Skip to main content

Molecular Computing and Residual Binding Mode in ERα and bZIP Proteins from Homo Sapiens: An Insight into the Signal Transduction in Breast Cancer Metastasis

  • Conference paper
  • First Online:
Proceedings of the 4th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA) 2015

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 404))

Abstract

The most provoking reason for death in breast cancer patients is the metastasis of breast cancer. Accumulating documentation states that signal transduction in human breast cancers initiate in estrogen-dependent manner with the signaling of estrogen receptor α-subunit (ERα) and XBP-1 (bZIP-domain) proteins. So, molecular level insight into the signaling mechanism is indispensable for future pathological and therapeutic developments. Thus, this current study discloses the stable residual participation of the two crucial human proteins for enhancing the signaling mechanism in breast tumor malignancies. For this purpose, 3D homology models of the respective proteins were prepared after the satisfaction of their stereo-chemical features. The protein–protein interaction was studied and protein complex was energy optimized. Revelation from the stability calculating parameters, solvent accessibility areas and interaction probes led to the inference of the most stable optimized complex and its residual participation (exceptional contribution of polar charged residues) for metastasis progression in breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sudipa, S.R., Ratna, K.V.: Role of estrogen receptor signaling in breast cancer metastasis. International J. Breast Cancer 2012, 8 (2012). http://dx.doi.org/10.1155/2012/654698. Article ID 654698

  2. Warner, M., Nilsson, S., Gustafsson, J.Å.: The estrogen receptor family. Curr. Opin. Obstet. Gynecol. 11(3), 249–254 (1999)

    Article  Google Scholar 

  3. Hewitt, S.C., Couse, J.F., Korach, K.S.: Estrogen receptor knockout mice: what their phenotypes reveal about mechanisms of estrogen action. Breast Cancer Res. 2(5), 345–352 (2000)

    Article  Google Scholar 

  4. McKenna, N.J., Lanz, R.B., O’Malley, B.W.: Nuclear receptor coregulators: cellular and molecular biology. Endocr. Rev. 20(3), 321–344 (1999)

    Google Scholar 

  5. McDonnell, D.P., Norris, J.D.: Connection and regulation of the human estrogen receptor. Science 296(5573), 1642–1644 (2002)

    Article  Google Scholar 

  6. Ding, L., Yan, J., Zhu, J., Zhong, H., Lu, Q., Wang, Z., Huang, C., Ye, Q.: Ligand-independent activation of estrogen receptor alpha by XBP-1. Nucleic Acids Res. 31(18), 5266–5274 (2003)

    Article  Google Scholar 

  7. Sengupta, S., Sharma, C.G.N., Jordan, V.C.: Estrogen regulation of X-box binding protein-1 and its role in estrogen induced growth of breast and endometrial cancer cells. Horm. Mol. Biol. Clin. Investig. 2(2), 235–243 (2010). doi:10.1515/HMBCI.2010.025

    Google Scholar 

  8. Liou, H.C., Boothby, M.R., Finn, P.W., Davidon, R., Nabavi, N., Zeleznik-Le, N.J., Ting, J.P., Glimcher, L.H.: A new member of the leucine zipper class of proteins that binds to the HLA DR alpha promoter. Science 247(4950), 1581–1584 (1990). doi:10.1126/science.2321018.PMID2321018

    Article  Google Scholar 

  9. Simanti, B., Amit, D., Semanti, G., Rakhi, D., Angshuman, B.: Hypoglycosylation of dystroglycan due to T192M mutation: a molecular insight behind the fact. Gene 537, 108–114 (2014)

    Article  Google Scholar 

  10. Angshuman, B.: Structural characterizations of metal ion binding transcriptional regulator CueR from opportunistic pathogen Pseudomonasaeruginosa to identify its possible involvements in virulence. Appl. Biochem. Biotechnol. (2014). doi:10.1007/s12010-014-1304-5

    Google Scholar 

  11. Jones, S., Stewart, M., Michie, A., Swindells, M.B., Orengo, C., Thornton, J.M.: Domain assignment for protein structures using a consensus approach: characterization and analysis. Protein Sci. 7(2), 233–42 (1998). doi:10.1002/pro.5560070202. PMC 2143930. PMID 9521098

    Google Scholar 

  12. George, R.A., Heringa, J.: An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng. 15(11), 871–879 (2002). doi:10.1093/protein/15.11.871. PMID 12538906

    Google Scholar 

  13. McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., Lopez, R.: Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 41(Web Server issue), W597-600 (2013). doi:10.1093/nar/gkt376. PMID:(23671338)

    Google Scholar 

  14. Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., Boursnell, C., Pang, N.: Forslun: the Pfam protein families database. Nucleic Acids Res. 40(D1), D290–D301 (2011). http://dx.doi.org/10.1093/nar/gkr1065. PMC 3245129. PMID 22127870

    Google Scholar 

  15. Altschul, S.F., et al.: Basic local alignment search tool. J. Mol. Biol. 25, 403–410 (1990)

    Article  Google Scholar 

  16. Berman, M.H., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000). doi:10.1093/nar/28.1.235

    Article  Google Scholar 

  17. Johannes, S., Andreas, B., Andrei N.L..: The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005). Web Server issue. doi:10.1093/nar/gki408

    Google Scholar 

  18. Sali, A., Blundell, T.L.: Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993)

    Article  Google Scholar 

  19. DeLano, W.L.: The PyMOL molecular graphics system DeLano scientific, San Carlos (2002). doi:10.1093/nar/gki408

    Google Scholar 

  20. Fiser, A., Sali, A.: ModLoop: automated modeling of loops in protein structures. Bioinformatics 19(18), 2500–2501 (2003)

    Article  Google Scholar 

  21. Xu, D., Zhang, Y.: Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J. 101, 2525–2534 (2001). doi:10.1016/j.bpj.2011.10.024

    Article  Google Scholar 

  22. Laskowski, R.A., et al.: PROCHECK: a program to check the stereochemistry of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993)

    Article  Google Scholar 

  23. Colovos, C., Yeates, T.O.: Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 2, 1511–1519 (1993)

    Article  Google Scholar 

  24. Ramachandran, G.N., Sashisekharan, V.: Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283–438 (1968)

    Article  Google Scholar 

  25. Comeau, S.R., et al.: ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20, 45–50 (2004)

    Article  Google Scholar 

  26. Vakser, I.A.: Protein docking for low-resolution structures. Protein Eng. 8, 371–377 (1995)

    Article  Google Scholar 

  27. Chen, R., et al.: ZDOCK: an initial-stage protein docking algorithms. Proteins. 51, 82–87 (2003)

    Google Scholar 

  28. Zhang, J., Liang, Y., Zhang, Y.: Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. Structure 19, 1784–1795 (2011)

    Article  Google Scholar 

  29. Mina, M., Gokul, V., Luis, R.: The role of electrostatic energy in prediction of obligate protein-protein interactions. Proteome Sci. 11, S11 (2013). doi:10.1186/1477-5956-11-S1-S11

    Article  Google Scholar 

  30. Camacho, C.J., Zhang, C.: FastContact: rapid estimate of contact and binding free energies. Bioinformatics 21(10), 2534–2536 (2005)

    Article  Google Scholar 

  31. Tina, K.G., Bhadra, R., Srinivasan, N.: PIC: protein interactions calculator. Nucleic Acids Res. 35, W473–W476 (2007)

    Article  Google Scholar 

  32. Baldwin, R.L.: How Hofmeister ion interactions affect protein stability. Biophys. J. 71(4), 2056–2063 (1996)

    Article  Google Scholar 

Download references

Acknowledgement

Authors are deeply indebted for the immense help, paramount suggestions, and continuous encouragement rendered by Dr. Angshuman Bagchi, Assistant Professor, Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, India. Authors also render gratefulness to the Department of Biotechnology, National Institute of Technology, Durgapur as well as to the Department of Biotechnology, Bengal College of Engineering and Technology for their support and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujay Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Banerjee, A., Ray, S. (2016). Molecular Computing and Residual Binding Mode in ERα and bZIP Proteins from Homo Sapiens: An Insight into the Signal Transduction in Breast Cancer Metastasis. In: Das, S., Pal, T., Kar, S., Satapathy, S., Mandal, J. (eds) Proceedings of the 4th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA) 2015. Advances in Intelligent Systems and Computing, vol 404. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2695-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2695-6_5

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2693-2

  • Online ISBN: 978-81-322-2695-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics