• Ramakrishna Sompalaym
  • Kokilamani A. Lingarajaiah
  • Raju G. Narayanappa
  • Jayaprakash
  • Venkatachalaiah Govindaiah


Amongst the sap-sucking hemipteran scale insects, the pseudococcids (mealybugs) deserve a special place in pursuance of implying a peculiar situation in which sex determining mechanism and of the prevalence of puzzling meiotic chromosome behaviour. Pseudococcids represent sex-specific heterochromatization of the entire set of chromosome and transcriptional silencing of all male-oriented chromosome systems. In recent years, there have been significant contributions made in towards current understandings of mealybug chromosome systems essentially oriented upon molecular level progression of “genomic imprinting” phenomenon. This report will present available information pertaining to the types of cytological changes that occur at the molecular level organization and how such kind of heterochromatin status might be maintained. As this apparent from the foregoings based on the mealybug chromosomes, the role of constitutively heterochromatic zones in the genome has been defined facilitatively by means of specialized classical staining protocol. It seems evident enough to point out that the explicit nature of facultative heterochromatinization programme (formulated by three-pronged approach: the DNA sequences, the biochemical milieu and the chromatin remodeling) for chromatin-based differences that prevail in the maternal and paternal genomes. It is also apparent that the mealybug system may offer providing as a robust genetic example for the stable maintenance of chromatin code through to mitosis and meiosis.


Histone Modification Scale Insect Meiotic Drive Methylation Process Holocentric Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achwal CW, Chandra HS (1982) A sensitive immunochemical method for detection of 5mC in DNA fragments. FEBS Lett 150:469–472PubMedCrossRefGoogle Scholar
  2. Achwal CW, Iyer CA, Chandra HS (1983) Immunochemical evidence for the presence of 5mC, 6mC and 7mG in human, Drosophila and mealybug DNA. FEBS Lett 158:353–358PubMedCrossRefGoogle Scholar
  3. Achwal CW, Ganguly P, Chandra HS (1984) Estimation of the amount of 5 –methylcytosine in Drosophila melanogaster by photoacoustic spectroscopy. EMBO J 3(2):263–266PubMedCentralPubMedGoogle Scholar
  4. Baer D (1965) Asynchronous replication of DNA in a heterochromatic set of chromosomes in Pseudococcus obscurus. Genetics 52:275–285PubMedCentralPubMedGoogle Scholar
  5. Bell JT, Spector TD (2011) A twin approach to unraveling epigenetic. Trends Genet 27(3):116–125PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21PubMedCrossRefGoogle Scholar
  7. Bongiorni S, Prantera G (2003) Imprinted facultative heterochromatization in mealybugs. Genetica 117:271–279PubMedCrossRefGoogle Scholar
  8. Bongiorni S, Cintio O, Prantera G (1999) The relationship between DNA methylation and chromosome imprinting in the Coccid Planococcus citri. Genetics 151:1471–1478PubMedCentralPubMedGoogle Scholar
  9. Bongiorni S, Pasqualini B, Taranta M, Singh B, Prantera G (2007) Epigenetic regulation of facultative heterochromatinization in Planococcus citri via the Me(3)K9H3-HP1-Me(3)K20H4 pathway. J Cell Sci 120:1072–1080PubMedCrossRefGoogle Scholar
  10. Bongiorni S, Mazzuoli M, Masci S, Prantera G (2001) Facultative heterochromatization in parahaploid male mealybugs: involvement of a heterochromatin-associated protein. Development 128:3809–3817Google Scholar
  11. Bongiorni S, Fiorenzo P, Pippoletti D, Prantera G (2004) Inverted meiosis and meiotic drive in mealybugs. Chromosoma 112:331–341PubMedCrossRefGoogle Scholar
  12. Bongiorni S, Pugnali M, Volpi S, Bizzaro D, Singh B, Prantera G (2009) Epigenetic marks for chromosome imprinting during spermatogenesis in coccoids. Chromosoma 118:501–512PubMedCrossRefGoogle Scholar
  13. Brown SW (1958) The chromosomes of an Orthezia species (Coccoidea- Homoptera). Cytologia 23:429–434CrossRefGoogle Scholar
  14. Brown SW (1959) Lecanoid chromosome behavior in three more families of the Coccoidea (Homoptera). Chromosoma 10:278–300CrossRefGoogle Scholar
  15. Brown SW (1961) Fracture and fusion of coccid chromosomes. Nature 191:1419–1420PubMedCrossRefGoogle Scholar
  16. Brown SW (1963) The Comstockiella system of chromosome behavior in the armored scale insects (Coccoidea: Diaspididae). Chromosoma 14:360–406CrossRefGoogle Scholar
  17. Brown SW (1964) Automatic frequency response in evolution of male haploidy and other coccid chromosome systems. Genetics 49:797–817PubMedCentralPubMedGoogle Scholar
  18. Brown SW (1965) Chromosomal survey of the armored and palm scale insects (Coccoidea: Diaspididae and Phoenicococcidae). Hilgardia 36:189–294Google Scholar
  19. Brown SW (1966) Heterochromatin. Science 151:417–425PubMedCrossRefGoogle Scholar
  20. Brown SW (1969) Developmental control of heterochromatization in coccoids. Genetics 61(No. 1, part 2, Suppl):191–198Google Scholar
  21. Brown SW (1977) Adaptive status and genetic regulation in major evolutionary changes of coccid chromosome systems. Nucleus 20:145–157Google Scholar
  22. Brown SW, Bennett FD (1957) On sex determination in the Diaspine scale Pseudaulacaspis pentagona (Targ) (Coccoidea). Genetics 42:510–523PubMedCentralPubMedGoogle Scholar
  23. Brown SW, Chandra HS (1977) Chromosome imprinting and the differential regulation of homologous chromosomes. In: Goldstein L, Prescott DM (ed) Cell biology a comprehensive treatise, Academic press, New York, vol 1, pp 109–189Google Scholar
  24. Brown SW, Cleveland C (1968) Meiosis in the male of Puto albicans (Coccoidea-Homoptera). Chromosoma 24:210–232PubMedCrossRefGoogle Scholar
  25. Brown SW, Nelson-Rees WA (1961) Radiation analysis of a lecanoid genetic system. Genetics 46:983–1007PubMedCentralPubMedGoogle Scholar
  26. Brown SW, Nur U (1964) Heterochromatic chromosomes in Coccoids. Science 145:130–136PubMedCrossRefGoogle Scholar
  27. Brown SW, Weigmann LI (1969) Cytogenetics of the mealybug Planococcus citri (Risso). Chromosoma 28:255–279CrossRefGoogle Scholar
  28. Brown CJ, Lafreniere RG, Powers VE, Sebastio G, Balabio A, Pettigrew AL, Ledbetter DH, Levy E, Craig IW, Willard HF (1991) Localization of the X inactivation centre on the human X chromosome in Xq13. Nature 349:82–84PubMedCrossRefGoogle Scholar
  29. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Inter science, New YorkGoogle Scholar
  30. Buglia GL, Ferraro M (2004) Germline cyst development and imprinting in male mealybug Planococcus citri. Chromosoma 113(6):284–294PubMedCrossRefGoogle Scholar
  31. Buglia GL, Predazzi V, Ferraro M (1999) Cytosine methylation is not involved in the heterochromatization of the paternal genome of mealybug Planococcus citri. Chromosom Res 6:1–3Google Scholar
  32. Buglia GL, Dionisi D, Ferraro M (2009) The amount of heterochromatic proteins in the egg is correlated with sex-determination in Planococcus citri (Homoptera: Coccoidea). Chromosoma 118(6):737–746PubMedCrossRefGoogle Scholar
  33. Bull JJ (1983) The evolution of sex determining mechanisms. Benjamin Cummings, Menlo ParkGoogle Scholar
  34. Cairns BR (2007) Chromatin remodeling! Insights and intrigue from single molecule studies. Nat Struct Mol Biol 14(1):1989–1996Google Scholar
  35. Camacho JPM, Belda J, Cabrero J (1985) Meiotic behaviour of the holocentric chromosomes of Nezara viridula (Insecta: Heteroptera) analyzed by C-banding and silver impregnation. Can J Genet Cytol 27:490–497CrossRefGoogle Scholar
  36. Carter W (1962) Insects in relation to plant diseases. Interscience Publishers/Willey, NewYork, pp 247–265Google Scholar
  37. Cattanach BM (1974) Position effect variegation in the mouse. Genet Res 23:291–306PubMedCrossRefGoogle Scholar
  38. Chadwick BP, Willard HF (2004) Multiple spatially distinct types of facultative heterochromatin of the human inactive X-chromosome. PNAS 101:17450–17455PubMedCentralPubMedCrossRefGoogle Scholar
  39. Chandra HS (1962) Inverse meiosis in triploid females of the mealybug, Planococcus citri. Genetics 47:1441–1454PubMedCentralPubMedGoogle Scholar
  40. Chandra HS (1963a) Cytogenetic studies following high dosage paternal irradiation in the mealybug. Planococcus citri I. Cytology of X1 females and the problem of lecanoid sex determination. Chromosoma 14:310–329CrossRefGoogle Scholar
  41. Chandra HS (1963b) Cytogenetic studies following high dosage paternal irradiation in the mealybug. Planococcus citri II. Cytology of X1 females and the problem of lecanoid sex determination. Chromosoma 14:330–346CrossRefGoogle Scholar
  42. Chandra HS (1971) Inactivation of whole chromosomes in mammalian X-chromosomes. Nature 253:165–168CrossRefGoogle Scholar
  43. Chandra HS, Brown SW (1973) Regulation of X-chromosome inactivation in mammals. Genetics 78:342–349Google Scholar
  44. Chandra HS, Brown SW (1975) Chromosome imprinting and the mammalian X chromosome. Nature 253:165–168PubMedCrossRefGoogle Scholar
  45. Chauhan NS (1970) Genetic evidence of an unorthodox chromosomal system in the lac insect, Kerria lacca (Kerr). Genet Res 16:341–344PubMedCrossRefGoogle Scholar
  46. Chauhan NS (1977) Gene expression and transmission in Kerria lacca (Kerr). Heredity 38:155–159CrossRefGoogle Scholar
  47. Cook LG (2000) Extraordinary and extensive karyotypic variation: A 48-fold range in chromosome number in the gall-inducing scale insect Apiomorpha (Hemiptera: Eriococcidae). Genome 43:255–263PubMedCrossRefGoogle Scholar
  48. Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Wu R, Gilbert DM, Shi W, Fundele R, Morrison H, Jeppesen P, Singh PB (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111:22–36PubMedCrossRefGoogle Scholar
  49. D’Aiuto L, de las Heras JI, Ross A, Shen MH, Cooke H (2003) Generation of a telomere-based episomal vector. Biotechnol Prog 19:1775–1780Google Scholar
  50. De Lange T (2005) The protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110PubMedCrossRefGoogle Scholar
  51. De Robertis EM, Larrain J, Oelgeschlager M, Wessely O (2000) The establishment of Spemann’s organizer and patterning of vertebrate embryo. Nat Rev Genet 1(3):171–181PubMedCentralPubMedCrossRefGoogle Scholar
  52. Deobagkar DN, Muralidharan K, Devare SG, Kalghatgi K, Chandra HS (1982) The mealybug chromosome system I: unusual methylated bases and dinucleotides in DNA of a Planococcus species. J Biosci 4:513–526CrossRefGoogle Scholar
  53. Deobagkar DN, Shankar V, Deobagkar DD (1986) Separation of 5-methylcytosine-rich DNA using immobilized antibody. Enzyme Microb Technol 8:97–100CrossRefGoogle Scholar
  54. Devajyothi C, Brahmachari V (1989) Modulation of DNA methyl transferase during the life cycle of a Planococcus lilacinus. FEBS Lett 250:134–138CrossRefGoogle Scholar
  55. Devajyothi C, Brahmachari V (1992) Detection of CpA methylase in an insect system: characterisation and substrate specificity. Mol Cell Biochem 110:103–111PubMedCrossRefGoogle Scholar
  56. Dikshith TSS (1964) Chromosome behaviour in Laccifer lacca (Kerr) Lacciferidae-Coccoidea. Cytologia 29:337–345CrossRefGoogle Scholar
  57. Dikshith TSS (1966) Spermiogenesis in Laccifer lacca (Kerr) (Lacciferidae-Coccoidea). Cytologia 31:302–308CrossRefGoogle Scholar
  58. Drozdovsky EM (1966) On chromosomal sets in some coccoids (Homoptera: Coccoidea). Entomologicheskoe Obozrenie 45(4):712–714 [In Russian]Google Scholar
  59. Eissenberg JC, Elgin SC (2000) The HP-1 protein family: getting a grip on chromatin current opinion. Genet Dev 10:204–210CrossRefGoogle Scholar
  60. Epstein H, James TC, Singh PB (1992) Cloning and expression of Drosophila, HP-1 homologs from a mealybug, Planococcus citri. J Cell Sci 101:463–474PubMedGoogle Scholar
  61. Esteban MR, Campos MC, Perondini AL, Goday C (1997) Role of microtubules and microtubule organizing centers on meiotic chromosome elimination in Sciara ocellaris. J Cell Sci 110:721–730PubMedGoogle Scholar
  62. Fang J, Feng Q, Ketel CS, Wang H, Cao R, Xia L, Erdjudumat-Bromage H, Tempst P, Simon JS, Zhong Y (2002) Purification and functional heterochromatin of SETs a nucleosomal histone & lysine −20- specific methyl transferase. Curr Biol 12:1086–1099PubMedCrossRefGoogle Scholar
  63. Feil R, Khosla S (1999) Genomic imprinting in mammals: interplay between chromatin and DNA methylation. Trends Genet 15:431–435PubMedCrossRefGoogle Scholar
  64. Ferraro M, Buglia GL, Romano F (2001) Involvement of histone H4 acetylation in the epigenetic inheritance of different activity states of maternally and paternally derived genomes in the Planococcus citri. Chromosoma 110(2):93–101PubMedCrossRefGoogle Scholar
  65. Ferraro M, Epifani C, Bongiorni S, Nardone AM, Parodi-Delfino S, Prantera G (1998) Cytogenetic characterization of the genome of mealybug Planococcus citri (Homoptera, Coccoidea). Caryologia 51(1):37–49CrossRefGoogle Scholar
  66. Field LM (2000) Methylation and expression of amplified esterase genes in the aphid Myzus persicae (S). Biochem J 349:863–868PubMedCentralPubMedCrossRefGoogle Scholar
  67. Field LM, Lyko F, Mandrioli M, Prantera G (2004) DNA methylation in insects. Insect Mol Biol 13(2):109–115PubMedCrossRefGoogle Scholar
  68. Fire A, Xa S, Montgomery MK, Kostos SA, Driver SE, Nelin CC (1998) Potent and sporadic genetic interference by double stranded RNA in C. elegans. Nature 391:306–311CrossRefGoogle Scholar
  69. Frydrychová R, Grossmann P, Trubac P, Vítková M, Marec F (2004) Phylogenetic distribution of TTAGG telomeric repeats in insects. Genome 47(1):163–178PubMedCrossRefGoogle Scholar
  70. Gavrilov IA (2004) Taxonomic and cytogenetic studies of scale insects (Homoptera: Coccinea) of European Russia. Proc Zool Inst RAS 300:77–82Google Scholar
  71. Gavrilov IA (2007) A catalog of chromosome numbers and genetic systems of scale insects (Homoptera: Coccinea) of the world. Isr J Entomol 37:1–45Google Scholar
  72. Gavrilov IA, Trapeznikova IV (2007) Karyotypes and reproductive biology of some mealybugs (Insecta: Coccinea: Pseudococcidae). Comp Cytogenet 1(2):139–148Google Scholar
  73. Gavrilov IA, Trapeznikova IV (2010) Karyotypes of six previously unstudied European mealybugs (Homoptera: Pseudococcidae). Comp Cytogenet 4(2):203–205CrossRefGoogle Scholar
  74. Gosden RG (2002) Oogenesis as a foundation of embryogenesis. Mol Cell Endocrinol 186:149–153PubMedCrossRefGoogle Scholar
  75. Greider CW (1995) Telomerase biochemistry and regulation. Cold Spring, NewYork, (CSH Laboratory Press), pp 35–68Google Scholar
  76. Gullan PJ, Kosztarab M (1997) Adaptations in scale insects. Annu Rev Entomol 42:23–50PubMedCrossRefGoogle Scholar
  77. Hartl DL, Brown SW (1970) The origin of male haploid genetic systems and their expected sex ratio. Theor Pop Biol 1:165–190CrossRefGoogle Scholar
  78. Heitz E (1928) Das Heterochromatin der Moose I. Jahrb Wiss Bot 69:762–818Google Scholar
  79. Heitz E (1929) Heterochromatin, chromocenter, chromomere. Ber Deutsch Bot Ges 47:274Google Scholar
  80. Heitz E (1933) Die Herkunft der chromocentren. Planta 18:571–636CrossRefGoogle Scholar
  81. Hick CA, Field LM, Devousluire AL (1996) Changes in the methylation of amplied Esterase DNA during loss and reselection of insecticide resistance in Peach-Potato aphids, Myzus Persicae. Insect Biochem Mol Biol 26:41–47PubMedCrossRefGoogle Scholar
  82. Houk EJ, Griffiths GW (1980) Intracellular symbionts of the Homoptera. Annu Rev Entomol 25:161–187CrossRefGoogle Scholar
  83. Hughes-Schrader S (1935) The chromosome cycle of Phenacoccus (Coccidae). Biol Bull 69(3):62–468CrossRefGoogle Scholar
  84. Hughes-Schrader S (1944) A primitive coccid chromosome cycle in Puto sp. Biol Bull 87:167–176CrossRefGoogle Scholar
  85. Hughes-Schrader S (1948) Cytology of coccoids (Coccoidea: Homoptera). Adv Genet 2:127–203CrossRefGoogle Scholar
  86. Hughes-Schrader S, Ris H (1941) The diffuse spindle attachment of coccoids, verified by the mitotic behavior of induced chromosome fragments. J Exp Zool 87:29–456CrossRefGoogle Scholar
  87. Ishikawa H (1989) Biochemical and molecular aspects of endosymbionts in insects. Int Rev Cytol 116:1–45PubMedCrossRefGoogle Scholar
  88. Jaipuriar SK, Teotia TPS, Lakhotia SC, Chauhan NS (1985) A reinvestigation of the lecanoid chromosome system in Kerria lacca (Kerr). Cytobios 42:263–270Google Scholar
  89. Jamaluddin M, Philip M, Chandra HS (1979) A rapid and gentle method for the salt extraction of Chromatin. J Biosci 1:49–59CrossRefGoogle Scholar
  90. James TC (1937) Sex ratios and the status of the male in Pseudococcinae (Hemiptera: Coccidae). Bul Entomol Res 28:429–461CrossRefGoogle Scholar
  91. James TC (1938) The effect of the humidity of the environment on sex ratios from over-aged ova of Pseudococcus citri (Risso) (Hemiptera: Coccidae). Proc R Entomol Soc Lond: Ser A Gen Entomol 13:73–79Google Scholar
  92. Jeppesen P, Turner BM (1993) The inactive X-chromosome in female mammals is distinguished by a lack of histons H4 acetylation, a cytogenetic marker for gene expression. Cell 74:281–289PubMedCrossRefGoogle Scholar
  93. Kantheti P (1994) Studies on a female-specific cDNA clone and chromatin organization in a, Planococcus lilacinus. Ph.D thesis. IISc, BangaloreGoogle Scholar
  94. Kantheti P, Jayarama KS, Chandra HS (1996) Developmental analysis of a female-specific 16S rRNA gene from Mycetome associated endosymbionts of a mealybug, Planococcus lilacinus. Insect Biochem Mol Biol 26:997–1009PubMedCrossRefGoogle Scholar
  95. Karnik PS (1983) Correlation between phosphorylated H 1 histone and condensed chromatin in Planococcus citri. FEBS 163(1):128–130CrossRefGoogle Scholar
  96. Khosla S, Kantheti P, Brahmachari V, Chandra HS (1996) A male-specific nuclease- resistant chromatin fraction in the Planococcus lilacinus. Chromosoma 104(5):386–392PubMedCrossRefGoogle Scholar
  97. Khosla S, Augustus M, Brahmachari V (1999) Sex-specific organization of middle repetitive DNA sequences in the mealybug Planococcus lilacinus. Nucleic Acids Res 27(18):3745–3751PubMedCentralPubMedCrossRefGoogle Scholar
  98. Khosla S, Mendiratta G, Brahmachari V (2006) Genomic imprinting in the mealybugs. Cytogenet Genome Res 113:41–52PubMedCrossRefGoogle Scholar
  99. Klein AS, Echardt RA (1976) The DNA’s of the A and B chromosomes of the Pseudococcus obscurus. Chromosoma 57:333–340PubMedCrossRefGoogle Scholar
  100. Kondo T, Gullan PJ, Williams DJ (2008) Coccidology. The study of scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Revista Corpoica – Ciencia y Tecnología Agropecuaria 9(2):55–61Google Scholar
  101. Kourmouli N, Jeppesen P, Mahadevhaiah S, Burgoyne P, Wu R, Gilbert DM, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Shi W, Fundele R, Singh PB (2004) Heterochromatin and trimethylated lysine 20 of histone H4 in animals. J Cell Sci 117:2491–2501PubMedCrossRefGoogle Scholar
  102. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705PubMedCrossRefGoogle Scholar
  103. Lachner M, O’Caroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creatsa binding site for HP-1, proteins. Nature 410:116–120PubMedCrossRefGoogle Scholar
  104. Lakhotia SC (2004) Epigenetics of heterochromatin. J Biosci 29(3):219–224PubMedCrossRefGoogle Scholar
  105. Li E (2002) Chromatin modifications and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673PubMedCrossRefGoogle Scholar
  106. Li X, Ito M, Zhon F, Youngson N, Zuo X, Leder P, Ferguson Smith AC (2008) A maternal zygotic effect, Zfp57, maintains both maternal and paternal imprints. Dev Cell 15:547–557PubMedCentralPubMedCrossRefGoogle Scholar
  107. Little BA (1957) General and applied entomology, 3rd edn. Edition Harper and Row Publishers, New York, pp 165–173Google Scholar
  108. Lorick G (1970) Differential DNA synthesis in heterochromatic and euchromatic chromosome sets of Planococcus citri. Chromosoma 31:11–30CrossRefGoogle Scholar
  109. Lyon MF (1999) Imprinting and X-chromosome inactivation. Results Prob Cell Different 25:73–90CrossRefGoogle Scholar
  110. Mani MS (1989) Indian insects, 1st edn. Satish Book Enterprises, Agra, pp 103–105Google Scholar
  111. Mathur V, Mendiratta G, Ganapathi M, Kennady PK, Dwarkanath BS, Pande G, Brahmachari V (2010) An analysis of histone modifications in relation to sex-specific chromatin organization in the mealybug Maconellicoccus hirsutus. Cytogenet Genome Res 129(4):323–331PubMedCrossRefGoogle Scholar
  112. Mckenzie HL (1967) Mealybugs of California with taxonomy, biology and control of North American species ( Homoptera: Coccoidea: Pseudococcidae). University of California Press, Berkeley/Los Angeles, p 525Google Scholar
  113. Miller DR, Kosztarab M (1979) Recent advances in the study of scale insects. Annu Rev Entomol 24:1–27CrossRefGoogle Scholar
  114. Mohan KN, Chandra HS (2005) Isolation and analysis of sequences showing sex-specific cytosine methylation in the Planococcus lilacinus. Mol Gen Genomics 274(6):557–568CrossRefGoogle Scholar
  115. Mohan KN, Ray P, Chandra HS (2002) Characterization of the Planococcus lilacinus, a model organism for studying the whole chromosome imprinting and inactivation. Genet Res 79(2):111–118PubMedCrossRefGoogle Scholar
  116. Mohan KN, SandhyaRani B, Kulashrestha PS, Kadandale JS (2011) Characterisation of TTAGG telomeric repeats, their interstitial occurrence and constitutively active telomerase in the Planococcus lilacinus (Homoptera; Coccoidea). Chromosoma 120:165–175PubMedCrossRefGoogle Scholar
  117. Mohan KN, Jun G, Kadandale JS (2012) Mealybug as a model for studying responses to high doses of ionizing radiation. Curr Topics Ionizing Rad Res 6:101–116Google Scholar
  118. Moharana S (1990) Cytotaxonomy of Coccoids (Coccidea: Homoptera). In: Sixth international symposium of scale insect studies, Part II, Cracow, Poland, August 6–12. Agricultural University Press, Cracow, pp 47–54Google Scholar
  119. Munson MA, Baumann P, Clark MA, Baumann L, Moran A, Vogtlin DJ, Campbell BC (1991) Evidence for the establishment of aphid eubacterial endosymbionts in an ancestor of four aphid families. J Bacteriol 173:6321–6324PubMedCentralPubMedGoogle Scholar
  120. Munson MA, Baumann P, Moran A (1992) Phylogenetic relationships of the endosymbionts of mealybugs (Homoptera: Pseudococcidae) based on the 16s rRNA sequences. Mol. Phylogenetics and Evolution 1:26–30CrossRefGoogle Scholar
  121. Muramoto N (1980) A study of the C-banded chromosomes in some species of heteropteran insects. Proc Japan Acad Scien phys and BiolScien 56:126–130Google Scholar
  122. Nielsen SJ, Oulad-Abdelghani M, Oritz JA, Remboutsika E, Chambon P, Lesson R (2001) Heterochromatin formation in mammalian cells. Interactions between histones and HP1 proteins. Mol. Cell 7:729–731Google Scholar
  123. Nelson-Rees WA (1960) A study of sex predetermination in the mealybug Planococcus citri (Risso). J Exp Zool 144:111–137PubMedCrossRefGoogle Scholar
  124. Nokayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113CrossRefGoogle Scholar
  125. Nur U (1962a) A supernumerary chromosome with an accumulation mechanism in the lecanoid genetic system. Chromosoma 13:249–271CrossRefGoogle Scholar
  126. Nur U (1962b) Sperms, sperm bundles and fertilization in a mealybug, Pseudococcus obscurus Essig – (Homoptera: Coccoidea). J Morphol 111:173–199CrossRefGoogle Scholar
  127. Nur U (1963) Meiotic parthenogenesis and heterochromatization in a soft scale, Pulvinaria hydrangeae (Coccoidea: Homoptera). Chromosoma 14:123–139CrossRefGoogle Scholar
  128. Nur U (1966a) Harmful supernumerary chromosomes in a mealybug population. Genetics 54:1225–1238PubMedCentralPubMedGoogle Scholar
  129. Nur U (1966b) The effect of supernumerary chromosomes on the development of mealybugs. Genetics 54:1239–1249PubMedCentralPubMedGoogle Scholar
  130. Nur U (1966c) Non replication of heterochromatic chromosomes in a mealybug Planococcus citri (Coccoidea-Homoptera). Chromosoma 19:439–448CrossRefGoogle Scholar
  131. Nur U (1967) Reversal of heterochromatization and the activity of paternal chromosome set in male mealybug. Genetics 56:375–389PubMedCentralPubMedGoogle Scholar
  132. Nur U (1969) Harmful B-chromosome in a mealybug. Chromosoma 28:280–297CrossRefGoogle Scholar
  133. Nur U (1970) Translocations between euchromatic and heterochromatic chromosomes and spermatocytes lacking a heterochromatic set in male mealybugs. Chromosoma 29:42–61PubMedCrossRefGoogle Scholar
  134. Nur U (1971) Parthenogenesis in Coccoids (Homoptera). Am Zool 11:301–308CrossRefGoogle Scholar
  135. Nur U (1972) Diploid arrhenotoky and automictic thelytoky in soft scale insects (Lecaniidae: Coccoidea: Homoptera). Chromosoma 39:381–401CrossRefGoogle Scholar
  136. Nur U (1977) Maternal inheritance of enzymes in the, Pseudococcus obscurus (Homoptera). Genetics 86:149–160PubMedCentralPubMedGoogle Scholar
  137. Nur U (1980) Evolution of unusual chromosome systems in scale insects (Coccoidea: Homoptera). In: Blackman RL, Hewitt GM, Ashburner M (eds) Insect cytogenetics. Royal Entomological Society, London, pp 97–117, 278Google Scholar
  138. Nur U (1990) Heterochromatization and euchromatization of whole genome in scale insects (Coccoidea: Homoptera). Development supplement:29–34Google Scholar
  139. Nur U, Brett BLH (1985) Genotypes suppressing meiotic drive of a B-chromosome in the mealybug Planococcus obscurus. Genetics 110:73–92PubMedCentralPubMedGoogle Scholar
  140. Nur U, Brett BLH (1987) Control of meiotic drive of B-chromosomes in the mealybug, Planococcus affinis. Genetics 115:499–510PubMedCentralPubMedGoogle Scholar
  141. Nur U, Brett BLH (1988) Genotypes affecting the condensation and transmission of heterochromatic B-chromosomes in the mealybug, Planococcus affinis. Chromosoma 96:201–212CrossRefGoogle Scholar
  142. Nur U, Brown SW, Beardsley JW (1987) Evolution of chromosome number in mealybugs (Pseudococcidae: Homoptera). Genetica 74:53–60CrossRefGoogle Scholar
  143. Panzera F, Alvarez F, Sanchez-Rufas J, Pérez R, Suja JA, Scvortzoff E, Dujardin JP, Estramil E, Salvatella R (1992) C-heterochromatin polymorphism in holocentric chromosomes of Triatoma infestans (Hemiptera: Reduviidae). Genome 35(6):1068–1074CrossRefGoogle Scholar
  144. Papeschi AG (1998) C-banding and DNA content in these species of Belastoma (Heteroptera) with large differences in chromosome size and number. Genetica 76:43–51CrossRefGoogle Scholar
  145. Parida BB, Moharana S (1982) Studies on the chromosome constitution in 42 species of scale insects (Coccoidea: Homoptera) from India. Chromosome Information Service 32:18–20Google Scholar
  146. Pérez R, Panzera F, Page J, Suja JA, Rufas JS (1997) Meiotic behaviour of holocentric chromosomes: Orientation and segregation of autosomes in Triatoma infestans (Heteroptera). Chromosom Res 5:47–56CrossRefGoogle Scholar
  147. Peterson K, Sapienza C (1993) Imprinting the genome: imprinted genes, imprinting genes and an hypothesis for their interaction. Annu Rev Genet 27:7–31PubMedCrossRefGoogle Scholar
  148. Pfeifer GP, Riggs AD (1991) Chromatin differences between active and inactive X chromosomes revealed by genomic foot printing of permeabilized cells using DNase I and ligation mediated PCR. Genes Dev 5:1102–1113PubMedCrossRefGoogle Scholar
  149. Prantera G, Bongiorni S (2012) chromosome cycle as a paradigm of epigenetics. Genetics Research International ID : 867390:1–11CrossRefGoogle Scholar
  150. Prantera G, Ferraro M (1990) Analysis of methylation and distribution of CpG sequence in human active and inactive X-chromosome by in situ nick translation. Chromosoma 99:18–23PubMedCrossRefGoogle Scholar
  151. Raju NG (1994) A study of the chromosomes in three species of Indian. Dissertation, Bangalore University, Bangalore, Planococcus. M.PhilGoogle Scholar
  152. Ris H (1942) A cytological and experimental analysis of the meiotic behavior of the univalent X-chromosome in the bearberry aphid Tamalia (d'hyllaphis) Coweni (Ckll.). J Exptl Zool 90:267–326CrossRefGoogle Scholar
  153. Ross L, Pen I, Shuker DM (2010a) Genomic conflict in scale insects: the causes and consequences of bizarre genetic systems. Biol Rev 85(4):807–828PubMedGoogle Scholar
  154. Ross L, Langenhof MBW, Pen I, Beukeboom LW, West SA, Shuker DM (2010b) Sex allocation in a species with paternal genome elimination: clarifying the role of crowding and female age in the mealybug Planococcus citri. Evol Ecol Res 12:89–104Google Scholar
  155. Ross L, Dealy EJ, Beukeboom LW, Shuker DM (2011) Temperature, age of mating and starvation determine the role of maternal effects on sex allocation in the mealybug Planococcus citri. Behav Ecol Sociobiol 65:909–919PubMedCentralPubMedCrossRefGoogle Scholar
  156. Sado T, Hoki Y, Sasaki K (2005) Tsix silence xist through modification of chromatin structure. Dev Cell 9:159–165PubMedCrossRefGoogle Scholar
  157. Scarbrough K, Hattman S, Nur U (1984) Relationship of DNA methylation level to the presence of heterochromatin in mealybugs. Mol Cell Biol 4:599–603PubMedCentralPubMedCrossRefGoogle Scholar
  158. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18:1251–1262PubMedCentralPubMedCrossRefGoogle Scholar
  159. Schrader F (1921) The chromosomes of Pseudococcus nipae. Biol Bull 40:259–270CrossRefGoogle Scholar
  160. Schrader F (1923a) The origin of the mycetocytes in Pseudococcus. Biol Bull 45(6):279–302CrossRefGoogle Scholar
  161. Schrader F (1923b) A study of the chromosomes in three species of Pseudococcus. Archiv für Zellforschung 17:45–62Google Scholar
  162. Schrader F (1931) The chromosome cycle of Protortonia primitiva (Coccidae) and considerationof the meiotic division apparatus in the male. Z Wiss Zool 138:386–408Google Scholar
  163. Schrader F, Hughes-Schrader S (1926) Haploidy in Icerya purchasi. Z Wiss Zool 128:182–200Google Scholar
  164. Schweizer D, Loidl J (1987) A model for heterochromatin dispersion and the evolution of C-band patterns. Chromos Today 9:61–74CrossRefGoogle Scholar
  165. Shuker DM, Moynihan AM, Ross L (2009) Sexual conflict, sex allocation and the genetic system. Biol Lett 5:682–685PubMedCentralPubMedCrossRefGoogle Scholar
  166. Singh PB, Georgatos SD (2002) HP1: facts, open questions and speculation. J Struct Biol 140:10–16PubMedCrossRefGoogle Scholar
  167. Singh PB, Miller JR, Pearce J, Kothary R, Burton RD, Paro R, James TC, Gaunt SJ (1991) A sequence motif found in a Drosophila heterochromatin protein is conserved in animals and plants. Nucleic Acids Res 19:789–794PubMedCentralPubMedCrossRefGoogle Scholar
  168. Skiniotis G, Moazed D, Waitz T (2007) Acetylated histone tail peptides induce structural rearrangements in the RJC chromatin remodeling complex. J. Biol Chem 282:20804–20808CrossRefGoogle Scholar
  169. Solter D (1998) Imprinting. Intl J Dev Biol 42:951–954Google Scholar
  170. Spofford J (1976) In: Ashburmer & Novitski E (eds) Position effect variation in Drosophila. Academic Press, London, pp 955–1018Google Scholar
  171. Surani MAH (1991) Genomic imprinting: developmental significance and molecular mechanism. Curr Opin Genes Dev 1:241–246Google Scholar
  172. Tremblay E (1977) Advances in endosymbiotic studies in Coccoidea. Va. Polytech. Ins. State University. Res Div Bull 127:23–33Google Scholar
  173. Tremblay E (1989) Coccoidea endocytobiosis. In: Insect endocytobiosis: Morphology, physiology, genetics, evolution (eds.W. Schwemmler and G. Gassner). CRC Press, Boca Raton, Florida, pp 145–173Google Scholar
  174. Tremblay E, Caltagirone LE (1973) Fate of polar bodies in insects. Annu Rev Entomol 18:421–444CrossRefGoogle Scholar
  175. Tremblay E, Tranfaglia A, Rotundo G, Iccarino FM (1977) Osservazioni comparate su alcune specie di Pseudococcidi (Homoptera: Coccoidea). Bollettino del Laboratorio di Entomologia Agraria ‘Filippo Silvestri’. Portici 34:113–135Google Scholar
  176. Trivers RL, Hare H (1976) Haplo-diploidy and the evolution of the social insect. Science 191:249–263PubMedCrossRefGoogle Scholar
  177. Trivers RL, Willard DE (1973) Natural selection of parental ability to vary sex ratio of offspring. Science 179:90–92PubMedCrossRefGoogle Scholar
  178. Tulsyan GP (1963) Studies on chromosome number and spermatogenesis in the lac insect Laccifera lacca (Kerr). Curr Sci 32:374–375Google Scholar
  179. Vakoc CR, Mandst SA, Okachak BA, Blobel GA (2005) Histone H3 lysine methylation and HP-1gamma are associated with transcription elongation through mammalian chromate. Mol Cell 19:381–391PubMedCrossRefGoogle Scholar
  180. Varndell NP, Godfray HCG (1996) Facultative adjustment of the sex-ratio in an insect (P. citri: Pseudococcidae) with paternal genome loss. Evolution 50(5):2100–2105CrossRefGoogle Scholar
  181. Venkatachalaiah G (1989) Characterization of heterochromatin in chromosomes of Planococcus citri. XIII All India Cell Biology Conference and Cell Biology Symposia. CCMB, HyderabadGoogle Scholar
  182. Venkatachalaiah G, Chowdaiah BN (1987) Air-drying technique for the preparation of mosquito chromosomes. Nucleus 30(1, 2): 44–46Google Scholar
  183. Vitkova M, Karl J, Traut W, Zrzavy J, Marec F (2005) The evolutionary origin of insect telomeric repeats (TTAGG)n. Chromosomal Res 13:145–156CrossRefGoogle Scholar
  184. Volpi S, Bongiorni S, Prantera G (2007) HP2-like protein: a new piece of the facultative heterochromatin puzzle. Chromosoma 116(3):249–258PubMedCrossRefGoogle Scholar
  185. White MJD (1973) Animal cytology and evolution, 3rd edn. Cambridge University Press, Cambridge, p 961Google Scholar
  186. White MJD (1978) Modes of speciation. W. H. Freeman, San FranciscoGoogle Scholar
  187. Wu RS, Penuaz HT, Hatch CI, Bonner WM (1986) Histones and their modifications. CRC Crit Ren Biochrem 20:201–263Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Ramakrishna Sompalaym
    • 1
  • Kokilamani A. Lingarajaiah
    • 1
  • Raju G. Narayanappa
    • 2
  • Jayaprakash
    • 1
    • 3
  • Venkatachalaiah Govindaiah
    • 3
  1. 1.Department of ZoologyBangalore UniversityBengaluruIndia
  2. 2.Department of BiotechnologyKSOUMysoreIndia
  3. 3.Centre for Applied GeneticsBangalore UniversityBengaluruIndia

Personalised recommendations