Skip to main content

Role of CRP in Leishmaniasis

  • Chapter
  • First Online:
Biology of C Reactive Protein in Health and Disease
  • 1035 Accesses

Abstract

Different types of leishmaniasis are differentiated by range and complexity of clinical expressions ranging from asymptomatic infection to life-terrorizing illness. Visceral leishmaniasis (VL) is caused by an obligate intercellular parasite of the mononuclear phagocyte, Leishmania donovani, which causes a life-threatening disease. Leishmania during its stay in the human host have adapted to survive and proliferate in the host’s macrophages. The survival and proliferation of L. donovani in macrophages are largely due to the protection conferred by some family of glycosylinositol phospholipids or phosphoglycans on the cell surface or some secreted/expressed molecules of the host. C-reactive protein (CRP) is a prominent acute-phase protein of man. The serum concentration of CRP increases dramatically to nearly 10–1000-fold during inflammation following activation of hepatocytes by inflammatory cytokines. However, the function of CRP in inflammatory conditions and resistance to different infections is still less understood. CRP, a pattern recognition molecule, is present in host circulation. CRP binds to phosphorylcholine (PC) and some phosphorylated carbohydrates found on the surface of a number of microbes during their first entry into the mammalian host. Previously it was reported that CRP binds to the surface of L. donovani through their lipophosphoglycan (LPG) component and it increases the uptake of the parasite into host macrophages. Leishmania uses CRP to increase its infection without inducing any detrimental macrophage activation. The pathophysiology of different kinds of leishmaniasis was also abridged. CRP, being a phylogenetically conserved innate immune system recognition molecule, recognizes microbial determinants and components of damaged cells as an opsonin. CRP plays its effector function by activating the complement cascade and phagocytosis. A complete definition of the varied ligands used by CRP in recognizing the parasite is essential to understand its role in homeostasis and host defense. The main endeavor of this chapter is to unwind the functional significance of CRP in Leishmania infection, perpetuation, and survival in response to diverse host immune responses in the pathophysiology of its homeostatic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvar J, Cañavate C, Gutiérrez-Solar B, Jiménez M, Laguna F, López-Vélez R, Molina R, Moreno J (1997) Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin Microbiol Rev 10:298–319. [PMC free article] [PubMed]

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ansar W, Ghosh S (2013) C-reactive protein and the biology of disease. Immunol Res 56(1):131–142. doi:10.1007/s12026-013-8384-0

    Article  CAS  PubMed  Google Scholar 

  • Ansar W, Habib SK, Roy S, Mandal C, Mandal C (2009a) Unraveling the C-reactive protein complement-cascade in destruction of red blood cells: potential pathological implications in Plasmodium falciparum malaria. Cell Physiol Biochem 23(1–3):175–190. doi:10.1159/000204106. Epub 2009 Feb 18

    Article  CAS  PubMed  Google Scholar 

  • Ansar W, Mukhopadhyay S, Habib SK, Basu S, Saha B, Sen AK, Mandal CN, Mandal C (2009b) Disease-associated glycosylated molecular variants of human C-reactive protein activate complement-mediated hemolysis of erythrocytes in tuberculosis and Indian visceral leishmaniasis. Glycoconj J 26(9):1151–69. doi:10.1007/s10719-009-9236-y

    Article  CAS  PubMed  Google Scholar 

  • Ansari NA, Sharma P, Salotra P (2007) Circulating nitric oxide and C-reactive protein levels in Indian kala azar patients: correlation with clinical outcome. Clin Immunol 122(3):343–348. Epub 2007 Jan 9

    Article  CAS  PubMed  Google Scholar 

  • Ansari NA, Kumar R, Raj A, Salotra P (2008) Elevated levels of IgG3 and IgG4 subclass in paediatric cases of kala azar. Parasite Immunol 30(8):403–409. doi:10.1111/j.1365-3024.2008.01036.x

    Article  CAS  PubMed  Google Scholar 

  • Arik Yilmaz E, Tanir G, Tuygun N, Taylan Ozkan A (2009) Visceral leishmaniasis in 13 pediatric patients in Turkey: treatment experience. Turkiye Parazitol Derg 33(4):259–262

    PubMed  Google Scholar 

  • Ballou SP, Lozanski G (1992) Induction of inflammatory cytokine release from cultured human monocytes by C-reactive protein. Cytokine 4:361–368

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay SM, Mandal C (2008) Targeting glycoproteins or glycolipids and their metabolic pathways for antiparasite therapy. Adv Exp Med Biol 625:87–102

    Article  PubMed  Google Scholar 

  • Bandyopadhyay S, Chatterjee M, Das T, Bandyopadhyay S, Sundar S, Mandal C (2004) Antibodies directed against O-acetylated sialoglycoconjugates accelerate complement activation in Leishmania donovani promastigotes. J Infect Dis 190(11):2010–2019, Epub 2004 Nov 3

    Article  CAS  PubMed  Google Scholar 

  • Bee A, Culley FJ, Alkhalife IS, Bodman-Smith KB, Raynes JG, Bates PA (2001) Transformation of Leishmania mexicana metacyclic promastigotes to amastigote-like forms mediated by binding of human C-reactive protein. Parasitology 122:521–529

    Article  CAS  PubMed  Google Scholar 

  • Bern C, Haque R, Chowdhury R, Ali M, Kurkjian KM, Vaz L, Amann J, Wahed MA, Wagatsuma Y, Breiman RF, Williamson J, Secor WE, Maguire JH (2007) The epidemiology of visceral leishmaniasis and asymptomatic leishmanial infection in a highly endemic Bangladeshi village. Am J Trop Med Hyg 76(5):909–914

    PubMed  Google Scholar 

  • Beverley SM, Turco SJ (1998) Lipophosphoglycan (LPG) and the identification of virulence genes in the protozoan parasite Leishmania. Trends Microbiol 6:35–40

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj D, Stein MP, Volzer M, Mold C, Du Clos TW (1999) The major receptor for C-reactive protein on leukocytes is Fcγ receptor II. J Exp Med 190:585–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharadwaj D, Mold C, Markham E, Du Clos TW (2001) Serum amyloid P component binds to Fc gamma receptors and opsonizes particles for phagocytosis. J Immunol 166:6735–6741

    Article  CAS  PubMed  Google Scholar 

  • Bodman-smith KB, Melendez AJ, Campbell I, Harrison PT, Allen JM, Raynes JG (2002a) C-reactive protein-mediated phagocytosis and phospholipase D signalling through the high-affinity receptor for immunoglobulin G (FcγRI). Immunology 107:252–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodman-Smith KB, Mbuchi M, Culley FJ, Bates PA, Raynes JG (2002b) C-reactive protein-mediated phagocytosis of Leishmania donovani promastigotes does not alter parasite survival or macrophage responses. Parasite Immunol 24(9–10):447–454

    Article  CAS  PubMed  Google Scholar 

  • Bora D (1999) Epidemiology of visceral leishmaniasis in India. Natl Med J India 12(2):62–68

    CAS  PubMed  Google Scholar 

  • Bouree P, Botterel F, Lancon A (2000) Study of protein profile in the visceral leishmaniasis. J Egypt Soc Parasitol 30(3):885–893

    CAS  PubMed  Google Scholar 

  • Bredt DS, Synder SH (1994) Nitric oxide: a physiologic messenger molecule. Ann Rev Biochem 63:175–195

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty R, Chakraborty P, Basu MK (1998) Macrophage mannosyl fucosyl receptor: its role in invasion of virulent and avirulent L. donovani promastigotes. Biosci Rep 18(3):129–142

    Article  CAS  PubMed  Google Scholar 

  • Chang KP (1981) Leishmania donovani-macrophage binding mediated by surface glycoproteins/antigens: characterization in vitro by a radioisotopic assay. Mol Biochem Parasitol 4(1–2):67–76

    Article  CAS  PubMed  Google Scholar 

  • Channon JY, Roberts MB, Blackwell JM (1984) A study of the differential respiratory burst activity elicited by promastigotes and amastigotes of Leishmania donovani in murine resident peritoneal macrophages. Immunology 53:345–355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, Alvar J, Boelaert M (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5(11):873–882

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee M, Chava AK, Kohla G, Pal S, Merling A, Hinderlich S, Unger U, Strasser P, Gerwig GJ, Kamerling JP, Vlasak R, Crocker PR, Schauer R, Schwartz-Albiez R, Mandal C (2003) Identification and characterization of adsorbed serum sialoglycans on Leishmania donovani promastigotes. Glycobiology 13:351–361

    Article  CAS  PubMed  Google Scholar 

  • Chava AK, Chatterjee M, Gerwig GJ, Kamerling JP, Mandal C (2004) Identification of sialic acids on Leishmania donovani amastigotes. Biol Chem 385:59–66

    Article  CAS  PubMed  Google Scholar 

  • Chava AK, Chatterjee M, Mandal C (2005) O-acetyl sialic acids in parasitic diseases. In: Yarema KJ (ed) Handbook of carbohydrate engineering. Chapter 3. Taylor and Francis Group, book division, Florida, pp 71–86 and references therein

    Google Scholar 

  • Culley FJ, Thomson M, Raynes JG (1997) C-reactive protein increases C3 deposition on Leishmania donovani promastigotes in human serum. Biochem Soc Trans 25(2):286S

    Article  CAS  PubMed  Google Scholar 

  • Culley FJ, Harris RA, Kaye PM, McAdam PWJ, Raynes JG (1996) C-reactive protein binds to a novel ligand on Leishmania donovani and increases uptake into human macrophages. J Immunol 156(12):4691–4696

    CAS  PubMed  Google Scholar 

  • Culley FJ, Bodman-Smith KB, Ferguson MAJ, Nikolaev AV, Shantilal N, Raynes JG (2000) C-reactive protein binds to phosphorylated carbohydrates. Glycobiology 10(1):59–65, And references therein

    Article  CAS  PubMed  Google Scholar 

  • Das T, Sen A, Kempf T, Pramanik SR, Mandal C, Mandal C (2003) Induction of glycosylation in human C-reactive protein under different pathological conditions. Biochem J 373(Pt 2):345–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das T, Mandal C, Mandal C (2004a) Variations in binding characteristics of glycosylated human C-reactive proteins in different pathological conditions. Glycoconj J 20(9):537–543

    Article  CAS  PubMed  Google Scholar 

  • Desjeux P (1999) Global control and Leishmania HIV co-infection. Clin Dermatol 17:317–325. [PubMed]

    Article  CAS  PubMed  Google Scholar 

  • Desjeux P (2001) The increase in risk factors for leishmaniasis worldwide. Trans R Soc Trop Med Hyg 95:239–243. [PubMed]

    Article  CAS  PubMed  Google Scholar 

  • Dortay H, Schmöckel SM, Fettke J, Mueller-Roeber B (2011) Expression of human c-reactive protein in different systems and its purification from Leishmania tarentolae. Protein Expr Purif 78(1):55–60. doi:10.1016/j.pep.2011.03.010. Epub 2011 Apr 1

    Article  CAS  PubMed  Google Scholar 

  • Du Clos TW (2000) Function of C-reactive protein. Ann Med 32:274–278

    Article  PubMed  Google Scholar 

  • Galve-de Rochemonteix B, Wiktorowicz K, Kushner I, Dayer JM (1993) C-reactive protein increases production of IL-1 alpha, IL-1 beta, and TNF-alpha, and expression of mRNA by human alveolar macrophages. J Leukoc Biol 53:439–445

    CAS  PubMed  Google Scholar 

  • Ganguly S, Das NK, Barbhuiya JN, Chatterjee M (2010) Post-kala-azar dermal leishmaniasis – an overview. Int J Dermatol 49(8):921–931. doi:10.1111/j.1365-4632.2010.04558.x

    Article  CAS  PubMed  Google Scholar 

  • Gardinassi LG, Dotz V, Hipgrave Ederveen A, de Almeida RP, Nery Costa CH, Costa DL, de Jesus AR, Mayboroda OA, Garcia GR, Wuhrer M, de Miranda Santos IK (2014) Clinical severity of visceral leishmaniasis is associated with changes in immunoglobulin g fc N-glycosylation. MBio 5(6):e01844. doi:10.1128/mBio.01844-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasim S, Theander TG, ElHassan AM (2000) High levels of C-reactive protein in the peripheral blood during visceral leishmaniasis predict subsequent development of post kala-azar dermal leishmaniasis. Acta Trop 75(1):35–38

    Article  CAS  PubMed  Google Scholar 

  • Ghalib HW, Whittle JA, Kubin M et al (1995a) IL −12 enhances Th1-type responses in human Leishmania donovani infections. J Immunol 154:4623–4629

    CAS  PubMed  Google Scholar 

  • Ghalib HW, Piuvezam MR, Skeiky YA et al (1995b) Interleukin 10 production correlates with pathology in human Leishmania donovani infections. J Clin Invest 92:324–329

    Article  Google Scholar 

  • Gotschlich EC, Edelman GM (1967) Binding properties and specificity of C-reactive protein. Proc Natl Acad Sci U S A 57:706–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy RA, Bolosevic M (1993) Comparson of receptors required for entry of Leishmania major amastigotes by macrophages. Infect Immunol 61:1553–1558

    CAS  Google Scholar 

  • Herwaldt BL (2001) Leishmaniasis. In: Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL, Jameson JL (eds) Harrison's principles of internal medicine. McGraw Hill Companies, Inc., New York, pp 1213–1218

    Google Scholar 

  • Ibba F, Rossi G, Meazzi S, Giordano A, Paltrinieri S (2014) Serum concentration of high density lipoproteins (HDLs) in leishmaniotic dogs. Res Vet Sci 98:89–91. doi:10.1016/j.rvsc.2014.11.011. pii: S0034-5288(14)00312-9

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MH, Volanakis JE (1974) Interactions of C-reactive protein complexes with the complement system, I: consumption of human complement associated with the reaction of C-reactive protein with pneumococcal C-polysaccharide and with the choline phosphatides, lecithin and sphingomyelin. J Immunol 112:2135–2147

    CAS  PubMed  Google Scholar 

  • Kaul P, Malla N, Kaur S, Mahajan RC, Ganguly NK (2000) Evaluation of a 200-kDa amastigote-specific antigen of L. donovani by enzyme-linked immunosorbent assay (ELISA) for the diagnosis of visceral leishmaniasis. Trans R Soc Trop Med Hyg 94:173–175

    Article  CAS  PubMed  Google Scholar 

  • Kausalya S, Kaur S, Malla N, Ganguly NK, Mahajan RC (1996) Microbicidal mechanisms of liver macrophages in experimental visceral leishmaniasis. APMIS 104:171–175

    Article  CAS  PubMed  Google Scholar 

  • Kelm S, Schauer R (1997) Sialic acids in molecular and cellular interactions. Int Rev Cytol 175:137–240

    Article  CAS  PubMed  Google Scholar 

  • Khorvash F, Naeini AE, Behjati M, Abdi F (2011) Visceral leishmaniasis in a patient with cutaneous lesions, negative Leishman-Donovan bodies and immunological test: A case report. J Res Med Sci 16(11):1507–1510

    PubMed  PubMed Central  Google Scholar 

  • Kima PE, Constant SL, Hannum L, Colmenares M, Lee KS, Haberman AM, Shlomchik MJ, McMahon-Pratt D (2000) Internalisation of Leishmania mexicana complex amastigotes via the Fc receptor is required to sustain infection in murine cutaneous leishmaniasis. J Exp Med 191:1063–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leishman WB (2006) On the possibility of the occurrence of trypanosomiasis in India. 1903. Indian J Med Res 123(3):1252–1254; discussion 79

    CAS  PubMed  Google Scholar 

  • Lodge R, Diallo TO, Descoteaux A (2006) Leishmania donovani lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane. Cell Microbiol 8:1922–1931

    Article  CAS  PubMed  Google Scholar 

  • Malla N, Mahajan RC (2006) Pathophysiology of visceral leishmaniasis – some recent concepts. Indian J Med Res 123:267–274

    CAS  PubMed  Google Scholar 

  • Marnell LL, Mold C, Volzer MA, Burlingame RW, Du Clos TW (1995) C-reactive protein binds to FcYRI in transfected COS cells. J Immunol 155:2185–2193

    CAS  PubMed  Google Scholar 

  • Marnell L, Mold C, Du Clos TW (2005) C-reactive protein: ligands, receptors and role in inflammation. Clin Immunol 117:104–111

    Article  CAS  PubMed  Google Scholar 

  • Marsden PD, Jones TC (1985) Clinical manifestations, diagnosis and treatment of leishmaniasis. In: Chang KP, Bray RS (eds) Leishmaniasis. Elsevier Science Publishers, Amsterdam, pp 183–198

    Google Scholar 

  • Martinez-Subiela S, Strauss-Ayali D, Cerón JJ, Baneth G (2011) Acute phase protein response in experimental canine leishmaniasis. Vet Parasitol 180(3–4):197–202. doi:10.1016/j.vetpar.2011.03.032. Epub 2011 Mar 31

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Subiela S, García-Martínez JD, Tvarijonaviciute A, Tecles F, Caldin M, Bernal LJ, Cerón JJ (2013) Urinary C reactive protein levels in dogs with leishmaniasis at different stages of renal damage. Res Vet Sci 95(3):924–929. doi:10.1016/j.rvsc.2013.07.002. Epub 2013 Aug 6

    Article  PubMed  CAS  Google Scholar 

  • McConville MJ, Turco SJ, Ferguson MA, Sacks DL (1992) Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage. EMBO J 11(10):3593–3600. Biomedica. 2002 Jun;22(2):167–177

    Google Scholar 

  • Mold C, Du Clos TW (2006) C-reactive protein increases cytokine responses to Streptococcus pneumoniae through interactions with Fc gamma receptors. J Immunol 176(12):7598–7604

    Article  CAS  PubMed  Google Scholar 

  • Mondal D, Khan MG (2011) Recent advances in post-kala-azar dermal leishmaniasis. Curr Opin Infect Dis 24(5):418–422. doi:10.1097/QCO.0b013e32834a8ba1

    Article  CAS  PubMed  Google Scholar 

  • Mortensen RF, Zhong W (2000) Regulation of phagocytic leukocyte activities by C reactive protein. J Leukoc Biol 67:495–500

    CAS  PubMed  Google Scholar 

  • Mortensen RF, Osmand AP, Lint TF, Gewurz H (1976) Interaction of C-reactive protein with lymphocytes and monocytes: complement-dependent adherence and phagocytosis. J Immunol 117(3):774–781

    CAS  PubMed  Google Scholar 

  • Mosser DM, Brittingham A (1997) Leishmania, macrophages and complement: a tale of subversion and expression. Parasitology 115:S9–S23

    Article  PubMed  Google Scholar 

  • Mosser DM, Edelson PJ (1984) Activation of the alternative complement pathway by Leishmania promastigotes; parasite lysis and attachment to macrophages. J Immunol 132(3):1501–1505

    CAS  PubMed  Google Scholar 

  • Mosser DM, Rosenthal LA (1997) Leishmania-macrophage interactions: multiple receptors, multiple ligands and diverse cellular responses. Semin Cell Biol 4:315–322

    Article  Google Scholar 

  • Mukhopadhyay S, Mandal C (2006) Glycobiology of Leishmania donovani. Indian J Med Res 123:203–220

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay D, Dalton JE, Kaye PM, Chatterjee M (2014) Post kala-azar dermal leishmaniasis: an unresolved mystery. Trends Parasitol 30(2):65–74. doi:10.1016/j.pt.2013.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Muskus CE, Marín VM (2002) Metacyclogenesis: a basic process in the biology of Leishmania. Biomedica 22(2):167–177

    Article  PubMed  Google Scholar 

  • Oliveira EB, Gotschlich EC, Liu T-Y (1979) Primary structure of human C-reactive protein. J Biol Chem 254(2):489–502

    CAS  PubMed  Google Scholar 

  • Oztoprak N, Aydemir H, Pişkin N, Seremet Keskin A, Araslı M, Gökmen A, Celebi G, Külekçi Uğur A, Taylan Özkan A (2010) An adult case of visceral leishmaniasis in a province of Black-Sea region, Turkey. Mikrobiyol Bul 44(4):671–677

    PubMed  Google Scholar 

  • Pal S, Chatterjee M, Bhattacharya DK, Bandhyopadhyay S, Mandal C (2000) Identification and purification of cytolytic antibodies directed against O-acetylated sialic acid in childhood acute lymphoblastic leukemia. Glycobiology 10(6):539–549

    Article  CAS  PubMed  Google Scholar 

  • Paltrinieri S, Ravicini S, Rossi G, Roura X (2010) Serum concentrations of the derivatives of reactive oxygen metabolites (d-ROMs) in dogs with leishmaniosis. Vet J 186(3):393–395. doi:10.1016/j.tvjl.2009.08.019. Epub 2009 Sep 15

    Article  CAS  PubMed  Google Scholar 

  • Peters C, Aebischer A, Stiehorf YD, Fuchs M, Overath P (1995) The role of macrophage receptors in adhesion and uptake of Leishmania Mexicana amastigotes. J Cell Sci 108:3715–3724

    CAS  PubMed  Google Scholar 

  • Pritchard DG, Volanakis JE (1985) Slutsky GM and Greenblatt CL C-reactive protein binds leishmanial excreted factors. Proc Soc Exp Biol Med 178(3):500–503

    Article  CAS  PubMed  Google Scholar 

  • Proudfoot L, O’Donnell CA, Liew FY (1995) Glycoinositolphospholipids of Leishmania major inhibit nitric oxide synthesis and reduce leishmaniacidal activity in murine macrophages. Eur J Immunol 25:745–750

    Article  CAS  PubMed  Google Scholar 

  • Ratnam S, Mookerjea S (1998) The regulation of superoxide generation and nitric oxide synthesis by C-reactive protein. Immunology 94:560–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ready PD (2014) Epidemiology of visceral leishmaniasis. Clin Epidemiol 6:147–154. doi:10.2147/CLEP.S44267. eCollection 2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Remaley AT, Kuhns DB, Basford RE, Glew RH, Kaplan SS (1984) Leishmanial phosphatase blocks neutrophil O-2 production. J Biol Chem 259(18):11173–11175

    CAS  PubMed  Google Scholar 

  • Rittig MG, Bogdan C (2000) Leishmania–host-cell interaction: complexities and alternative views. Parasitol Today 16:292–297

    Article  CAS  PubMed  Google Scholar 

  • Rivzi FS, Ouaissi MA, Marty B, Santoro F, Capron A (1988) The major surface protein of Leishmania promastigotes is a fibronectin -like molecule. Eur J Immunol 18:473–476

    Article  Google Scholar 

  • Rossi G, Ibba F, Meazzi S, Giordano A, Paltrinieri S (2014) Paraoxonase activity as a tool for clinical monitoring of dogs treated for canine leishmaniasis. Vet J 199(1):143–149. doi:10.1016/j.tvjl.2013.10.007. Epub 2013 Oct 11

    Article  CAS  PubMed  Google Scholar 

  • Sharma U, Singh S (2009) Immunobiology of leishmaniasis. Indian J Exp Biol 47:412–423

    CAS  PubMed  Google Scholar 

  • Sharma V, Chatterjee M, Mandal C, Sen S, Basu D (1998) Rapid diagnosis of Indian visceral leishmaniasis using achatinin H, a 9-O-acetylated sialic acid binding lectin. Am J Trop Med Hyg 58:551–554

    CAS  PubMed  Google Scholar 

  • Shukla AK, Schauer R (1982) Fluorimetric determination of unsubstituted and 9(8)-O-acetylated sialic acids in erythrocyte membranes. Hoppe Seylers Z Physiol Chem 363(3):255–262

    Article  CAS  PubMed  Google Scholar 

  • Silverstein SC (1977) Endocytic uptake of particles by mononuclear phagocytes and the penetration of obligate intracellular parasites. Am J Trop Med Hyg 26:161–169

    CAS  PubMed  Google Scholar 

  • Singh S, Sharma U, Mishra J (2011) Post-kala-azar dermal leishmaniasis: recent developments. Int J Dermatol 50(9):1099–1108. doi:10.1111/j.1365-4632.2011.04925.x

    Article  PubMed  Google Scholar 

  • Sundar S, Rai M (2002) Advances in the treatment of leishmaniasis. Curr Opin Infect Dis 15(6):593–598

    Article  CAS  PubMed  Google Scholar 

  • Sundar S, Singh A, Chakravarty J, Rai M (2015) Efficacy and safety of miltefosine in treatment of post-kala-azar dermal leishmaniasis. ScientificWorldJournal 2015:414378. doi:10.1155/2015/414378. Epub 2015 Jan 1

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunder S, Pai K, Sahu M, Kumar V, Murray HW (2002) Immunochromatographic strip-test detection of anti-K39 antibody in Indian visceral leishmaniasis. Ann Trop Med Parasitol 96:19–23

    Article  Google Scholar 

  • Suresh MV, Singh SK, Ferguson DA Jr, Agrawal A (2007) Human C-reactive protein protects mice from Streptococcus pneumoniae infection without binding to pneumococcal C-polysaccharide. J Immunol 178(2):1158–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szalai AJ, McCrory MA (2002) Varied biologic functions of C-reactive protein: lessons learned from transgenic mice. Immunol Res 26(1–3):279–287

    Article  CAS  PubMed  Google Scholar 

  • Szalai AJ, Briles DE, Volanakis JE (1995) Human C-reactive protein is protective against fatal Streptococcus pneumoniae infection in transgenic mice. J Immunol 155(5):2557–2563

    CAS  PubMed  Google Scholar 

  • Szalai AJ, Alarcón GS, Calvo-Alén J, Toloza SM, McCrory MA, Edberg JC, McGwin G Jr, Bastian HM, Fessler BJ, Vilá LM, Kimberly RP, Reveille JD (2005a) Systemic lupus erythematosus in a multiethnic US Cohort (LUMINA). XXX: association between C-reactive protein (CRP) gene polymorphisms and vascular events. Rheumatology (Oxford) 44(7):864–868. Epub 2005 Mar 29

    Article  CAS  Google Scholar 

  • Szalai AJ, Wu J, Lange EM, McCrory MA, Langefeld CD, Williams A, Zakharkin SO, George V, Allison DB, Cooper GS, Xie F, Fan Z, Edberg JC, Kimberly RP (2005b) Single-nucleotide polymorphisms in the C-reactive protein (CRP) gene promoter that affect transcription factor binding, alter transcriptional activity, and associate with differences in baseline serum CRP level. J Mol Med (Berl) 83(6):440–447. Epub 2005 Mar 19

    Article  CAS  Google Scholar 

  • Thakur CP (2000) Socioeconomics of visceral leishmaniasis in Bihar (India). Trans R Soc Trop Med Hyg 94:156–157. [PubMed]

    Article  CAS  PubMed  Google Scholar 

  • Thomas-Rudolph D, Du Clos TW, Snapper CM, Mold C (2007) C-reactive protein enhances immunity to Streptococcus pneumoniae by targeting uptake to Fc gamma R on dendritic cells. J Immunol 178(11):7283–7291

    Article  CAS  PubMed  Google Scholar 

  • Varki A (2008) Multiple changes in sialic acid biology during human evolution. Glycoconj J 26:231–245

    Article  PubMed  CAS  Google Scholar 

  • Volanakis JE (2001) Human C-reactive protein: expression, structure, and function. Mol Immunol 38:189–197

    Article  CAS  PubMed  Google Scholar 

  • Wasunna KM, Raynes JG, Were JB, Muigai R, Sherwood J, Gachihi G, Carpenter L, McAdam KP (1995) Acute phase protein concentrations predict parasite clearance rate during therapy for visceral leishmaniasis. Trans R Soc Trop Med Hyg 89(6):678–681

    Article  CAS  PubMed  Google Scholar 

  • Wilson ME, Pearson RD (1986) Evidence that Leishmania donovani utilises a mannose receptor on human mononuclear phagocytes to establish intracellular infection. J Immunol 136:4681–4688

    CAS  PubMed  Google Scholar 

  • Wilson ME, Pearson RD (1988) Roles of CR3 and mannose receptors in the attachment and ingestion of Leishmania donovani by human mononuclear phagocytes. Infect Immun 56:363–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson ME, Sandor M, Blum AM et al (1996) Local suppression of IFN-gamma in hepatic granulomas correlates with tissue-specific replication of Leishmania chagasi. J Immunol 156:2231–2239

    CAS  PubMed  Google Scholar 

  • World Health Organization (1995) Report on the consultative meeting on Leishmania/HIV Co-infection, Rome, 6–7 September 1994. Document WHO/LEISH/ 95.35. WHO, Geneva

    Google Scholar 

  • World Health Organization Control of the leishmaniasis: report of a meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, March 22–26, 2010. World Health Organ Tech Rep Ser 949:1–186

    Google Scholar 

  • Zijlstra EE, Musa AM, Khalil EAG, El Hassan IM, El-Hassan AM (2003) Post-kala-azar dermal leishmaniasis. Lancet Infect Dis 3(2):87–98. doi:10.1016/s1473-3099(03)00517-6

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Ansar, W., Ghosh, S. (2016). Role of CRP in Leishmaniasis. In: Biology of C Reactive Protein in Health and Disease. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2680-2_8

Download citation

Publish with us

Policies and ethics