Diagnosis and Management of Fetal Anemia

  • S. Suresh


Fetal anemia is an inadequate number or quality of red blood cells in the fetal circulatory system. Normal fetal hemoglobin concentration increases linearly during pregnancy: from about 10 to 11 g/dL at 17 weeks to about 14 to 15 g/dL at term, one standard deviation is approximately 1 g/dL [1, 2].


Peak Systolic Velocity Maternal Circulation Fetal Hemoglobin Fetal Anemia Intrauterine Transfusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nicolaides KH, Soothill PW, Clewell WH, et al. Fetal haemoglobin measurement in the assessment of red cell isoimmunisation. Lancet. 1988;1:1073.CrossRefPubMedGoogle Scholar
  2. 2.
    Forestier F, Daffos F, Catherine N, et al. Developmental hematopoiesis in normal human fetal blood. Blood. 1991;77:2360.PubMedGoogle Scholar
  3. 3.
    Vaughan JI, Warwick R, Letsky E, et al. Erythropoietic suppression in fetal anemia because of Kell alloimmunization. Am J Obstet Gynecol. 1994;171:247.CrossRefPubMedGoogle Scholar
  4. 4.
    Weiner CP, Widness JA. Decreased fetal erythropoiesis and hemolysis in Kell hemolytic anemia. Am J Obstet Gynecol. 1996;174:547.CrossRefPubMedGoogle Scholar
  5. 5.
    Vaughan JI, Manning M, Warwick RM, et al. Inhibition of erythroid progenitor cells by anti-Kell antibodies in fetal alloimmune anemia. N Engl J Med. 1998;338:798.CrossRefPubMedGoogle Scholar
  6. 6.
    van den Akker ES, de Haan TR, Lopriore E, et al. Severe fetal thrombocytopenia in Rhesus D alloimmunized pregnancies. Am J Obstet Gynecol. 2008;199:387.e1.CrossRefGoogle Scholar
  7. 7.
    American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 75: Management of alloimmunization during pregnancy. Obstet Gynecol. 2006;108:457.Google Scholar
  8. 8.
    Rodis JF, Quinn DL, Gary Jr GW, et al. Management and outcomes of pregnancies complicated by human B19 parvovirus infection: a prospective study. Am J Obstet Gynecol. 1990;163:1168.CrossRefPubMedGoogle Scholar
  9. 9.
    Gratacós E, Torres PJ, Vidal J, et al. The incidence of human parvovirus B19 infection during pregnancy and its impact on perinatal outcome. J Infect Dis. 1995;171:1360.CrossRefPubMedGoogle Scholar
  10. 10.
    Pretlove SJ, Fox CE, Khan KS, Kilby MD. Noninvasive methods of detecting fetal anaemia: a systematic review and meta-analysis. BJOG. 2009;116:1558.CrossRefPubMedGoogle Scholar
  11. 11.
    Picklesimer AH, Oepkes D, Moise Jr KJ, et al. Determinants of the middle cerebral artery peak systolic velocity in the human fetus. Am J Obstet Gynecol. 2007;197:526.e1.CrossRefGoogle Scholar
  12. 12.
    Mari G, Deter RL, Carpenter RL, et al. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic Fetuses. N Engl J Med. 2000;342:9.CrossRefPubMedGoogle Scholar
  13. 13.
    Fox C, Martin W, Somerset DA, et al. Early intraperitoneal transfusion and adjuvant maternal immunoglobulin therapy in the treatment of severe red cell alloimmunization prior to fetal intravascular transfusion. Fetal Diagn Ther. 2008;23:159.CrossRefPubMedGoogle Scholar
  14. 14.
    Ruma MS, Moise Jr KJ, Kim E, et al. Combined plasmapheresis and intravenous immune globulin for the treatment of severe maternal red cell alloimmunization. Am J Obstet Gynecol. 2007;196:138.e1.CrossRefGoogle Scholar
  15. 15.
    Isojima S, Hisano M, Suzuki T, et al. Early plasmapheresis followed by high-dose γ-globulin treatment saved a severely Rho-incompatible pregnancy. J Clin Apher. 2011;26:216.CrossRefPubMedGoogle Scholar
  16. 16.
    Palfi M, Hildén JO, Matthiesen L, et al. A case of severe Rh (D) alloimmunization treated by intensive plasma exchange and high-dose intravenous immunoglobulin. Transfus Apher Sci. 2006;35:131.CrossRefPubMedGoogle Scholar
  17. 17.
    Wong KS, Connan K, Rowlands S, et al. Antenatal immunoglobulin for fetal red blood cell alloimmunization. Cochrane Database Syst Rev. 2013;5:CD008267.PubMedGoogle Scholar
  18. 18.
    Schwartz J, Winters JL, Padmanabhan A, et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: the sixth special issue. J Clin Apher. 2013;28:145.CrossRefPubMedGoogle Scholar
  19. 19.
    Hughes LH, Rossi KQ, Krugh DW, O'Shaughnessy RW. Management of pregnancies complicated by anti-Fy(a) alloimmunization. Transfusion. 2007;47:1858.CrossRefPubMedGoogle Scholar
  20. 20.
    Parilla BV, Tamura RK, Ginsberg NA. Association of parvovirus infection with isolated fetal effusions. Am J Perinatol. 1997;14:357.CrossRefPubMedGoogle Scholar
  21. 21.
    Anand A, Gray ES, Brown T, et al. Human parvovirus infection in pregnancy and hydrops fetalis. N Engl J Med. 1987;316:183.CrossRefPubMedGoogle Scholar
  22. 22.
    Enders M, Klingel K, Weidner A, et al. Risk of fetal hydrops and non-hydropic late intrauterine fetal death after gestational parvovirus B19 infection. J Clin Virol. 2010;49:163.CrossRefPubMedGoogle Scholar
  23. 23.
    Puccetti C, Contoli M, Bonvicini F, et al. Parvovirus B19 in pregnancy: possible consequences of vertical transmission. Prenat Diagn. 2012;32:897.PubMedGoogle Scholar
  24. 24.
    De Jong EP, Lindenburg IT, van Klink JM, et al. Intrauterine transfusion for parvovirus B19 infection: long-term neurodevelopmental outcome. Am J Obstet Gynecol. 2012;206:204.e1.CrossRefGoogle Scholar
  25. 25.
    Rotbart HA. Human parvovirus infections. Annu Rev Med. 1990;41:25.CrossRefPubMedGoogle Scholar
  26. 26.
    Marton T, Martin WL, Whittle MJ. Hydrops fetalis and neonatal death from human parvovirus B19: an unusual complication. Prenat Diagn. 2005;25:543.CrossRefPubMedGoogle Scholar
  27. 27.
    de Haan TR, van den Akker ES, Porcelijn L, et al. Thrombocytopenia in hydropic fetuses with parvovirus B19 infection: incidence, treatment and correlation with fetal B19 viral load. BJOG. 2008;115:76.CrossRefPubMedGoogle Scholar
  28. 28.
    Török TJ, Wang QY, Gary Jr GW, et al. Prenatal diagnosis of intrauterine infection with parvovirus B19 by the polymerase chain reaction technique. Clin Infect Dis. 1992;14:149.CrossRefPubMedGoogle Scholar
  29. 29.
    Rodis JF, Borgida AF, Wilson M, et al. Management of parvovirus infection in pregnancy and outcomes of hydrops: a survey of members of the Society of Perinatal Obstetricians. Am J Obstet Gynecol. 1998;179:985.CrossRefPubMedGoogle Scholar
  30. 30.
    von Kaisenberg CS, Jonat W. Fetal parvovirus B19 infection. Ultrasound Obstet Gynecol. 2001;18:280.CrossRefGoogle Scholar
  31. 31.
    Selbing A, Josefsson A, Dahle LO, Lindgren R. Parvovirus B19 infection during pregnancy treated with high-dose intravenous gammaglobulin. Lancet. 1995;345:660.CrossRefPubMedGoogle Scholar
  32. 32.
    Bianchi DW, Romero R. Biological implications of bi-directional fetomaternal cell traffic: a summary of a National Institute of Child Health and Human Development-sponsored conference. J Matern Fetal Neonatal Med. 2003;14:123.CrossRefPubMedGoogle Scholar
  33. 33.
    Lo YM, Lau TK, Chan LY, et al. Quantitative analysis of the bidirectional fetomaternal transfer of nucleated cells and plasma DNA. Clin Chem. 2000;46:1301.PubMedGoogle Scholar
  34. 34.
    de Almeida V, Bowman JM. Massive fetomaternal hemorrhage: Manitoba experience. Obstet Gynecol. 1994;83:323.PubMedGoogle Scholar
  35. 35.
    Leduc L, Moise Jr KJ, Carpenter Jr RJ, Cano LE. Fetoplacental blood volume estimation in pregnancies with Rh alloimmunization. Fetal Diagn Ther. 1990;5:138.CrossRefPubMedGoogle Scholar
  36. 36.
    Nicolaides KH, Clewell WH, Rodeck CH. Measurement of human fetoplacental blood volume in erythroblastosis fetalis. Am J Obstet Gynecol. 1987;157:50.CrossRefPubMedGoogle Scholar
  37. 37.
    Murphy KW, Venkatraman N, Stevens J. Limitations of ultrasound in the diagnosis of fetomaternal haemorrhage. BJOG. 2000;107:1317.CrossRefPubMedGoogle Scholar
  38. 38.
    Christensen RD, Lambert DK, Baer VL, et al. Severe neonatal anemia from fetomaternal hemorrhage: report from a multihospital health-care system. J Perinatol. 2013;33:429.CrossRefPubMedGoogle Scholar
  39. 39.
    Giacoia GP. Severe fetomaternal hemorrhage: a review. Obstet Gynecol Surv. 1997;52:372.CrossRefPubMedGoogle Scholar
  40. 40.
    Sueters M, Arabin B, Oepkes D. Doppler sonography for predicting fetal anemia caused by massive fetomaternal hemorrhage. Ultrasound Obstet Gynecol. 2003;22:186.CrossRefPubMedGoogle Scholar
  41. 41.
    Kleihauer E, Braun H, Betke K. Demonstration of fetal hemoglobin in erythrocytes of a blood smear. Klin Wochenschr. 1957;35:637.CrossRefPubMedGoogle Scholar
  42. 42.
    Dziegiel MH, Nielsen LK, Berkowicz A. Detecting fetomaternal hemorrhage by flow cytometry. Curr Opin Hematol. 2006;13:490.CrossRefPubMedGoogle Scholar
  43. 43.
    Bromilow IM, Duguid JK. Measurement of feto-maternal haemorrhage: a comparative study of three Kleihauer techniques and tow flow cytometry methods. Clin Lab Haematol. 1997;19:137.CrossRefPubMedGoogle Scholar
  44. 44.
    Sifakis S, Koukoura O, Konstantinidou AE, et al. Sonographic findings in severe fetomaternal transfusion. Arch Gynecol Obstet. 2010;281:241.CrossRefPubMedGoogle Scholar
  45. 45.
    Rubod C, Deruelle P, Le Goueff F, et al. Long-term prognosis for infants after massive fetomaternal hemorrhage. Obstet Gynecol. 2007;110:256.CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.MediScan SystemsChennaiIndia
  2. 2.Sri Ramachandra UniversityChennaiIndia

Personalised recommendations