Skip to main content

Optimizing Factors Affecting Somatic Embryogenesis in Cineraria

  • Chapter
  • First Online:
Somatic Embryogenesis in Ornamentals and Its Applications

Abstract

We established a reproducible protocol for somatic embryogenesis and plant regeneration of cineraria. 2,4-Dichlorophenoxy acetic acid (2,4-D) had a significant effect on somatic embryo formation. Addition of cytokinins such as 2-isopentenyladenine (2-iP), 6-benzyladenine (BA), and thidiazuron (TDZ) to the 2,4-D containing medium enhanced the frequency of somatic embryo induction and average number of somatic embryos per explant. However, the nature of SE varied depending on combination of 2,4-D and cytokinins. Cotyledon and leaf explants developed somatic embryos on Murashige and Skoog (MS) medium supplemented with 3.0 mg l−1 2,4-D and 1.0 mg l−1 BA. Among the two explants, leaves were found to be the most effective for somatic embryogenesis and subsequent plant regeneration. Most of the embryos developed from the cotyledon explants showed precocious germination. Furthermore, somatic embryos obtained from the cotyledon explants developed hyperhydric shoots. Thus, induction and development of SE in cineraria is also affected by the age of the explants. Globular embryos developed into normal plantlets through heart, torpedo, and cotyledonary stages, similar to zygotic embryos, when cultured on MS medium supplemented with gibberellic acid (GA3). The in vitro-developed plantlets were successfully acclimatized in the greenhouse with 98 % survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammirato PV (1985) Patterns of development in culture. In: Henke RR (ed) Tissue culture in forestry and agriculture. Plenum, New York, pp 9–29

    Chapter  Google Scholar 

  • Attree SM, Pomeroy MK, Fowke LC (1992) Manipulation of conditions for the culture of somatic embryos of white spruce for improved triacylglycerol biosynthesis and desiccation tolerance. Planta 187:395–404

    Article  PubMed  CAS  Google Scholar 

  • Bozhkov PV, Filonova LH, von Arnold S (2002) A key developmental switch during Norway spruce somatic embryogenesis is induced by withdrawal of growth regulators and is associated with cell death and extracellular acidification. Biotechnol Bioeng 77:658–667

    Article  PubMed  CAS  Google Scholar 

  • Choi YE, Yang DC, Choi KT (1998) Induction of somatic embryos by macrosalt stress from mature zygotic embryos of Panax ginseng. Plant Cell Tissue Organ Cult 52:177–181

    Article  CAS  Google Scholar 

  • Christie PJ, Alfenito MR, Walbot V (1994) Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541–549

    Article  CAS  Google Scholar 

  • Correa CM, de Oliveira GN, Astariata LV, Santarem ER (2009) Plant regeneration through somatic embryogenesis of yacon [Smallanthus sonchifolius (Poepp. and Endl.) H. Robinson]. Braz Arch Biol Technol 52:549–554

    Article  CAS  Google Scholar 

  • Dennis JG (2000) Nonzygotic embryogenesis. In: Robert NT, Dennis JG (eds) Plant tissue culture concepts and laboratory exercises. CRC Press, Boca Raton, pp 175–189

    Google Scholar 

  • Dey T, Saha S, Ghosh PD (2015) Somaclonal variation among somatic embryo derived plants- evaluation of agronomically important somaclones and detection of genetic changes by RAPD in Cymbopogon winterianus. South Afr J Bot 96:112–121

    Article  Google Scholar 

  • Feher A (2008) The initiation phase of somatic embryogenesis: what we know and what we don’t. Acta Biol Szeged 52:53–56

    Google Scholar 

  • Feher A, Pasternak T, Otvos K, Miskolczi P, Dudits D (2002) Induction of embryogenic competence in somatic plant cells: a review. Biologia 57:5–12

    CAS  Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  CAS  Google Scholar 

  • Ferreira WM, Kerbauy GB, Kraus JE, Pescador R, Suzuki RM (2006) Thidiazuron influences the endogenous levels of cytokinins and IAA during the flowering of isolated shoots of Dendrobium. J Plant Physiol 163:1126–1134

    Article  CAS  Google Scholar 

  • Filho JCB, Hashimoto JM, Vieira LG (1993) Induction of somatic embryogenesis from leaf explants of Stevia rebaudiana. Braz J Plant Physiol 5:51–53

    Google Scholar 

  • Gertsson UE (1988) Large-scale in vitro propagation of Senecio X hybridus Hyl. J Hortic Sci 63:131–136

    Google Scholar 

  • Guo B, Abbasi BH, Zeb A, Xu LL, Wei YH (2011) Thidiazuron: a multi-dimensional plant growth regulator. Afr J Biotechnol 10:8984–9000

    CAS  Google Scholar 

  • Huang Z, Liang M, Peng J, Xing T, Wang X (2008) Exogenous ammonium inhibits petal pigmentation and expansion in Gerbera hybrida. Physiol Plant 133:254–265

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson MJ, Sanaratna T, Sahi SV, Saxena PK (2000) Light mediates endogenous plant growth substances in thidiazuron-induced somatic embryogenesis in geranium hypocotyls cultures. J Plant Biochem Biotechnol 9:1–6

    Article  CAS  Google Scholar 

  • Jimenez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones. Rev Bras Fisiol Veg 13:196–223

    Article  Google Scholar 

  • Johansson L (1983) Effects of activated charcoal in anther cultures. Physiol Plant 59:397–403

    Article  CAS  Google Scholar 

  • Kim CK, Chung JD, Jee SO, Oh JY (2003) Somatic embryogenesis from in vitro grown leaf explants of Rosa hybrida L. J Plant Biotechnol 5:161–164

    Google Scholar 

  • Langhansova L, Konradova H, Vanek T (2004) Polyethylene glycol and abscisic acid improve maturation and regeneration of Panax ginseng somatic embryos. Plant Cell Rep 22:725–730

    Article  PubMed  CAS  Google Scholar 

  • Lelu-Walter MA, Thompson D, Harvengt L, Sanchez L, Toribio M, Paques LE (2013) Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet Genomes 9:883–899

    Article  Google Scholar 

  • Leyva A, Jarillo JA, Salinas J, Martinez-Zapater JM (1995) Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiol 108:39–46

    PubMed  PubMed Central  CAS  Google Scholar 

  • Linkies A, Leubner-Metzger G (2012) Beyond gibberellins and abscisic acid: How ethylene and jasmonates control seed germination. Plant Cell Rep 31:253–270

    Article  PubMed  CAS  Google Scholar 

  • Liu CM, Xu ZH, Chua NH (1993) Polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malueg KR, McDaniel GL, Trigiano RN (1989) Somatic embryogenesis of florists’ cineraria. HortSci 24:744

    Google Scholar 

  • Malueg KR, McDaniel GL, Graham ET, Trigiano RN (1994) A three media transfer system for direct somatic embryogenesis from leaves of Senecio x hybridus Hyl. (Asteraceae). Plant Cell Tissue Organ Cult 36:249–253

    Article  Google Scholar 

  • Nam EY, Kim GH, Jeong BR (2005) Direct somatic embryogenesis and plant regeneration in cineraria (Senecio cruentus). J Korean Soc Hortic Sci 46:210–216

    CAS  Google Scholar 

  • Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759

    Article  PubMed  CAS  Google Scholar 

  • Owen HR, Wengerd D, Miller AR (1991) Culture medium pH is influenced by basal medium, carbohydrate source, gelling agent, activated charcoal, and medium storage method. Plant Cell Rep 10:583–586

    Article  PubMed  CAS  Google Scholar 

  • Pan MJ, Van Staden J (1998) The use of charcoal in in vitro culture-a review. Plant Growth Regul 26:155–163

    Article  CAS  Google Scholar 

  • Phillips GC, Collins GB (1981) Induction and development of somatic embryos from cell suspension cultures of soybean. Plant Cell Tissue Organ Cult 1:123–129

    Article  CAS  Google Scholar 

  • Rai MK, Shekhawat NS, Harish GAK, Phulwaria M, Ram K, Jaiswal U (2011) The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tissue Organ Cult 106:179–190

    Article  CAS  Google Scholar 

  • Sagare AP, Lee YL, Lin TC, Chen CC, Tsay HS (2000) Cytokinin induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo (Fumariaceae)- a medicinal plant. Plant Sci 160:139–147

    Article  PubMed  CAS  Google Scholar 

  • Salvo SAGD, Hirsch CN, Buell CR, Kaeppler SM, Kaeppler HF (2014) Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS One 9, e111407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scheible W-R, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma P, Rajam MV (1995) Genotype, explant and position effects on organogenesis and somatic embryogenesis in eggplant (Solanum melongena L.). J Exp Bot 46:135–141

    Article  CAS  Google Scholar 

  • Sivanesan I, Jeong BR (2012) Identification of somaclonal variants in proliferating shoot cultures of Senecio cruentus cv. Tokyo Daruma. Plant Cell Tissue Organ Cult 111:247–253

    Article  Google Scholar 

  • Sivanesan I, Lim MY, Jeong BR (2011) Somatic embryogenesis and plant regeneration from leaf and petiole explants of Campanula punctata Lam. var. rubriflora Makino. Plant Cell Tissue Organ Cult 107:365–369

    Article  Google Scholar 

  • Sivanesan I, Son MS, Jana S, Jeong BR (2012) Secondary somatic embryogenesis in Crocus vernus (L.) Hill. Propag Ornam Plants 12:163–170

    Google Scholar 

  • Smith DL, Krikorian AD (1989) Release of somatic embryogenic potential from excised zygotic embryos of carrot and maintenance of proembryonic cultures in hormone-free medium. Am J Bot 76:1832–1843

    Article  PubMed  CAS  Google Scholar 

  • Su YH, Su YX, Liu YG, Zhang XS (2012) Abscisic acid is required for somatic embryo initiation through mediating spatial auxin response in Arabidopsis. Plant Growth Regul 69:167–176

    Article  CAS  Google Scholar 

  • Tanaka K, Kanno Y, Kudo S, Suzuki M (2000) Somatic embryogenesis and plant regeneration in chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Plant Cell Rep 19:946–953

    Article  CAS  Google Scholar 

  • Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv 6:618–631

    Article  CAS  Google Scholar 

  • Todd CN, Yeung EC (1993) Failure to establish a functional shoot meristem may be a cause of conversion failure in somatic embryos of Daucus carota (Apiaceae). Am J Bot 80:1284–1291

    Article  Google Scholar 

  • von Aderkas P, Label P, Lelu MA (2002) Charcoal affects early development and hormonal concentrations of somatic embryos of hybrid larch. Tree Physiol 22:431–434

    Article  Google Scholar 

  • Weatherhead MA, Burdon J, Henshaw GG (1978) Some effects of activated charcoal as an additive to plant tissue culture media. Z Pflanzenphysiol 89:141–147

    Article  CAS  Google Scholar 

  • Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462

    Google Scholar 

  • Xu Z, Zhang C, Zhang X, Liu C, Wu Z, Yang Z, Zhou K, Yang X, Li F (2013) Transcriptome profiling reveals auxin and cytokinin regulating somatic embryogenesis in different sister lines of cotton cultivar CCRI24. J Integr Plant Biol 55:631–642

    Article  PubMed  CAS  Google Scholar 

  • Yeung EC, Claudio S (2000) Somatic embryogenesis–apical meristems and embryo conversion. Korean J Plant Tissue Cult 27:299–307

    Google Scholar 

  • Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotechnol 13:1–9. doi:10.2225/vol13-issue1-fulltext-4

    Article  CAS  Google Scholar 

  • Zobayed SMA, Saxena PK (2003) In vitro regeneration of Echinacea purpurea L.: enhancement of somatic embryogenesis by indolebutyric acid and dark pre-incubation. In Vitro Cell Dev Biol Plant 39:605–612

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iyyakkannu Sivanesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Sivanesan, I., Jeong, B.R. (2016). Optimizing Factors Affecting Somatic Embryogenesis in Cineraria. In: Mujib, A. (eds) Somatic Embryogenesis in Ornamentals and Its Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2683-3_4

Download citation

Publish with us

Policies and ethics