Skip to main content

SVM-Based Pre-microRNA Classifier Using Sequence, Structural, and Thermodynamic Parameters

  • Conference paper
  • First Online:
  • 781 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 404))

Abstract

microRNAs are single-stranded noncoding RNA sequences of 18–24 nucleotide length. They play important role in post-transcriptional regulation of gene expression. Last decade witnessed immense research in microRNA identification, prediction, target identification, and disease associations. They are linked with up/down regulation of many diseases including cancer. The accurate identification of microRNAs is still complex and time-consuming process. Due to the unique structural and sequence similarities of microRNAs, many computational algorithms have been developed for prediction of microRNAs. According to the current status, 28645 microRNAs have computationally discovered from the genome sequences, and have reported 1961 human microRNAs (miRBase version 21, released on June 2014). There are several computational tools available for predicting the microRNA from the genome sequences. We have developed a support vector machine-based classifier for microRNA prediction. Top ranked 19 sequence, structural, and thermodynamic characteristics of validated microRNA sequence databases are employed for building the classifier. It shows an accuracy of 98.4 % which is higher than that of existing SVM-based classifiers such as Triplet-SVM, MiRFinder, and MiRPara.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anastasis, O., Martin, R., Panayiota, P.: Image encryption based on chaotic modulation of wavelet coefficients. IEEE Trans. Inf. Technol. Biomed. 13(1), (2009)

    Google Scholar 

  2. Arnaz, M., Robert, X.G.: Pca-based feature selection scheme for machine defect classification. IEEE Trans. Instrum. Measur. 53(6), (2004)

    Google Scholar 

  3. Aurora, E.K., Frank, J.S.: Oncomirs micrornas with a role in cancer. Nat. Rev. Cancer 6, 259–270 (2006)

    Google Scholar 

  4. Bartel, D.: Micrornas: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  Google Scholar 

  5. Bruce, A., Alexander, J., Julian, L., Martin, R., Keith, R., Peter, W.: Molecular biology of the cell. Garland Sci. (2002)

    Google Scholar 

  6. Chenghai, X., Fei, L., Tao, H., Guo-Ping, L., Yanda, L., Xuegong, Z.: Classification of real and pseudo microrna precursors using local structure-sequence features and support vector machine. BMC Bioinform (2005)

    Google Scholar 

  7. Dianwei, H., Jun, Z., Guiliang, T.: MicroRNAfold: microRNA secondary structure prediction based on modified NCM model with thermodynamics-based scoring strategy. University of Kentucky, Department of Computer Science, Lexington (2008)

    Google Scholar 

  8. Giulio, P., Giancarlo, M., Graziano, P.: Predicting conserved hairpin motifs in unaligned rna sequences. In: Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI03) (2003)

    Google Scholar 

  9. Kim, V.: Small RNAS: classification, biogenesis mechanism and function. Mol. Cell 19, 1–15 (2005)

    Article  Google Scholar 

  10. Kozomara, A., Griffiths-Jones, S.: Mirbase: annotating high confidence micrornas using deep sequencing data. Nucl. Acids Res. 42, D68–D73 (2014)

    Article  Google Scholar 

  11. Lim, L., Lau, N., Weinstein, E., Abdelhakim, A., Yekta, S., Rhoades, M., Burge, C., Bartel, D.: The micrornas of caenorhabditis elegans. Genes Dev. 17, 991–1008 (2003)

    Article  Google Scholar 

  12. Manel, E.: Non-coding rnas in human disease. Nat. Rev., Genet. (2011)

    Google Scholar 

  13. Mark, H., Eibe, F., Geoffrey, H., Bernhard, P., Peter, R., Ian H., W.: The weka data mining software: an update. SIGKDD Explorations, pp. 10–18 (2009)

    Google Scholar 

  14. Markus, E., Nebel, Anika, S.: Analysis of the free energy in a stochastic rna secondary structure model. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(6) (2011)

    Google Scholar 

  15. Michael, A., Andy, M., Tyrrell: Regulatory motif discovery using a population clustering evolutionary algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(3) (2007)

    Google Scholar 

  16. Modan, K.D., Ho-Kwok, D.: A survey of dna motif finding algorithms. BMC Bioinfor. 8(doi:10.1186/1471-2105-8-S7-S21) (2007)

    Google Scholar 

  17. Peng, J., Haonan, W., Wenkai, W., Wei, M., Xiao, S., Zuhong, L.: Mipred: classification of real and pseudo microrna precursors using random forest prediction model with combined features. Nucleic Acids Res. 35(1) (2007)

    Google Scholar 

  18. Reshmi, G.: Vinod Chandra, S., Janki, M., Saneesh, B., Santhi, W., Surya, R., Lakshmi, S., Achuthsankar, S.N., Radhakrishna, P.: Identification and analysis of novel micrornas from fragile sites of human cervical cancer: computational and experimental approach. Genomics 97(6), 333–340 (2011)

    Google Scholar 

  19. Salim, A., Vinod Chandra, S.: Computational prediction of micrornas and their targets. J. Proteomics Bioinform. 7:7, 193–202 (2014)

    Google Scholar 

  20. Ting-Hua, H., Bin, F., Max, F.R., Zhi-Liang, H., Kui, L., Shu-Hong, Z.: Mirfinder: an improved approach and software implementation for genome-wide fast microrna precursor scans. BMC Bioinform. (2007)

    Google Scholar 

  21. Vinod Chandra, S., Reshmi, G.: A pre-microrna classifier by structural and thermodynamic motifs (2009)

    Google Scholar 

  22. Vinod Chandra, S., Reshmi, G., Achuthsankar, S.N., Sreenathan, S., Radhakrishna, P.: MTAR: a computational microrna target prediction architecture for human transcriptome. BMC Bioinform. 10(S1), 1–9 (2010)

    Google Scholar 

  23. Wu, Y., Wei, B., Liu, H., Li, T., Rayner, S.: Mirpara: a SVM-based software tool for prediction of most probable microrna coding regions in genome scale sequences. BMC Bioinform. 12(107) (2011)

    Google Scholar 

  24. Ying-Jie, Z., Qing-Shan, N., Zheng-Zhi, W.: Identification of microrna precursors with new sequence-structure features. J. Biomed. Sci. Eng. 2, 626–631 (2009)

    Article  Google Scholar 

  25. Yunpen, X., Xuefeng, Z., Weixiong, Z.: Microrna prediction with a novel ranking algorithm based on random walks. Bioinformatics 24 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Salim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Sumaira, K.A., Salim, A., Vinod Chandra, S.S. (2016). SVM-Based Pre-microRNA Classifier Using Sequence, Structural, and Thermodynamic Parameters. In: Das, S., Pal, T., Kar, S., Satapathy, S., Mandal, J. (eds) Proceedings of the 4th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA) 2015. Advances in Intelligent Systems and Computing, vol 404. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2695-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2695-6_6

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2693-2

  • Online ISBN: 978-81-322-2695-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics