Biology, 15(3), 73.CrossRefGoogle Scholar
  55. Yadav, V. K., & Choudhury, A. (1985). Litter production in mangrove forest of Lothian island in Sunderbans. Proceedings natural symposium biology, utilization and conservation of mangroves, West Bengal, pp. 227–229. Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Abhijit Mitra
    • 1
  • Sufia Zaman
    • 2
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia
  2. 2.Department of OceanographyTechno India UniversityKolkataIndia

Personalised recommendations