Skip to main content

Cryopreservation of Somatic Embryos of Ornamental Plants

  • Chapter
  • First Online:
Somatic Embryogenesis in Ornamentals and Its Applications

Abstract

Ornamental plants play a social and economic role in human society since antic ages, and its production consists about 78 % of total production. Thus, in situ and ex situ germplasm conservation techniques must be applied to preserve elite varieties. Since in situ strategies are more prone to environmental factors (e.g., biotic and abiotic stress) and ex situ approaches are open to cross-pollination or homologous recombination during gamete formation, currently in vitro strategies are the good complementary mechanism to avoid these problems. Among in vitro conservation techniques, cryopreservation seems to be the best candidate as it enables to preserve selected germplasm theoretically unlimited period of time with maintaining genetic stability, which is very important in ornamental plant cultivation. Besides, embryogenic cultures are used for in vitro propagation; the tissues are also utilized as target materials for gene transfer studies. These cultures have the potential to produce cisgenic or intragenic plants and cryogenic technology offers opportunities to conserve germplasm to introduce genes from crossable ornamental plants especially for cisgenesis. Thus cryopreservation also plays an important role in maintaining transgenic, cisgenic, or intergenic somatic embryos of ornamentals in a stable way. In this chapter, efficient cryopreservation technique including one-step and two-step freezing methods together with vitrification- and dehydration-based techniques for conservation of somatic embryos and related tissues of ornamentals is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akdemir H, Kaya E, Ozden Y (2010) In vitro proliferation and minimum growth storage of fraser photinia: influences of different medium, sugar combinations and culture vessels. Sci Hortic 126(2):268–275. doi:10.1016/j.scienta.2010.07.005

    Article  Google Scholar 

  • Akdemir H, Gago J, Gallego PP, Ozden-Ciftci Y (2012) Recent advances in fruit species transformation. In: Ozden-Ciftci Y (ed) Transgenic plants-advances and limitations. InTech, Crotia, pp 27–62

    Google Scholar 

  • Antony JJ, Keng CL, Rathinam X, Marimuthu S, Subramaniam S (2010) Preliminary study on cryopreservation of Dendrobium Bobby Messina protocorm-like bodies by vitrification. Afr J Biotechnol 9(42):7064–7070

    Google Scholar 

  • Antony JJ, Keng CL, Rathinam X, Marimuthu S, Subramaniam S (2011) Effect of preculture and PVS2 incubation conditions followed by histological analysis in the cryopreserved PLBs of Dendrobium Bobby Messina orchid. Aust J Crop Sci 5(12):1557–1564

    CAS  Google Scholar 

  • Antony JJ, Keng CL, Rathinam X, Marimuthu S, Subramaniam S (2012) Polymorphism analysis of cryopreserved Dendrobium Bobby Messina protocorm-like bodies (PLBs) using RAPD markers. POJ 5(5):427–431

    CAS  Google Scholar 

  • Antony JJ, Keng CL, Mahmood M, Subramaniam S (2013) Effects of ascorbic acid on PVS2 cryopreservation of Dendrobium Bobby Messina’s PLBs supported with SEM analysis. Appl Biochem Biotechnol 171(2):315–329. doi:10.1007/s12010-013-0369-x

    Article  PubMed  CAS  Google Scholar 

  • Antony JJ, Mubbarakh SA, Mahmood M, Subramaniam S (2014) Effect of plasmolysis on protocorm-like bodies of Dendrobium Bobby Messina orchid following cryopreservation with encapsulation-dehydration method. Appl Biochem Biotechnol 172(3):1433–1444. doi:10.1007/s12010-013-0636-x

    Article  PubMed  CAS  Google Scholar 

  • Bozena P (2008) Employment of encapsulation-dehydration method for liquid nitrogen cryopreservation of ornamental plant explants propagated in vitro. Folia Hortic 20(1):61–71

    Google Scholar 

  • Ching LP, Poobathy AR, Subramaniam S (2012) Encapsulation-vitrification of Dendrobium sonia-28 supported by histology. POJ 5(4):345–350

    CAS  Google Scholar 

  • Dela Cruz M, Christensen JH, Thomsen JD, Müller R (2014) Can ornamental potted plants remove volatile organic compounds from indoor air?—a review. Environ Sci Pollut Res 21:13909–13928. doi:10.1007/s11356-014-3240-x

    Article  CAS  Google Scholar 

  • Engelmann F (2010) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47(1):5–16. doi:10.1007/s11627-010-9327-2

    Article  Google Scholar 

  • Fernandes P, Rodriguez E, Pinto G, Roldan-Ruiz I, de Loose M, Santos C (2008) Cryopreservation of Quercus suber somatic embryos by encapsulation-dehydration and evaluation of genetic stability. Tree Physiol 28:1841–1850

    Article  PubMed  CAS  Google Scholar 

  • Fjeld T, Veiersted B, Sandvik L, Riise G, Levy F (1998) The effect of indoor foliage plants on health and discomfort symptoms among office workers. Indoor Built Environ 7(4):204–209. doi:10.1177/1420326x9800700404

    Article  Google Scholar 

  • George EF, Hall MA, De Klerk G-J (2008) Somatic embryogenesis. In: George EF, Hall MA, De Klerk G-J (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, Netherlands, pp 335–354

    Google Scholar 

  • Gogoi K, Kumaria S, Tandon P (2012) A comparative study of vitrification and encapsulation-vitrification for cryopreservation of protocorms of Cymbidium eburneum L., a threatened and vulnerable orchid of India. Cryo Letters 33(6):443–452

    PubMed  CAS  Google Scholar 

  • Halmagyi A, Fischer-Kluver G, Mix-Wagner G, Schumacher HM (2004) Cryopreservation of Chrysanthemum morifolium (Dendranthema grandiflora Ramat.) using different approaches. Plant Cell Rep 22(6):371–375. doi:10.1007/s00299-003-0703-9

    Article  PubMed  CAS  Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. Cryo Letters 25(1):3–22

    PubMed  Google Scholar 

  • Hazubska-Przybył T, Bojarczuk K, Chmielarz P, Michalak M (2012) Somatic embryogenesis and cryopreservation of ornamental Picea species: modern methods of propagation and long-term storage. Acta Horticult (ISHS) 937:729–735

    Article  Google Scholar 

  • Hwa TK, Xavier R, Keng CL, Sreeramanan S (2009) An assessment of early factors influencing the PVS2 vitrification method using protocorm-like bodies of Dendrobium Sonia 28. Am Eursian J Sustain Agric 3(3):280–289

    Google Scholar 

  • Janeiro LV, Vieitez AM, Ballester A (1996) Cryopreservation of somatic embryos and embryonic axes of Camellia japonica L. Plant Cell Rep 15:699–703

    Article  PubMed  CAS  Google Scholar 

  • Jekkel Z, Gyulai G, Kiss J, Kiss E, Heszky LE (1998) Cryopreservation of horse-chestnut (Aesculus hippocastanum L.) somatic embryos using three different freezing methods. Plant Cell Tissue Organ Cult 52(3):193–197. doi:10.1023/A:1006057819124

    Article  CAS  Google Scholar 

  • Khoddamzadeh AA, Sinniah UR, Lynch P, Kadir MA, Kadzimin SB, Mahmood M (2011) Cryopreservation of protocorm-like bodies (PLBs) of Phalaenopsis bellina (Rchb.f.) christenson by encapsulation-dehydration. Plant Cell Tissue Organ Cult 107(3):471–481. doi:10.1007/s11240-011-9997-4

    Article  Google Scholar 

  • Kim HM, Shin JH, Sohn JK (2006) Cryopreservation of somatic embryos of the herbaceous peony (Paeonia lactiflora Pall.) by air drying. Cryobiology 53(1):69–74. doi:10.1016/j.cryobiol.2006.03.012

    Article  PubMed  CAS  Google Scholar 

  • Kulus D, Zalewska M (2014) Cryopreservation as a tool used in long-term storage of ornamental species – a review. Sci Hortic 168:88–107. doi:10.1016/j.scienta.2014.01.014

    Article  Google Scholar 

  • Lee YI, Hsu ST, Yeung EC (2013) Orchid protocorm-like bodies are somatic embryos. Am J Bot 100(11):2121–2131. doi:10.3732/ajb.1300193

    Article  PubMed  CAS  Google Scholar 

  • Li DZ, Pritchard HW (2009) The science and economics of ex situ plant conservation. Trends Plant Sci 14(11):614–621. doi:10.1016/j.tplants.2009.09.005

    Article  PubMed  CAS  Google Scholar 

  • Martı́nez MT, Ballester A, Vieitez AM (2003) Cryopreservation of embryogenic cultures of Quercus robur using desiccation and vitrification procedures. Cryobiology 46(2):182–189

    Article  PubMed  Google Scholar 

  • Mikula A, Olas M, Sliwinska E, Rybczynski JJ (2008) Cryopreservation by encapsulation of Gentiana spp cell suspensions maintains regrowth, embryogenic competence and DNA content. Cryo Letters 29(5):409–418

    PubMed  Google Scholar 

  • Mikula A, Tomiczak K, Rybczynski JJ (2011) Cryopreservation enhances embryogenic capacity of Gentiana cruciata (L.) suspension culture and maintains (epi)genetic uniformity of regenerants. Plant Cell Rep 30(4):565–574. doi:10.1007/s00299-010-0970-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohanty P, Das MC, Kumaria S, Tandon P (2012) High-efficiency cryopreservation of the medicinal orchid Dendrobium nobile Lindl. Plant Cell Tissue Organ Cult 109(2):297–305. doi:10.1007/s11240-011-0095-4

    Article  CAS  Google Scholar 

  • Mohanty P, Das MC, Kumaria S, Tandon P (2013) Cryopreservation of pharmaceutically important orchid Dendrobium chrysanthum Wall. ex Lindl. using vitrification based method. Acta Physiol Plant 35(4):1373–1379. doi:10.1007/s11738-012-1163-z

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nair DS, Reghunath BR (2008) Effective use of encapsulation-dehydration technique in cryopreserving somatic embryos of butterfly pea (Clitoria ternatea L.). J Herbs Spices Med Plants 13(3):83–95. doi:10.1300/J044v13n03_07

    Article  Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91(1):67–73

    Article  CAS  Google Scholar 

  • Ozudogru EA, Previati A, Lambardi M (2010) In vitro conservation and cryopreservation of ornamental plants. In: Jain SM, Ochatt SJ (eds) Protocols for in vitro propagation of ornamental plants, vol 589, Methods in molecular biology. Humana Press, New York, USA, pp 303–324

    Chapter  Google Scholar 

  • Panis M (2009) Cryopreservation of Musa germplasm. In: Engelmann F, Benson E (eds) Technical guidelines no. 9, 2nd edn. Bioversity International, Montpellier, France

    Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168(1):45–55

    Article  CAS  Google Scholar 

  • Poobathy R, Izwa N, Julkifle AL, Subramaniam S (2013a) Cryopreservation of Dendrobium sonia-28 using an alternative method of PVS2 droplet freezing. Emir J Food Agric 25(7):531–538. doi:10.9755/ejfa.v25i7.15988

    Article  Google Scholar 

  • Poobathy R, Sinniah UR, Mahmood M, Subramaniam S (2013b) Refinement of a vitrification protocol for protocorm-like bodies of Dendrobium sonia-28. Turk J Bot 37:940–949. doi:10.3906/bot-1208-35

    Article  CAS  Google Scholar 

  • Reed BM, Schumacher L, Wang N, D’Achino J, Barker RE (2006) Cryopreservation of bermudagrass germplasm by encapsulation dehydration. Crop Sci 46(1):6–11. doi:10.2135/cropsci2004.0620

    Article  Google Scholar 

  • Rommens CM, Haring MA, Swords K, Davies HV, Belknap WR (2007) The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12(9):397–403

    Article  PubMed  CAS  Google Scholar 

  • Rout GR, Mohapatra A, Jain SM (2006) Tissue culture of ornamental pot plant: a critical review on present scenario and future prospects. Biotechnol Adv 24(6):531–560. doi:10.1016/j.biotechadv.2006.05.001

    Article  PubMed  CAS  Google Scholar 

  • Sánchez C, Martínez MT, Vidal N, San-José MC, Valladares S, Vieitez AM (2008) Preservation of Quercus robur germplasm by cryostorage of embryogenic cultures derived from mature trees and RAPD analysis of genetic stability. Cryo Letters 29(6):493–504

    PubMed  Google Scholar 

  • Scocchi A, Vila S, Mroginski L, Engelmann F (2007) Cryopreservation of somatic embryos of paradise tree (Melia azedarach L.). Cryo Letters 28(4):281–290

    PubMed  Google Scholar 

  • Shibli RA (2000) Cryopreservation of black iris (Iris nigricans) somatic embryos by encapsulation-dehydration. Cryo Letters 21(1):39–46

    PubMed  Google Scholar 

  • Subramaniam S, Sinniah UR, Khoddamzadeh AA, Periasamy S, James JJ (2011) Fundamental concept of cryopreservation using Dendrobium sonia-17 protocorm-like bodies by encapsulation-dehydration technique. Afr J Biotechnol 10(19):3902–3907

    Google Scholar 

  • Suzuki M, Tandon P, Ishikawa M, Toyomasu T (2008) Development of a new vitrification solution, VSL, and its application to the cryopreservation of gentian axillary buds. Plant Biotechnol Rep 2(2):123–131. doi:10.1007/s11816-008-0056-5

    Article  Google Scholar 

  • Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104(3):543–556

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor NJ, Fauquet CM (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol 21(12):963–977. doi:10.1089/104454902762053891

    Article  PubMed  CAS  Google Scholar 

  • Teixeira da Silva JA (2003) Chrysanthemum: advances in tissue culture, cryopreservation, postharvest technology, genetics and transgenic biotechnology. Biotechnol Adv 21(8):715–766. doi:10.1016/s0734-9750(03)00117-4

    Article  PubMed  CAS  Google Scholar 

  • Teixeira da Silva JA, Zeng S, Galdiano RF Jr, Dobranszki J, Cardoso JC, Vendrame WA (2014) In vitro conservation of Dendrobium germplasm. Plant Cell Rep 33(9):1413–1423. doi:10.1007/s00299-014-1631-6

    Article  PubMed  CAS  Google Scholar 

  • Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv 26(6):618–631. doi:10.1016/j.biotechadv.2008.08.003

    Article  PubMed  CAS  Google Scholar 

  • Thomsen JD, Sønderstrup-Andersen HKH, Müller R (2011) People–plant relationships in an office workplace: perceived benefits for the workplace and employees. HortSci 46(5):744–752

    Google Scholar 

  • Tokuhara K, Mii M (1993) Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds. Plant Cell Rep 13(1):7–11. doi:10.1007/BF00232306

    Article  PubMed  CAS  Google Scholar 

  • Tsukazaki H, Mii M, Tokuhara K, Ishikawa K (2000) Cryopreservation of Doritaenopsis suspension culture by vitrification. Plant Cell Rep 19:1160–1164

    Article  CAS  Google Scholar 

  • Valladares S, Toribio M, Celestino C, Vieitez AM (2004) Cryopreservation of embryogenic cultures from mature Quercus suber trees using vitrification. Cryo Letters 25:177–186

    PubMed  Google Scholar 

  • Wang GL, Xu CY, Wang GD (2010) Study on vitrification cryopreservation condition of Anthurium andraeanum embryonic suspension cells. J Plant Res Environ 19(1):26–31

    Google Scholar 

  • Wang B, Zhang Z, Yin Z, Feng C, Wang Q (2012) Novel and potential application of cryopreservation to plant genetic transformation. Biotechnol Adv 30(3):604–612. doi:10.1016/j.biotechadv.2011.10.008

    Article  PubMed  CAS  Google Scholar 

  • Wu YL, Shen XU (2011) Cryopreservation of Dendrobium wardianum Warner. protocorms by vitrification. Chin J Cell Bio 33(3):279–287

    Google Scholar 

  • Yin M, Hong S (2009) Cryopreservation of Dendrobium candidum Wall. ex Lindl. protocorm-like bodies by encapsulation-vitrification. Plant Cell Tissue Organ Cult 98(2):179–185. doi:10.1007/s11240-009-9550-x

    Article  CAS  Google Scholar 

  • Zainuddin M, Julkifle AL, Pobathy R, Sinniah UR, Khoddamzadeh AA, Antony JJ, Pavallekoodi, Subramaniam S (2011) Preliminary analysis of cryopreservation of Dendrobium Bobby Messina orchid using an encapsulation-dehydration technique with Evans blue assay. Afr J Biotechnol 10(56):11870–11878. doi:10.5897/AJB11.002

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yelda Özden Çiftçi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Kırdök, E., Ekinci, H., Çiftçi, Y.Ö. (2016). Cryopreservation of Somatic Embryos of Ornamental Plants. In: Mujib, A. (eds) Somatic Embryogenesis in Ornamentals and Its Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2683-3_8

Download citation

Publish with us

Policies and ethics