Conservation of Marine and Estuarine Resources

  • Abhijit Mitra
  • Sufia Zaman


Protecting the environment of the planet Earth is the prime goal of mankind. The domain of protection of natural resources encompasses two major verticals, namely, conservation and preservation. Conservation is the sustainable use and management of natural resources which include flora, fauna, air, water, earth deposits, etc. Conservation of natural resources primarily focuses on the needs and interests of human beings, for example, biological, economic, cultural and aesthetic values these resources possess. The mangrove ecosystem, for example, contains a wide spectrum of flora and fauna, which provides timber, fuel wood, honey, wax, fishes, medicinal ingredients, etc. The seed of conservation germinates for developing a better future. Preservation, on the contrary, is an attempt to maintain the existing condition of the environment of a particular ecosystem or habitat that is mostly in a wilderness condition. The essence of preservation spreads from the fact that mankind is encroaching the natural habitats at such a rate that many untouched landscapes are now getting sacrificed for industrial development, urban development, farming, tourism, aquaculture, etc. Strong lobbies of preservationists support protection of natural reservoir with priority and give less importance to the ecosystem services of natural resources (flora, fauna, etc.) to mankind.


Coral Reef Landscape Diversity Wiener Index Mangrove Ecosystem Reef Crest 


  1. Alberte, R. S., Suba, G. K., Procaccini, G., Zimmerman, R. C., & Fain, S. R. (1994). Assessment of genetic diversity of seagrass populations using DNA fingerprinting: Implications for population stability and management. Proceedings of National Academy Science of the United States of America, 91, 1049–1053.CrossRefGoogle Scholar
  2. Angel, M. V. (1993). Biodiversity of the pelagic ocean. Conservation Biology, 7, 760–772.CrossRefGoogle Scholar
  3. Anon. (1993). World Population Prospects: The 1992 revision. New York: United Nations. ASEAN-Australia Marine Science Project (1992 J ASEAN Marine Science).Google Scholar
  4. Banerjee, K., Sengupta, K., Raha, A., & Mitra., A. (2013). Salinity based allometric equations for biomass estimation of Sundarban mangroves. Biomass & Bioenergy, (ELSEVIER), 56, 382–391.Google Scholar
  5. Begon, M., Harper, J. L., & Townsend, C. R. (1990). Ecology, individuals, population and communities (Reprint ed. 1995, pp. 1–929). Boston: Blackwell Science.Google Scholar
  6. Benzie, J. A. H., Frusher, S., & Ballment, E. (1992). Geographical variation in allozyme frequencies of populations of Penaeus monodon (Crustacea: Decapoda) in Australia. Australian Journal of Marine Freshwater Research, 43, 715–725.CrossRefGoogle Scholar
  7. Blanc, F., & Bonhomme, F. (1987). Generic polymorphism in natural molluscs populations of aquacultural interest. In K. Tiews (Ed.), Selection, hybridization and genetic engineering in aquaculture (Vol. 1, pp. 59–78). Rome: FAO European Inland Fisheries Advisory Committee, 18/19.Google Scholar
  8. Blanc, F., & Jaziri, H. (1990). Variation of allozymic polymorphism in Ostrea angasi and O. edulis. In T. Gjedrem (Ed.), Genetics in aquaculture (pp. 331–332). International Maritime Organization, 01 Jan 1997 – Marine Pollution – 24 pages.Google Scholar
  9. Briggs, J. C. (1991). Global species diversity. Journal of Natural History, 25, 1403–1406.CrossRefGoogle Scholar
  10. Briggs, J. C. (1994). Species diversity: Land and sea compared. System Biology, 43, 130–135. Marine biodiversity, 169.CrossRefGoogle Scholar
  11. Bushek, D., & Allen, S. K. (1989). Effective population size for shellfish brood stock management: Conflicts between theory and practice. Journal of Shellfish Research, 8, 446–447.Google Scholar
  12. Cairns, J., & Dickson, K. L. (1971). A simple method for the biological assessment of the effects of waste discharges on aquatic bottom-dwelling organisms. Journal of Water Pollution Control Federation, 43(5), 755–772.Google Scholar
  13. Cataudella, S., & Crosetti, D. (1993). Aquaculture and conservation of genetic diversity. In R. S. V. Pullin, H. Rosenthal, & J. L. Maclean (Eds.), Environment and aquaculture in developing countries (Vol. 31, pp. 60–73). Manila: International Cent for Living Aquatic Resources Management (ICLARM).Google Scholar
  14. Chaudhuri, A. B., & Choudhury, A. (1994). Mangroves of the Sundarbans. Vol. 1: India. Bangkok: International Union for Conservation of Nature and Natural Resources (IUCN).Google Scholar
  15. Clark, A. M., & Rowe, F. W. E. (1971). Monograph of shallow water Indo-West Pacific echinoderms (p. 238). London: British Museum (Natural History).Google Scholar
  16. Cody, M. L. (1986). Diversity, rarity, and conservation in Mediterranean-climate regions. In M. E. Soule (Ed.), Conservation biology: The science of scarcity and diversity (pp. 122–152). Sunderland: Sinauer.Google Scholar
  17. Di Castri, F., & Younes, T. (1990). Ecosystem function of biological diversity. Biology International Special Issue, 22, 1–20.Google Scholar
  18. Doyle, R. W., Shackell, N. L., Basiao, Z., Urawain, S., Matricia, T., & Talbot, A. J. (1991). Selective diversification of aquaculture stocks: A proposal for economically sustainable genetic conservation. In N. Billington & P. D. N. Herbert (Eds.), Ecological and genetic implications of fish introductions (pp. 148–154). Ottawa: Department of Fisheries and Oceans/Canadian Journal of Fisheries and Aquatic Sciences.Google Scholar
  19. Durand, P., & Blanc, F. (1988). Genetic diversity in a tropical marine bivalve: Pinctada margaritifera (Linne, 1758). Bulletin of Social Zoology, France, 113, 293–304.Google Scholar
  20. Elliott, N. G., & Ward, R. D. (1992). Enzyme variation in orange roughy, Hoplostethus atlanticus (Teleostei: Trachichthyidae), from southern Australian and New Zealand waters. Australian Journal of Marine Freshwater Research, 43, 1561–1571.CrossRefGoogle Scholar
  21. Fisher, R. A., Corbet, A. S., & Williams, C. B. (1943). The relationship between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12, 42–58.CrossRefGoogle Scholar
  22. Franklin, J. (1993). Preserving biodiversity: Species, ecosystems or landscapes? Ecology Application, 3, 202–205.CrossRefGoogle Scholar
  23. Gall, G. A. E., Bartley, D., Bentley, B., Brodziak, J., Gomulkiewicz, R., & Mangel, M. (1992). Geographic variation in population genetic structure of Chinook salmon from California and Oregon. Fishery Bulletin, 90, 77–100.Google Scholar
  24. Ganesh, T., & Raman, A. V. (2007). Macrobenthic community structure of the northeast Indian shelf, Bay of Bengal. Marine Ecology Progress Series, 341, 59–73.Google Scholar
  25. Gillespie, R. B., & Guttman, S. I. (1988). Relationships between genetic structure of electrophoretically-determined allozymes in fish populations and exposure to contaminants. In L. Meserve (Ed.), 97th annual meeting: The Ohio academy of science (Vol. 88, p. 46). Aquatic Sciences and Fisheries Abstracts, Volume 19.Google Scholar
  26. Giovannoni, S. J., Britschgi, T. B., Moyer, C. L., & Field, K. G. (1990). Genetic diversity in Sargasso Sea bacterioplankton. Nature, 345, 60–63.CrossRefGoogle Scholar
  27. Grassle, J. F. (1991). Deep-sea benthic biodiversity. Bioscience, 41, 464–469.CrossRefGoogle Scholar
  28. Grassle, J. F., & Maciolek, N. J. (1992). Deep-sea species richness: Regional and local diversity estimates from quantitative bottom samples. American Nature, 139, 313–341.CrossRefGoogle Scholar
  29. Grassle, J. F., Lasserre, P., McIntyre, A. D., & Ray, G. C. (1991). Marine biodiversity and ecosystem function. Biology International, 23, 1–19.Google Scholar
  30. Gray, J. S. (1994). Is the deep sea really so diverse? Species diversity from the Norwegian continental shelf. Marine Ecology Progress Series, 112, 205–209.CrossRefGoogle Scholar
  31. Hedgecock, D., & Sly, F. (1990). Genetic drift and effective population sizes of hatchery-propagated stocks of the Pacific oyster, Crassostrea gigas. Aquaculture, 88, 21–38.CrossRefGoogle Scholar
  32. Hedgecock, D., Nelson, K., & Banks, M. A. (1991). Does variance in reproductive success limit effective population sizes of marine organisms? A proposed test in the Dabob Bay population of Pacific oysters, using enzymatic amplification of mitochondrial DNA. Journal of Shellfish Research, 10, 234–237.Google Scholar
  33. Heywood, V. H., & Watson, R. T. (Eds.). (1995). Global biodiversity assessment (p. 1140). Cambridge: Cambridge University Press.Google Scholar
  34. Huston, M. A. (1985). Patterns of species diversity in relation to depth at Discovery Bay, Jamaica. Bulletin of Marine Science, 37, 928–935.Google Scholar
  35. Huston, M. (1994). Biological diversity: The coexistence of species in changing landscapes. Cambridge: Cambridge University Press.Google Scholar
  36. IUCN. (1980). World conservation strategy: Living resource conservation for sustainable development. Gland: IUCN-UNEP-WWF. 44 pp.CrossRefGoogle Scholar
  37. Jaziri, H., Durand, P., & Pichot, P. (1987). Genetic diversity between and within populations of the European Oyster, Ostrea edulis. Selection, Hybridization and Genetic Engineering. In K.Tiews, (Ed.), Aquaculture (Vol. 1, pp. 177–187). Rome: FAO European Inland Fisheries Advisory Committee, 18/19.Google Scholar
  38. Loya, Y. (1972). Community structure and species diversity of hermatypic corals at Eilat, Red Sea. Marine Biology, 13, 100–123.CrossRefGoogle Scholar
  39. MacNae, W. (1968). A general account of the fauna and flora of mangrove swamps and forests of the Indo-West-Pacific region. Advance Marine Biology, 6, 73–270.CrossRefGoogle Scholar
  40. Magurran, A. E. (1988). Ecological diversity and its measurement. Croom Helm: Princeton University Press.Google Scholar
  41. Margalef, R. (1968). Perspectives in ecological theory. Chicago: University of Chicago Press. 111 p.Google Scholar
  42. Mattoccia, M., Cesaroni, D., & Matarazzo, P. (1991). Genetic changes in the Manila clam, Tapes philippinarum: Temporal and spatial variation. In N. Depauw, & J. Joyce (Eds.), Aquaculture and the Environment (pp. 210–211). Aquatic Sciences and Fisheries Abstracts, Volume 24.Google Scholar
  43. May, R. M. (1992). Bottoms up for the oceans. Nature, 357, 278–279.CrossRefGoogle Scholar
  44. McRoy, P. C., & Lloyd, D. S. (1981). Comparative function and stability of macrophyte-based ecosystems. In A. R. Longhurst (Ed.), Analysis of marine ecosystems (pp. 473–490). New York: Academic.Google Scholar
  45. Mills, E. L. (1969). The community concept in marine Zoology, with comments on continua and instability in some marine communities: A review. Journal Fishery Research Board, Canada, 26, 1415–1428.CrossRefGoogle Scholar
  46. Mitra, A., Sengupta, K., & Banerjee, K. (2011). Standing biomass and carbon storage of above-ground structures in dominant mangrove trees in the Sundarbans. Forest Ecology and Management, 261(7), 1325–1335. doi: 10.1016/j.foreco.2011.01.012. Elsevier.CrossRefGoogle Scholar
  47. Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H., & Woodfin, R. M. (1994). Declining biodiversity can alter the performance of ecosystems. Nature, 368, 734–737.CrossRefGoogle Scholar
  48. Nevo, E., Beiles, A., & Ben-Shlomo, R. (1984). The evolutionary significance of genetic diversity: Ecological, demographic and life history correlates. In G. S. Mani (Ed.), Evolutionary dynamics of genetic diversity (Lecture notes in biomathematics, Vol. 53, pp. 13–213). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  49. Nevo, E., Noy, R., & Lavie, B. (1987). Levels of genetic diversity and resistance to pollution in marine organisms. FAO/UNEP meeting on the effects of pollution on marine ecosystems (pp. 175–182). Blanes, October 7–11, 1985.Google Scholar
  50. Plafkin, J. L., Barber, M. T., Poter, K. D., Gross, S. K., & Highes, R. M. (1989). Rapid bioassessment protocol for use in stream and rivers: Benthic macro invertebrates and fish. U. S. Environmental Protection Agency, Office of Water, Washington, DC.Google Scholar
  51. Qiu, Y. (1991). Utility of protein and mtDNA markers in penaeid shrimp: A review. Aquaculture Environment, 14, 270.Google Scholar
  52. Raha, A. K., Mishra, A., Das, S., Zaman, S., Ghatak, S., Bhattacharjee, S., Raha, S., & Mitra, A. (2014). Time Series Analysis of forest and tree cover of West Bengal from 1988 to 2010, using RS/GIS, for monitoring afforestation programmes. The Journal of Ecology (Photon), 108, 255–265.Google Scholar
  53. Raup, D. M. (1979). Size of the Permo-Triassic bottleneck and its evolutionary implications. Science, 206, 217–218.CrossRefGoogle Scholar
  54. Ray, G. C. (1991). Coastal-zone biodiversity patterns. Bioscience, 41, 490–498.CrossRefGoogle Scholar
  55. Ray, G. C., & Grassle, J. F. (1991). Marine biological diversity. Bioscience, 41, 453–461.CrossRefGoogle Scholar
  56. Ray, G. C., & Gregg, W. P., Jr. (1991). Establishing biosphere reserves for coastal barrier ecosystems. Bioscience, 41, 301–309.CrossRefGoogle Scholar
  57. Scudder, G. G. E. (1989). The adaptive significance of marginal populations: A general perspective. In C. D. Levings, L. B. Holtby, & M. A. Henderson (Eds.), Proceedings of the national workshop on effects of habitat alteration on Salmonid stocks (pp. 180–185). Ottawa: Department of Fisheries and Oceans/Canadian Special Publication of Fisheries and Aquatic Sciences.Google Scholar
  58. Sengupta, K., Roy Chowdhury, M., Bhattacharyya, S. B., Raha, A., Zaman, S., & Mitra, A. (2013). Spatial variation of stored carbon in Avicennia alba of Indian Sundarbans. Discovery Nature, 3(8), 19–24. ISSN: 2319–5703.Google Scholar
  59. Sepkoski, J. J. J. (1979). A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Palaeobiology, 5, 222–251.CrossRefGoogle Scholar
  60. Sepkoski, J. J. J. (1984). A kinetic model of Phanerozoic taxonomic diversity. III. Post-Palaeozoic families and mass extinctions. Palaeobiology, 10, 246–267.CrossRefGoogle Scholar
  61. Sepkoski, J. J. J. (1991). Biodiversity and Conservation: Causes and consequences of biodiversity loss 2 : pollution, climate change and unsustainable exploitation, Volume 3. In E. C. Dudley (Ed.), The unity of evolutionary biology (pp. 210–236). Poraand: Diosorides Press.Google Scholar
  62. Shannon, C. E., & Weiner, W. (1949). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.CrossRefGoogle Scholar
  63. Shepherd, P. A. (1994). A review of plant communities of derelict land in the city of Nottingham, England and their value for nature conservation. Memorabilia Zoologica, 49, 129–137.Google Scholar
  64. Sheppard, C. R. C. (1980). Coral cover, zonation and diversity on reef slopes of Chagos Atolls, and population structures of major species. Marine Ecology Progress Series, 2, 193–205.CrossRefGoogle Scholar
  65. Signor, P. W. (1994). Biodiversity in geological time. American Zoology, 34, 23–32.CrossRefGoogle Scholar
  66. Sly, F., & Hedgecock, D. (1989). Genetic drift and effective population sizes in commercial stocks of the Pacific Oyster, Crassostrea gigas, on the U.S. West Coast. Journal of Shellfish Research, 8, 324–334.Google Scholar
  67. Solbrig, O. T. (Ed.). (1991). IUBS/SCOPE/UNESCO from genes to ecosystems: A research agenda for biodiversity. Cambridge: IUBS.Google Scholar
  68. Sournia, A., & Chretiennot-Dinet, G. (1991). Marine phytoplankton: How many species in the world ocean? Journal of Plankton Research, 13, 1093–1039.CrossRefGoogle Scholar
  69. Southwood, T. R. E. (1977). Habitat, the template for ecological strategies? Journal of Animal Ecology, 30, 1–8.CrossRefGoogle Scholar
  70. Staub, R. H., & Hass, I. J. (1970). The effect of industrial effluents of Memphis and Shelby country on primary plankton production. Bioscience, 20, 905–912.CrossRefGoogle Scholar
  71. Steele, J. H. (1991). Marine functional diversity. Bioscience, 41, 470–474.CrossRefGoogle Scholar
  72. Stork, N. (1988). Insect diversity: Facts, fiction and speculation. Biology Journal Linnaeus Society, 35, 321–337.CrossRefGoogle Scholar
  73. Suchanek, T. H. (1992). Extreme biodiversity in the marine environment: Mussel bed communities of Mytilus californianus. Northwest Environnent Journal, 8, 150–152.Google Scholar
  74. Tilman, D., & Downing, J. A. (1994). Biodiversity and stability in grasslands. Nature, 367, 363–365.CrossRefGoogle Scholar
  75. Tuomisto, H., Ruokolainen, K., Kalliola, R., Liina, A., Danjoy, W., & Rodriguez, Z. (1995). Dissecting Amazonian biodiversity. Science, 269, 63–66.CrossRefGoogle Scholar
  76. Walker, B. H. (1991). Biodiversity and ecological redundancy. Conservation Biology, 6, 18–23.CrossRefGoogle Scholar
  77. Walsh, G. E. (1974). In R. J. Reimold, & W. H. Queen (Eds.), Ecology of halophytes (pp. 51–174). New York: Academic.Google Scholar
  78. Ward, R. D., Woodwark, M., & Skibinski, D. O. F. (1994). A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. Journal of Fishery Biology, 44, 213–232.CrossRefGoogle Scholar
  79. Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecology Monograph, 30, 279–338.CrossRefGoogle Scholar
  80. Whittaker, R. H. (1967). Gradient analysis of vegetation. Biology Review, 42, 207–264.CrossRefGoogle Scholar
  81. Whittaker, R. H. (1975). Communities and ecosystems (2nd ed.). New York: Macmillan.Google Scholar
  82. Whittaker, R. H. (1977). Evolution of species diversity in land communities. Evolution Biology, 10, 1–67.Google Scholar
  83. Wilhm, J. L., & Dorris, T. C. (1968). Species diversity of benthic macro-invertebrates in a stream receiving domestic and oil refinery effluents. Amererican Middle Nature, 76, 427–449.Google Scholar
  84. Wood, A. M. (1989). Population genetic studies of algae. Journal of Phycology, 25, 11.CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Abhijit Mitra
    • 1
  • Sufia Zaman
    • 2
  1. 1.Department of Marine ScienceUniversity of CalcuttaKolkataIndia
  2. 2.Department of OceanographyTechno India UniversityKolkataIndia

Personalised recommendations