Physical Processes in the Marine and Estuarine Ecosystems

  • Abhijit Mitra
  • Sufia Zaman


The major physical processes that configure the coastal zone, estuarine mudflats and shorelines of islands are waves, tides and currents. These processes may be broadly divided into destructive and constructive processes. The destructive processes include shoreline weathering, coastal erosion, etc., and the constructive processes encompass accretion or deposition of the sediment. The coastal zone is constantly exposed to waves, currents and tides of varying degree and types. Each of these processes is discussed in brief.


Wave Height Tidal Wave Warm Current Capillary Wave Diurnal Tide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Airy, G. B. (1842). On the laws of the rise and fall of the tide in the River Thames. Philosophical Transactions of the Royal Society of London, 132, 1–8. doi: 10.1098/rstl.1842.0002.CrossRefGoogle Scholar
  2. Church, J. A., White, N. J., Clarke, A. J., Freeland, H. J., & Smith, R. L. (1986). Coastal trapped waves on the east Australian continental shelf. Part II: Model verification. Journal of Physical Oceanography, 16, 1945–1958.CrossRefGoogle Scholar
  3. Griffin, D. A., & Middleton, J. H. (1991). Local and remote wind forcing of New South Wales inner shelf currents and sea level. Journal of Physical Oceanography, 16, 1652–1664.Google Scholar
  4. Laplace, P. S. (1775). Recherches sur plusieurs points du systeme du monde. Memoires of the Academy of Royal Science, 88, 91–92.Google Scholar
  5. Newton, I. (1687). Philosophiae naturalis principia mathematica (in Latin). Swem Library: Jussu Societatis Regiae ac Typis Josephi Streater. New-York: Daniel Adee, 1846.Google Scholar
  6. Whewell, W. (1833). Essay towards a first approximation to a map of cotidal lines. Philosophical Transactions of the Royal Society, 123, 147–236.CrossRefGoogle Scholar

Annexure References

  1. Andrew, O. M., Grasshoff, F., Koroloff, K., Kremling, K., & Olaffason, J. (1983). Methods of sea water analysis. New York: Verlag Chemie.Google Scholar
  2. APHA (American Public Health Association). (2001). Standard methods for the examination of water and waste water (20th ed., p. 380). Washington, DC: APHA.Google Scholar
  3. Bass, M. L., & Heath, A. G. (1977). Toxicity of intermittent chlorination to Bluegill Lepomis macrochirus: Interaction with temperature. Bulletin of Environmental Contamination and Toxicology, 17(4), 416–423.CrossRefGoogle Scholar
  4. Berner, R. A. (1972). Sulphate reduction, pyrite formation and the oceanic sulphur budget. In D. Dyrssen & D. Jnagner (Eds.), Novel symposium 20: The changing chemistry of oceans, Almqvist and Wiskel (p. 347). Stockholm: Wiley.Google Scholar
  5. Blanco, J. (1995). Cyst production in four species of neritic dinoflagellates. Journal of Plankton Research, 17, 165–182.CrossRefGoogle Scholar
  6. Bryan, G. W. (1971). The effects of heavy metals (other than mercury) on marine and estuarine organisms. Proceedings of the Royal Society of London B, 177, 389.CrossRefGoogle Scholar
  7. Bryan, G. W. (1976). Some effects of heavy metal tolerance in aquatic organisms. In A. P. M. Lockwood (Ed.), Effects of pollutants on aquatic organisms (p. 7). Cambridge: Cambridge University Press.Google Scholar
  8. Bryan, G. W. (1984). Pollution due to heavy metals and their compounds. In O. Kinne (Ed.), Marine zoology (Vol. V, Part 3, p. 1289). New York: John Wiley & Sons.Google Scholar
  9. Buckley, J. A., Whitemore, C. M., & Mastuda, R. T. (1976). Changes in blood chemistry and blood cell morphology in coho salmon following exposure to sublethal levels of chlorine in municipal wastewaters. Journal of the Fisheries Research Board of Canada, 33(4), 776–782.CrossRefGoogle Scholar
  10. Chaudhuri, A. B., & Choudhury, A. (1994). Mangroves of the Sundarbans (Vol. I, p. 165). New Delhi: IUCN—The World Conservation Union.Google Scholar
  11. Cohen, G. M., & Valenzuela, M. (1977). Gill damage in the mosquito fish Gambusia affinis caused by chlorine. Institute of Freshwater Science and Biology Journal, 3(4), 361–365.Google Scholar
  12. Coonley, L. S., Baker, E. B., & Holland, H. D. (1971). Iron in the Mullica River and in Great Bay. Chemical Geology, 7, 51–63.CrossRefGoogle Scholar
  13. Forstner, U. (1983). Assessment of metal pollution in rivers and estuaries. In I. Thornton (Ed.), Applied environmental geochemistry (Vol. I, pp. 395–419). New York: Academic Press.Google Scholar
  14. Gobeil, C. B., Sundby, B., & Silverberg, N. (1981). Factors influencing particulate matter geochemistry in the St. Lawrence Estuary turbidity maximum. Marine Chemistry, 10, 123–140.CrossRefGoogle Scholar
  15. Goldhaber, M. B., & Kaplan, I. R. (1974). The sulphur cycle. In E. D. Goldhaber (Ed.), The sea (Vol. 5, p. 569). New York: Wiley.Google Scholar
  16. Gomeez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed., p. 680). New York: Willey.Google Scholar
  17. Hazra, S., Ghosh, T., Dasgupta, R., & Sen, G. (2002). Sea level and associated changes in the Sundarbans. Science and Culture, 68, 309–321.Google Scholar
  18. Hobbie, J. E. (1976). Nutrients in estuaries. Oceanus, 19, 41–45.Google Scholar
  19. Hose, J. E., King, T. D., Zebra, K. E., Stoffel, R. J., Stephans, J. S., & Dickson, J. A. (1983). Does avoidance of chlorinated seawater protect fish against toxicity? Laboratory and Field observations. In R. L. Jolley, W. A. Brungs, J. A. Cotruvo, R. B. Cummins, J. S. Mattice, & V. A. Jacobs (Eds.), Water chlorination: Environmental impact and health effects (Vol. 4, Book 2, pp. 967–982). Ann Arbor: Ann Arbor Science.Google Scholar
  20. Ishikawa, A., & Taniguchi, A. (1994). The role of cysts on population dynamics of Scrippsiella spp. (Dinophyceae) in Onagawa Bay, Northeast Japan. Marine Biology, 119, 39–44.CrossRefGoogle Scholar
  21. Jorgensen, B. B. (1977). The sulphur cycle of coastal marine sediment (Limfjorden, Denmark). Limnology Oceanography, 22, 815.Google Scholar
  22. La Fond, E. C. (1954). On the upwelling and sinking off the east coast of India. Andhra University Memoirs in Oceanography Waltair, 29, 117.Google Scholar
  23. Middaugh, D. P., Couch, J. A., & Crane, A. M. (1977). Responses of early life-history stages of the Striped Bass Morone saxatilis to chlorination. Chesapeake Science, 18(1), 141–153.CrossRefGoogle Scholar
  24. Mitra, A., Banerjee, K., Sengupta, K., & Gangopadhyay, A. (2009). Pulse of climate change in Indian Sundarbans: A myth or reality? National Academy Science Letters, 32, 1–7.Google Scholar
  25. Mukherjee, M., Roy Choudhury, M., & Tripathi, R. (2007). Fishers, fishery and gears in Sundarban wetlands. In M. Mukherjee (Ed.), Sundarbans wetlands (pp. 115–131). West Bengal: Department of Fisheries, Aquaculture, Aquatic Resources, and Fishing Harbours, Govt. of West Bengal.Google Scholar
  26. Nair, K. V. K. (1985). Impact of nuclear power station on the hydrobiological characteristics of Kalpakkam waters. Proceedings of the symposium on seawater quality demands, NCML, Bombay, pp. 13.1–13.10.Google Scholar
  27. Ramanathan, A. L., Subramanian, V., Ramesh, R., Chidambaram, S., & James, A. (1999). Environmental geochemistry of the Pichavaram mangrove ecosystem (tropical), southeast coast of India. Environmental Geology, 37(3), 223–233.CrossRefGoogle Scholar
  28. Ruttner, F. (1953). Fundamentals of limnology (p. 242) (trans: Frey, D. G., Frey, F. E.). Toronto: Toronto University Press.Google Scholar
  29. Sankaranarayanan, V. N., & Qasim, S. Z. (1969). Nutrients of Cochin backwaters in relation of environmental characteristics. Journal of Marine Biology, 2, 236.CrossRefGoogle Scholar
  30. Satyanarayana, D., Rao, I. M., & Prasada Reddy, B. R. (1990). Primary productivity, plants pigments and particular organic carbon of Visakhapatnam Harbour – A seasonal study. Proceeding of International Symposium of Marine Pollution, Department of Ocean Development, New Delhi, pp. 287–300.Google Scholar
  31. Sholkovitz, E. R. (1976). Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater. Geochimica et Cosmochimica Acta, 37, 851–880.Google Scholar
  32. Solarzano, L., & Ehrilich, B. J. (1975). Chemical investigations of Loch Etive Scotland: I. Inorganic nutrients and pigments Exch. Marine Biology and Ecology, 29, 45.CrossRefGoogle Scholar
  33. Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of seawater analysis (Fisheries Research Board of Canada Bulletin, Vol. 167, p. 310). Ottawa: Queen’s Printer.Google Scholar
  34. UNEP. (1982). Pollution and the marine environment in the Indian Ocean (UNEP regional seas reports and studies, Vol. 13). Geneva: UNEP Regional Seas Programme Activity Centre.Google Scholar
  35. Yeats, P. A., & Bewers, J. M. (1982). Discharge of metals from the St. Lawrence River. Canadian Journal of Earth Sciences, 19, 982–992.CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Abhijit Mitra
    • 1
  • Sufia Zaman
    • 2
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia
  2. 2.Department of OceanographyTechno India UniversityKolkataIndia

Personalised recommendations