Instruments and Methods

  • Abhijit Mitra
  • Sufia Zaman


The marine and estuarine compartments are the storehouses of vast resources, but instrumentation sector is a vital wing not only to monitor the magnitude and variation of these resources but also to harness them in a cost-effective way. Research vessels from different countries are constantly monitoring the oceans and generating data on temperature, salinity, pH, dissolved oxygen (DO), nutrients chlorophyll and several other parameters. Many of these research vessels have sophisticated laboratories inside, where analysis of water sediment and other biological samples are carried out.


Research Vessel Physical Oceanography Manganese Nodule Satellite Remote Sense Indian Remote Sensing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Behl, C. (1999). Alzheimer’s disease and oxidative stress: Implications for novel therapeutic approaches. Progressive Neurobiology, 57, 301.CrossRefGoogle Scholar
  2. Bograd, S. J., Block, B. A., Costa, D. P., & Godley, B. J. (2010). Biologging technologies: New tools for conservation. Introduction. Endangered Species Research, 10, 1–7.CrossRefGoogle Scholar
  3. Ebadi, M., Srinivasan, S. K., & Baxi, M. D. (1996). Oxidative stress and antioxidant therapy in Parkinson’s disease. Progressive Neurobiology, 48, 1.CrossRefGoogle Scholar
  4. Howell, E. A., Kobayashi, D. R., Parker, D. M., Balazs, G. H., & Polovina, J. J. (2008). TurtleWatch: A tool to aid in the bycatch reduction of loggerhead turtles Caretta caretta in the Hawaii-based pelagic longline fishery. Endangered Species Research, 5, 267–278.CrossRefGoogle Scholar
  5. Kobayashi, D. R., Polovina, J. J., Parker, D. M., Kamezaki, N., Cheng, I.-J., Uchida, I., et al. (2008). Pelagic habitat characterization of loggerhead sea turtles, Caretta caretta, in the North Pacific Ocean (1997–2006): Insights from satellite tag tracking and remotely sensed data. Journal of Experimental Marine Biology and Ecology, 356, 96–114.CrossRefGoogle Scholar
  6. Markesbery, W. R., & Carney, J. M. (1999). Oxidative alterations in Alzheimer’s disease. Brain Pathology, 9, 133.CrossRefGoogle Scholar
  7. Nielsen, A., Bigelow, K. A., Musyl, M. K., & Sibert, J. R. (2006). Improving light-based geolocation by including sea surface temperature. Fisheries Oceanography, 15, 314–325.CrossRefGoogle Scholar
  8. Patterson, T., Thomas, L., Wilcox, X., Ovaskainen, O., & Matthiopoulos, J. (2008). State–space models of individual animal movement. Trends in Ecology & Evolution, 23, 87–94.CrossRefGoogle Scholar
  9. Polovina, J. J., Kobayashi, D. R., Parker, D. M., Seki, M. P., & Balazs, G. H. (2000). Turtles on the edge: Movement of loggerhead turtles (Caretta caretta) along oceanic fronts, spanning longline fishing grounds in the central North Pacific, 1997–1998. Fisheries Oceanography, 9, 71–82.CrossRefGoogle Scholar
  10. Polovina, J. J., Howell, E., Kobayashi, D. R., & Seki, M. P. (2001). The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources. Progress in Oceanography, 49, 469–483.CrossRefGoogle Scholar
  11. Tang, D. L., & Kawamura, H. (2001). Long-term time series satellite ocean color products on the Asian waters. In Proceedings of the 11 th PAMS/JECSS workshop (pp. 49–52). Seoul, South Korea: Hanrimwon Publishing (CD-ROM: O112-P03).Google Scholar
  12. Tang, D. L., Kawamura, H., & Luis, A. J. (2002). Short-term variability of Phytoplankton blooms associated with a cold eddy in the northeastern Arabian Sea. Remote Sensing of Environment, 81, 82–89.CrossRefGoogle Scholar
  13. Tremblay, Y., Robinson, P. W., & Costa, D. P. (2009). A parsimonious approach to modeling animal movement data. PLoS ONE, 4, e4711.CrossRefGoogle Scholar

Annexure References

  1. Alongi, D. M. (2008). Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76, 1–13.CrossRefGoogle Scholar
  2. Anthropogenic carbon fluxes; 1980 to 1989. IPCC 1994Google Scholar
  3. Bernal, B., & Mitsch, W. J. (2008). A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecological Engineering, 34, 311–323.CrossRefGoogle Scholar
  4. Bouillon S., Rivera-Monroy V. H., Twilley R. R., & Kairo J. G. (2009). Mangroves. In: D. Laffoley, & G. Grimsditch (Eds.), The management of natural coastal carbon sinks. International Union for the Conservation of Nature and Natural Resources, IUCN, Gland, Switzerland, pp. 53.Google Scholar
  5. Brevik, E., & Homburg, J. (2004). A 500 year record of carbon sequestration from a coastal lagoon and wetland complex, Southern California, USA. Catena, 57, 221–232.CrossRefGoogle Scholar
  6. Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C. (2006). The carbon balance of North American wetlands. Wetlands, 26, 889–916.CrossRefGoogle Scholar
  7. Cerón-Bretón, J. G., Cerón-Bretón, R. M., Guerra-Santos, J. J., Aguilar-Ucán, C., Montalvo-Romero, C., Vargas-Cáliz, C., et al. (2010). Effects of simulated tropospheric ozone on nutrients levels and photosynthetic pigments concentrations of three mangrove species. WSEAS Transactions on Environment and Development, 6(2), 133–143.Google Scholar
  8. Chaudhuri, A. B., & Choudhury, A. (1994). Mangroves of the Sundarban – India (1st ed.). Bangkok: IUCN- The World Conservation Union.Google Scholar
  9. Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003). Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17, 1111.CrossRefGoogle Scholar
  10. Donato, D. C., Kauffman Brone, J., Murdiyarso, D., Sofyan, K., Melanie, S., & Markku, K. (2011). Mangroves amongst the most carbon-rich forests in the tropics. Nature Geoscience, 4, 293–297.CrossRefGoogle Scholar
  11. Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450, 277–280.CrossRefGoogle Scholar
  12. Gill, R., Burke, I. C., Milchunas, D. G., & Lauenroth, W. K. (1999). Relationship between root biomass and soil organic matter pools in the short-grass steppe of Eastern Colorado. Ecosystems, 2, 226–236.CrossRefGoogle Scholar
  13. Homann, P. S., Remillard, S. M., Harmon, M. E., & Bormann, B. T. (2004). Carbon storage in coarse and fine fractions of Pacific Northwest old growth forest soils. Soil Science Society of America Journal, 68, 2023–2030.CrossRefGoogle Scholar
  14. Howe, A. J., Rodríguez, J. F., & Saco, P. M. (2009). Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia. Estuarine, Coastal and Shelf Science, 84, 75–86.CrossRefGoogle Scholar
  15. Jackson, R. B., Schenk, H. J., Jobba’gy, E. G., Canadell, J., Colello, G. D., Dickinson, R. E., et al. (2000). Belowground consequences of vegetation change and their treatment in models. Ecological Applications, 10, 470–483.CrossRefGoogle Scholar
  16. Jobb’agy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423–436.CrossRefGoogle Scholar
  17. Khan, M. N. I., Suwa, R., & Hagihara, A. (2007). Carbon and nitrogen pools in a mangrove stand of Kandelia obovata (S., L.) Yong: Vertical distribution in the soil-vegetation systems. Wetlands Ecology and Management, 15, 141–153.CrossRefGoogle Scholar
  18. Lacerda, L. D., Carvalho, C. E. V., Tanizaki, K. F., Ovalle, A. R. C., & Rezende, C. E. (1993). The biogeochemistry and trace metals distribution of mangrove rhizospheres. Biotropica, 25, 251–256.CrossRefGoogle Scholar
  19. Lacerda, L. D., Ittekkot, V., & Patchineelam, S. R. (1995). Biochemistry of mangrove soil organic matter: A comparison between Rhizophora and Avicennia soils in South-eastern Brazil. Estuarine, Coastal and Shelf Science, 40, 713–720.CrossRefGoogle Scholar
  20. Meersmans, J., van Wesemael, B., De Ridder, F., Fallas Dotti, M., De Baets, S., & Van Molle, M. (2009). Changes in organic carbon distribution with depth in agricultural soils in Northern Belgium, 1960–2006. Global Change Biology, 15, 2739–2750.CrossRefGoogle Scholar
  21. Mi, N., Wang, S. Q., Liu, J. Y., Yu, G. R., Zhang, W. J., & Jobb’agy, E. G. (2008). Soil inorganic carbon storage pattern in China. Global Change Biology, 14, 2380–2387.CrossRefGoogle Scholar
  22. Mitra, A. (2000). The Northeast coast of the Bay of Bengal and deltaic Sundarban. In C. Sheppard (Ed.), Seas at the Millennium – An environmental evaluation, Chapter 62 (pp. 143–157). Amsterdam: Elsevier Science.Google Scholar
  23. Mitra, A., Banerjee, K., & Sengupta, K. (2010). The affect of salinity on the mangrove growth in the lower Gangetic plain. Journal of Coastal Environment, 1(1), 71–82.Google Scholar
  24. Mitra, A., Sengupta, K., & Banerjee, K. (2011). Standing biomass and carbon storage of above-ground structures in dominant mangrove trees in the Sundarban. Forest Ecology and Management, 261(7), 1325–1335.CrossRefGoogle Scholar
  25. Mitsch, W. J., & Gosselink, J. G. (2000). Wetlands (p. 920). New York: Wiley.Google Scholar
  26. Murako, D. (2004). Seaweed resources as a source of carbon fixation. Bulletin Fisheries Research Agency, 1, 59–63.Google Scholar
  27. Ovalle, A. R. C., Rezende, C. E., Lacerda, L. D., & Silva, C. A. R. (1990). Factors affecting the hydrochemistry of a mangrove tidal creek, Sepetiba Bay, Brazil. Estuarine, Coastal and Shelf Science, 31, 639–650.CrossRefGoogle Scholar
  28. Shukla, M. K., & Lal, R. (2005). Erosional effects on soil organic carbon stock in an on-farm study on Alfisols in west central Ohio. Soil and Tillage Research, 81, 173–181.CrossRefGoogle Scholar
  29. Siegenthaler, U., & Sarmiento, J. L. (1993). Atmospheric carbon dioxide and the ocean. Nature, 365, 119–125.CrossRefGoogle Scholar
  30. Tanizaki, K. F. (1994). Biogeoquímica de metais pesados na rizosfera de plantas de um manguezal do Rio de Janeiro, M.Sc. thesis, Departamento de Geoquímica, Universidade Federal Fluminense, Niterói, p. 67.Google Scholar
  31. Vesterdal, L., Ritter, E., & Gundersen, P. (2002). Change in soil organic carbon following afforestation of former arable land. Forest Ecology and Management, 162, 137–147.CrossRefGoogle Scholar
  32. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.CrossRefGoogle Scholar
  33. Wang, S. Q., Huang, M., Shao, X. M., Mickler, R. A., Li, K. R., & Ji, J. J. (2004). Vertical distribution of soil organic carbon in China. Environmental Management, 33(Suppl.1), S200–S209.Google Scholar
  34. Zinn, Y. L., Lala, R., & Resck, D. V. S. (2005). Changes in soil organic carbon stocks under agriculture in Brazil. Soil and Tillage Research, 84, 28–40.CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Abhijit Mitra
    • 1
  • Sufia Zaman
    • 2
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia
  2. 2.Department of OceanographyTechno India UniversityKolkataIndia

Personalised recommendations