Advertisement

Abiotic Variables of the Marine and Estuarine Ecosystems

  • Abhijit Mitra
  • Sufia Zaman
Chapter

Abstract

Aquatic phase of the marine and estuarine ecosystems is an ideal solvent, and because of this reason seawater is a well-mixed solution of several salts and gases. The churning of seawater due to wave, currents and tidal actions accelerates the process of solubility of substances in the solvent. It is mainly because of thorough mixing the ionic composition of the major ions of the seawater (except bicarbonate and fluoride) exhibits uniform spatial variation, i.e. the composition is almost the same from place to place as well as from depth to depth. Thus, the ratio of one major ion to the other remains almost constant.

Keywords

Dissolve Inorganic Carbon North Atlantic Deep Water Bengal Basin Dissolve Inorganic Carbon Concentration Biological Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

References

  1. Bramlette, M. N., & Bradley, W. H. (1940). Geology and biology of north Atlantic deep-sea cores between Newfoundland and Ireland. Part I. Lithology and geological interpretations (United States Geological Survey, professional paper, 196-A, pp. 1–34). Reston: United States Geological Survey.Google Scholar
  2. Chowdhury, N. T. (2010). Water management in Bangladesh: An analytical review. Water Policy, 12(1), 32–51. IWA Publishing, uncorrected Proof.CrossRefGoogle Scholar
  3. Cleveland, C. G., Townsend, A. R., Schimel, D. S., Fisher, H., Howarth, R. W., Hedin, L. O., et al. (1999). Global patterns of terrestrial biological nitrogen (N2) fixation on natural ecosystems. Global Biogeochemical Cycles, 13, 623–645.CrossRefGoogle Scholar
  4. Galloway, J. N., Schlesinger, W. H., Levy, C., Michaels, A., & Schnoor, J. L. (1995). Nitrogen fixation: Atmospheric enhancement and environmental response. Global Biogeochemical Cycles, 9, 235–252.CrossRefGoogle Scholar
  5. Gripenberg, S. (1934). A study of the sediments of the north Baltic and adjoining seas (Thalass. Inst. Mere. Fennia, Vol. 60, No. 3). Helsingfors: Tekijä. 231 pp.Google Scholar
  6. Hedley, M. J., & Sharpley, A. N. (1998). Strategies for global nutrient cycling. In L. Currie (Ed.), Long-term nutrient needs for New Zealand’s primary industries: Global supply, production requirements and environmental constraints (pp. 70–95). Palmerston North: The Fertilizer and Lime Research Centre, Massey University.Google Scholar
  7. Howarth, R. W., Jensen, H. S., Marino, R., & Postma, H. (1995). Transport to and processing of phosphorus in near shore and oceanic waters. In H. Tiessen (Ed.), Phosphorus in the global environment (pp. 323–345). New York: Wiley.Google Scholar
  8. Islam, M. R. (2004). Where land meets the sea: A profile of coastal zone of Bangladesh (pp. 1–317). Dhaka: The University Press Ltd.Google Scholar
  9. Islam, S. N., & Gnauck, A. (2008). Mangrove wetland ecosystems in Ganges-Brahmaputra delta in Bangladesh. International Journal of Frontier Earth Science China, 2(4), 439–448. Springer.CrossRefGoogle Scholar
  10. Joseph, P. S. (2006). The environmental management the better supply of fresh water in transboundary river: The Ganges could run dry. In J. G. Perez (Ed.), Proceedings of III international symposium on transboundary waters management-overcoming water management boundaries, 30 May–2 June. Ciudad Real: Universidad de Castilla-La Mancha.Google Scholar
  11. Matson, P. A., Parton, W. J., Power, A. G., & Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science, 277, 504–509.CrossRefGoogle Scholar
  12. Murray, J., & Hjort, J. (1912). The depths of the ocean (p. 821). London: Macmillan.Google Scholar
  13. National Research Council. (2000). Clean coastal waters: Understanding and reducing the effects of nutrient pollution. Washington, DC: National Academy Press.Google Scholar
  14. Radezewski, O. E. (1939). Eolian deposits in marine sediments. In P. D. Trask (Ed.), Recent marine sediments (pp. 496–502). Tulsa: The American Association of Petroleum Geologists.Google Scholar
  15. Riley, J. P., & Skirrow, G. (1975). Chemical oceanography (2nd ed., Vol. 1, p. 366). London: Academic Press Ltd.Google Scholar
  16. Schmitt, R. W., Bogden, P. S., & Dorman, C. E. (1989). Evaporation minus precipitation and density fluxes for the North Atlantic. Journal of Physical Oceanography, 19, 1208–1221.CrossRefGoogle Scholar
  17. Smil, V. (2001). Enriching the earth. Cambridge, MA: MIT Press.Google Scholar
  18. Twenhofel, W. H. (1932). Treatise on sedimentation (2nd ed., p. 926). Baltimore: Williams and Wilkins.Google Scholar
  19. Vitousek, P. M., Aber, J., Bayley, S. E., Howarth, R. W., Likens, G. E., Matson, P. A., et al. (1997). Human alteration of the global nitrogen cycle: Causes and consequence. Issues in Ecology, 1, 1–15.Google Scholar

Annexure 4A References

  1. Banerjee, K., Mitra, A., Bhattacharyya, D. P., & Choudhury, A. (2002). Role of nutrients on phytoplankton diversity in the north–east coast of the Bay of Bengal. In A. Kumar (Ed.), Ecology and ethology of aquatic biota (pp. 102–109). New Delhi: Daya Publishing House.Google Scholar
  2. Banerjee, K., Mitra, A., & Bhattacharyya, D. P. (2003). Phytopigment level of the aquatic subsystem of Indian Sundarbans at the apex of Bay of Bengal. Sea Explorers, 6, 39–46.Google Scholar
  3. Banerjee, K., Sengupta, K., Raha, A., & Mitra, A. (2013). Salinity based allometric equations for biomass estimation of Sundarban mangroves. Biomass and Bioenergy, 56, 382–391.CrossRefGoogle Scholar
  4. CEGIS. (2006). Impacts of sea level rise on landuse suitability and adaptation options. Draft final report. Submitted to the Ministry of Environment and Forest, Government of Bangladesh and United Nations Development Programme (UNDP) by Centre for Environmental Geographic Information Services (CEGIS), Dhaka.Google Scholar
  5. Chakraborty, S. K., & Choudhury, A. (1985). Distribution of fiddler crabs in Sundarbans mangrove estuarine complex, India. Proceedings of national symposium on biology, utilization and conservation of mangroves, Department of Ocean Development, India, pp. 467–472.Google Scholar
  6. Chaudhuri, A. B., & Choudhury, A. (1994). Mangroves of the Sundarbans, India. Bangkok: IUCN.Google Scholar
  7. Hazra, S., Ghosh, T., Dasgupta, R., & Sen, G. (2002). Sea level and associated changes in Sundarbans. Science and Culture, 68, 309–321.Google Scholar
  8. IPCC (Intergovernmental Panel on Climate Change). (2007) Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change, Geneva, 976 pp.Google Scholar
  9. Jagtap, T. G., & Nagle, V. L. (2007). Response and adaptability of mangrove habitats from Indian subcontinent to changing climate. Ambio, 36(4), 328–334.CrossRefGoogle Scholar
  10. Mitra, A. (2000). The Northeast coast of the Bay of Bengal and deltaic Sundarbans. In C. Sheppard (Ed.), Seas at the millennium—An environmental evaluation (Chap. 62, pp. 143–157). Coventry: University of Warwick/Elsevier Science.Google Scholar
  11. Mitra, A. (2013). Sensitivity of mangrove ecosystem to changing climate (p. 323). New Delhi: Springer. doi: 10.1007/978-81-322-1509-7: 323
  12. Mitra, A., & Banerjee, K. (2005). In C. S. R. Banerjee (Ed.), Living resources of the seas: Focus Sundarbans. WWF-India, Canning Field Office, 24 Parganas(S), West Bengal, 96 pp.Google Scholar
  13. Mitra, A., & Choudhury, A. (1994). Heavy metal concentrations in oyster Crassostrea cucullata of Henry’s Island, India. Journal of Ecobiology, 6(2), 157–159.Google Scholar
  14. Mitra, A., Ghosh, P. B., & Choudhury, A. (1987). A marine bivalve Crassostrea cucullata can be used as an indicator species of marine pollution. Proceedings of national seminar on estuarine management, Department of Ocean Development, India, pp. 177–180.Google Scholar
  15. Mitra, A., Choudhury, A., & Zamaddar, Y. A. (1992). Effects of heavy metals on benthic molluscan communities in Hooghly estuary. Proceedings of the Zoological Society, 45, 481–496.Google Scholar
  16. Mitra, A., Banerjee, K., Sengupta, K., & Gangopadhyay, A. (2009). Pulse of climate change in Indian Sundarbans: A myth or reality. National Academy of Science Letters, 32, 1–7.Google Scholar
  17. Mitra, A., Sengupta, K., & Banerjee, K. (2011). Standing biomass and carbon storage of above-ground structures in dominant mangrove trees in the Sundarbans. Forest Ecology and Management, 261(7), 1325–1335. Elsevier doi: 10.1016/j.foreco.2011.01.012.
  18. Mondal, K., Mukhopadhyay, S. K., Biswas, H., De, T. K., & Jana, T. K. (2006). Fluxes of nutrients from the tropical River Hooghly at the land–ocean boundary of Sundarbans, NE Coast of Bay of Bengal, India. Journal of Marine Systems, 62, 9–21.CrossRefGoogle Scholar
  19. Roy Chowdhury, M., Zaman, S., Jha, C. S., Sengupta, K., & Mitra, A. (2014). Mangrove biomass and stored carbon in relation to soil properties: A case study from Indian Sundarbans. International Journal for Pharmaceutical Research Scholars, 3(3), 58–69.Google Scholar
  20. Saha, S. B., Mitra, A., Bhattacharyya, S. B., & Choudhury, A. (1999). Heavy metal pollution in Jagannath canal, an important tidal water body of the north Sundarbans aquatic ecosystem of West Bengal. Indian Journal of Environmental Protection, 19(11), 801–804.Google Scholar
  21. Sengupta, K., Roy Chowdhury, M., Bhattacharya, S. B., Raha, A., Zaman, S., & Mitra, A. (2013). Spatial variation of stored carbon in Avicennia alba of Indian Sundarbans. Discovery Nature, 3(8), 19–24.Google Scholar
  22. UNESCO. (2007). Case studies on climate change and world heritage. Paris: UNESCO World Heritage Centre.Google Scholar
  23. Zhang, K. Q., Douglas, B. C., & Leatherman, S. P. (2000). Twentieth-century storm activity along the US east coast. Journal of Climate, 13, 1748–1761.CrossRefGoogle Scholar

Annexure 4B References

  1. Hasnain, S. I. (1999). Himalayan glaciers: Hydrology and hydrochemistry. New Delhi: Allied Publisher.Google Scholar
  2. Hasnain, S. I. (2000). Status of the glacier research in the HKH region 2000. Kathmandu: ICIMOD.Google Scholar
  3. Hasnain, S. I. (2002). Himalayan glaciers meltdown: Impact on South Asian Rivers (IAHS publication 274, pp. 1–7). Wallingford: IAHS.Google Scholar
  4. IPCC. (2001). In J. T. Houghton et al. (Eds.), Climate change, 2001: The scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change (881 pp.). Cambridge: University of Cambridge.Google Scholar
  5. Sinha, M., Mukhopadhyay, M. K., Mitra, P. M., Bagchi, M. M., & Karmakar, H. C. (1996). Impact of Farakka Barrage on the hydrology and fishery of Hooghly Estuary. Estuaries, 19(3), 710–722.Google Scholar
  6. World Bank. (1997). World development indicators. Washington, DC: World Bank. 231 pp.Google Scholar

Annexure 4C References

  1. Carpelan, L. H. (1967). Invertebrates in relation to hypersaline habitats. Invertebrates in supersaline waters. University Texas Contribution Marine Science, 12(21), 219–229.Google Scholar
  2. Copeland, B. J. (1967). Environmental characteristics of hypersaline lagoons. University of Texas Contribution Marine Science, 12, 207–218.Google Scholar
  3. Hammer, U. T. (1986). Saline lake ecosystems of the world. Dordrecht: Dr. W Junk Publishers.Google Scholar
  4. Sanyal, P., Mukherjee, M., & Das, K. L. (2007). Status of sharks, rays and dolphins of Sunderbans with special views on marine reserve. In M. Mukherjee (Ed.), Sunderban wetlands. Kolkata: Department of Fisheries, Aquaculture, Aquatic Resources and Fishing Harbours, Govt. of West Bengal. 256 pp.Google Scholar
  5. Sinha, M., Mukhopadhyay, M. K., Mitra, P. M., Bagchi, M. M., & Karmakar, H. C. (1996). Impact of Farakka Barrage on the hydrology and fishery of Hooghly Estuary. Estuaries, 19(3), 710–722.Google Scholar

Annexure 4D References

  1. Chaudhuri, A. B., & Choudhury, A. (1994). Mangroves of the Sundarbans India. Bangkok: IUCN.Google Scholar
  2. Chidumaya, E. N. (1990). Above ground woody biomass structure and productivity in a Zambezian woodland. Forest Ecology Management, 36, 33–46.CrossRefGoogle Scholar
  3. Doney, S., Ruckelshaus, M., Duffy, E., Barry, J., Chan, F., English, C., Galindo, H., Grebmeier, J., Hollowed, A., Knowlton, N., Polovina, J., Rabalais, N., Sydeman, W., & Talley, L. (2012). Climate 10 change impacts on marine ecosystems. Annual Review of Marine Science, 4, 1–27.CrossRefGoogle Scholar
  4. Husch, B., Miller, C. J., & Beers, T. W. (1982). Forest mensuration. New York: Ronald Press.Google Scholar
  5. Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007: The physical science basis. Cambridge: Cambridge University Press. 996 pp.CrossRefGoogle Scholar
  6. Kim, J. Y., Kang, D. J., Lee, T., & Kim, K. R. (2013). Rapid increasing trend of CO2 and ocean acidification in the surface water of the Ulleung Basin. East/Japan Sea inferred from the observations from 1995 to 2004. BGD, 10, 9573–9602.Google Scholar
  7. Mitra, A. (2013). Sensitivity of mangrove ecosystem to changing climate. New Delhi: Springer. ISBN: 978-81-322-1508-0 (Print) 978-81-322-1509-7 (Online).Google Scholar
  8. Mitra, A., Choudhury, A., & Zamaddar, Y. A. (1992). Seasonal variations in metal content in the gastropod Cerithedia (Cerithideopsis) cingulata. Proceedings of the Zoological Society, 45, 497–500.Google Scholar
  9. Mitra, A., Banerjee, K., Sengupta, K., & Gangopadhyay, A. (2009). Pulse of climate change in Indian Sundarbans: A myth or reality? National Academy of Science Letters, 32, 1–2.Google Scholar
  10. Mitra, A., Mondal, K., & Banerjee, K. (2010). Concentration of heavy metals in fish juveniles of Gangetic delta of West Bengal, India. Research Journal Fisheries and Hydrobiology, 5(1), 21–26.Google Scholar
  11. Mitra, A., Sengupta, K., & Banerjee, K. (2011). Standing biomass and carbon storage of above ground structures in dominant mangrove trees in the Sundarbans. Forest Ecology Management, 261, 1325–1335.Google Scholar
  12. Raha, A. K., Bhattacharyya, S. B., Zaman, S., Banerjee, K., Sengupta, K., Sinha, S., Sett, S., Chakraborty, S., Datta, S., Dasgupta, S., Chowdhury, M. R., Ghosh, R., Mondal, K., Pramanick, P., & Mitra, A. (2013). Carbon census of mangrove vegetation in Indian Sundarbans. Journal of Energy and Environmental Science, 127, 345–354.Google Scholar
  13. Sengupta, K., Roy Chowdhury, M., Bhattacharya, S. B., Raha, A., Zaman, S., & Mitra, A. (2013). Spatial variation of stored carbon in Avicennia alba of Indian Sundarbans. Discovery Nature, 3(8), 19–24.Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Abhijit Mitra
    • 1
  • Sufia Zaman
    • 2
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia
  2. 2.Department of OceanographyTechno India UniversityKolkataIndia

Personalised recommendations