Skip to main content

Effects of Plant Growth Regulator, Auxin Polar Transport Inhibitors on Somatic Embryogenesis and CmSERK Gene Expression in Cattleya maxima (Lindl.)

  • Chapter
  • First Online:
Somatic Embryogenesis in Ornamentals and Its Applications

Abstract

The somatic embryogenesis is commonly used for rapid propagation of species of interest hard to reproduce, like orchids. The induction of somatic embryogenesis requires the establishment of a peculiar genetic expression pattern in the presence of the suitable environmental conditions and a favorable hormonal background, which can be obtained providing synthetic plant growth regulators.

We tested several combinations of plant growth regulators in different illumination conditions on leaf explants of Cattleya maxima. The most efficient production of embryos was achieved with exogenous cytokinin (thidiazuron) in dark conditions at the cut end of the leaf. The expression of CmSERK gene was higher in the presence of cytokinins. The effects of the different treatments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NPA:

N-1-Naphthylphthalamic acid

TIBA:

2,3,5-Triiodobenzoic acid

PGRs:

Plant growth regulators

PAT:

Polar auxin transport

SE:

Somatic embryogenesis

TDZ:

Thidiazuron [1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea]

2,4-D:

2,4-Dichlorophenoxyacetic acid

BA:

N6-Benzyladenine

NAA:

Naphthaleneacetic acid

References

  • Abrahamsson M, Valladares S, Larsson E, Clapham D, von Arnold S (2012) Patterning during somatic embryogenesis in Scots pine in relation to polar auxin transport and programmed cell death. Plant Cell Tiss Org Cult 109:391–400

    Article  CAS  Google Scholar 

  • Arditti J (2008) Micropropagation of Orchids, 2nd edn. Blackwell Publishing, Malden

    Google Scholar 

  • Chen JT, Chang WC (2001) Effects of auxins and cytokinins on direct somatic embryogenesis from leaf explants of Oncidium ‘Gower Ramsey’. Plant Growth Regul 34:229–232

    Article  CAS  Google Scholar 

  • Chen JT, Chang WC (2004) TIBA affects the induction of direct somatic embryogenesis from leaf explants of Oncidium. Plant Cell Tiss Org Cult 79:315–320

    Article  CAS  Google Scholar 

  • Chen J, Chang W (2006) Efficient and repetitive production of leaf-derived somatic embryos of Oncidium. Biol Plant 50:107–110

    Article  Google Scholar 

  • Chen J-T, Hong P-I (2012) Cellular origin and development of secondary somatic embryos in Oncidium leaf cultures. Biol Plant 56(2):215–220

    Article  CAS  Google Scholar 

  • Chen JT, Chang C, Chang WC (1999) Direct somatic embryogenesis on leaf explants of Oncidium Gower Ramsey and subsequent plant regeneration. Plant Cell Rep 19:143–149

    Article  CAS  Google Scholar 

  • Choi YE, Kim HS, Soh WY, Yang DC (1997) Developmental and structural aspects of somatic embryos formed on medium containing 2,3,5-triidobenzoic acid. Plant Cell Rep 16:738–744

    Article  CAS  Google Scholar 

  • Choi YE, Ko SK, Lee KS, Yoon ES (2002) Production of plantlets of Eleutherococcus sessiliflorus via somatic embryogenesis and successful transfer to soil. Plant Cell Tiss Org Cult 69:35–40

    Article  Google Scholar 

  • Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis-recent advances. Curr Sci 83:715–730

    CAS  Google Scholar 

  • Chung HH, Chen JT, Chang WC (2005) Cytokinins induce direct somatic embryogenesis of Dendrobium chiengmai Pink and subsequent plant regeneration. In Vitro Cell Dev Biol Plant 41:765–769

    Article  CAS  Google Scholar 

  • Chung HH, Chen JT, Chang WC (2007) Plant regeneration through direct somatic embryogenesis from leaf explants of Dendrobium. Biol Plant 51:346–350

    Article  CAS  Google Scholar 

  • Crawley MJ (2007) The R Book. Wiley, Chichester

    Book  Google Scholar 

  • Cueva A, González Y (2009) In vitro germination and somatic embryogenesis induction in Cyrtochilum loxense, an endemic, vulnerable orchid from Ecuador. In: Pridgeon AM, Suarez JP (eds) Proceedings of the second scientific conference on Andean Orchids. Universidad Técnica Particular de Loja, Loja, Ecuador, pp 56–62

    Google Scholar 

  • Cueva A, Concia L, Cella R (2012) Molecular characterization of a Cyrtochilum loxense Somatic Embryogenesis receptor-like Kinase (SERK) gene expressed during somatic embryogenesis. Plant Cell Rep 31:1129–1139

    Article  PubMed  CAS  Google Scholar 

  • Cueva A, Guachizaca I, Cella R (2013) Combination of 2,4-D and stress improves indirect Somatic Embryogenesis in Cattleya maxima Lindl. Plant Biosyst 149:235–241

    Article  Google Scholar 

  • Cueva A, Guachizaca I, Cella R (2015) Combination of 2,4-D and stress improves indirect Somatic Embryogenesis in Cattleya maxima Lindl. Plant Biosyst 149:235–241

    Article  Google Scholar 

  • Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hasek J, Paciorek T, Petrasek J, Seifertova D, Tejos R, Meisel LA, Zazimalova E, Gadella TWJ, Stierhof YD, Ueda T, Oiwa K, Akhmanova A, Brock R, Spang A, Friml J (2008) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci 105:4489–4494

    Article  PubMed  PubMed Central  Google Scholar 

  • Espinosa E, Laguna A, Murguía J, Iglesias L, García B, Escobedo L, Martínez Y, Barredo SB (2010) Un protocolo de embriogénesis somática para la regeneración y Caracterización in vitro de Laelia anceps spp dawsonii. Rev Fitotec Mex 33:323–332

    Google Scholar 

  • Fang-Yi J, Do Y, Liauh Y, Chung J, Huang P (2006) Enhancement of growth and regeneration efficiency from embryogenic callus cultures of Oncidium Gower Ramsey by adjusting carbohydrate sources. Plant Sci 170:1133–1140

    Article  CAS  Google Scholar 

  • Gaj M (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47

    Article  CAS  Google Scholar 

  • Gow W, Chen J, Chan W (2009) Effects of genotype, light regime, explants position and orientation on direct somatic embryogenesis from leaf explants of Phalaenopsis orchids. Acta Physiol Plant 31:363–369

    Article  Google Scholar 

  • Hakman I, Hallberg H, Palovaara J (2009) The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development. Tree Physiol 29:483–496

    Article  PubMed  CAS  Google Scholar 

  • Hong PI, Chan JT, Chang WC (2008) Promotion of direct somatic embryogenesis of Oncidium by adjusting carbon sources. Biol Plant 52:597–600

    Article  CAS  Google Scholar 

  • Hou C, Yang C (2009) Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetation to reproductive transition. Plant Cell Physiol 50:1544–1557

    Article  PubMed  CAS  Google Scholar 

  • Huan LVT, Takamura T, Tanaka M (2004) Callus formation and plant regeneration from callus through somatic embryo structures in Cymbidium orchid. Plant Sci 166:1443–1449

    Article  CAS  Google Scholar 

  • Huang X, Lu XY, Zhao JT, Chen JK, Dai XM, Xiao W, Chen YP, Chen YF, Huang XL (2010) MaSERK1 gene expression associated with somatic embryogenic competence and disease resistance response in banana (Musa spp.). Plant Mol Biol Rep 28:309–316

    Article  CAS  Google Scholar 

  • Hutchinson MJ, Murch SJ, Saxena PK (1996) Morphoregulatory role of thidiazuron: evidence of the involvement of endogenous auxin in thidiazuron-induced somatic embryogenesis of geranium (Pelargonium x hortorum Bailey). J Plant Physiol 149:573–579

    Article  CAS  Google Scholar 

  • Ikeda M, Umehara M, Kamada H (2006) Embryogenesis-related genes; its expression and roles during somatic and zygotic embryogenesis in carrot and Arabidopsis. Plant Biotechnol 23:153–161

    Article  CAS  Google Scholar 

  • Ishii Y, Takamura T, Goi M, Tanaka M (1998) Callus induction and somatic embryogenesis of Phalaenopsis. Plant Cell Rep 17:446–450

    Article  CAS  Google Scholar 

  • Krapiec PV, Milaneze M, Pires M (2003) Effects of different combinations of growth regulators for bud induction from seedlings of Cattleya walkeriana Gardner (Orchidaceae). Acta Scientiarum: Biol Sci 25:179–182

    CAS  Google Scholar 

  • Kuo HL, Chen JT, Chang WC (2005) Efficient plant regeneration through direct somatic embryogenesis from leaf explants of Phalaenopsis ‘Little Steve’. In Vitro Cell Dev Biol Plant 41:453–456

    Article  Google Scholar 

  • Liao YK, Liao CK, Ho YL (2008) Maturation of somatic embryos in two embryogenic cultures of Picea morrisonicola Hayata as affected by alteration of endogenous IAA content. Plant Cell Tiss Org Cult 93:257–268

    Article  CAS  Google Scholar 

  • Ma J, He Y, Wu C, Liu H, Hu Z, Sun G (2011) Cloning and molecular characterization of a SERK gene transcriptionally induced during somatic embryogenesis in Ananas comosus cv. Shenwan. Plant Mol Biol Rep 6:1–9

    Google Scholar 

  • Muday GK, DeLong A (2001) Polar auxin transport: controlling where and how much. Trends Plant Sci 6:535–542

    Article  PubMed  CAS  Google Scholar 

  • Müller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nissen P, Minocha SC (1993) Inhibition by 2,4-D of somatic embryogenesis in carrot as explored by its reversal difluoromethylornithine. Physiol Plant 89:673–680

    Article  CAS  Google Scholar 

  • Nolan K, Irwanto R, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nolan K, Kurdyukov S, Rose R (2011) Characterisation of the legume SERK-NIK gene superfamily including splice variants: Implications for development and defence. Plant Biol 11:44–60

    CAS  Google Scholar 

  • Novak SD, Luna LJ, Gamage RN (2014) Role of auxin in orchid development. Plant Signal Behav 9(10), e972277. doi:10.4161/psb.32169

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Nuñez MT, Souza R, Saenz L, Chan JL, Zuniga-Aguilar J, Oropeza C (2008) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28:11–19

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2003–2007

    Article  Google Scholar 

  • R Development Core Team (2004) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reinert J (1958) Untersuchungen über die Morphogenese an Gewebekulturen. Ber Dtsch Bot Ges 71:15–15

    Google Scholar 

  • Sampaio J, Stancato G, Appezzato B (2010) Direct regeneration of protocorm-like bodies (PLBs) from leaf apices of Oncidium flexuosum Sims (Orchidaceae). Plant Cell Tiss Org Cult 103:411–416

    Article  CAS  Google Scholar 

  • Sassi M, Wang J, Ruberti I, Vernoux T, Xu J (2013) Plant Signal Behav 8: doi: 10.4161/psb.23355

    Google Scholar 

  • Schiavone FM, Cooke TJ (1987) Unusual patterns of somatic embryogenesis in domesticated carrot: developmental effects of exogenous auxins and auxin transport inhibitors. Cell Diff 21:53–62

    Article  CAS  Google Scholar 

  • Schmidt ED, Guzzo F, Toonen MA, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    PubMed  CAS  Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958) Growth and organized development of culture cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Article  Google Scholar 

  • Su YJ, Chen J, Chang W (2006) Efficient and repetitive production of leaf-derived somatic embryos of Oncidium. Biol Plant 50:107–110

    Article  CAS  Google Scholar 

  • Sun J, Linlin Q, Chuanyou L (2013) Hormonal control of polar auxin transport. In: Rujin C, Baluska F (eds) Polar Auxin transport. New York Dordrecht London, Springer, 337 pp

    Google Scholar 

  • Tetu T, Sangwan RS, Sangwan BSN (1990) Direct somatic embryogenesis and organogenesis in cultured immature zygotic embryos of Pisum sativum L. J Plant Physiol 137:102–109

    Article  Google Scholar 

  • Tokuhara K, Mii M (2001) Induction of embryogenic callus and cell suspension culture from shoot tips excised from flower stalk buds of Phalaenopsis (Orchidaceae). In Vitro Cell Devl Biol Plant 37:457–461

    Article  CAS  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Ying-Hua Su, Yu-Bo Liu, Xian-Sheng Zhang (2011) Auxin–Cytokinin interaction regulates meristem development. Mol Plant 4:616–625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Quintana-Ascencio (University of Central Florida) for advice on graphics and data presentation and Carlos Iñiguez-Armijos (Universidad Técnica Particular de Loja) for helpful training on the graphics editor Inkscape.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusta Yadira Cueva-Agila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Cueva-Agila, A.Y., Medina, J., Concia, L., Cella, R. (2016). Effects of Plant Growth Regulator, Auxin Polar Transport Inhibitors on Somatic Embryogenesis and CmSERK Gene Expression in Cattleya maxima (Lindl.). In: Mujib, A. (eds) Somatic Embryogenesis in Ornamentals and Its Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2683-3_16

Download citation

Publish with us

Policies and ethics