Epitaxial GaN Layers: Low Temperature Growth Using Laser Molecular Beam Epitaxy Technique and Characterizations

  • Sunil S. KushvahaEmail author
  • M. Senthil KumarEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 79)


Generally, the GaN growth by conventional techniques like metal organic chemical vapor deposition (MOCVD) and plasma assisted- molecular beam epitaxy (PA-MBE) techniques employ a higher growth temperature (900–1000 °C in MOCVD and >720 °C in PA-MBE), in which, the probability of forming unwanted alloys or compounds with the substrate at interface will be quite high. To minimize the formation of undesirable interfacial compounds, a low temperature growth is favorable. Here, we have explored the possibility of low temperature growth of GaN layers on sapphire (0001) substrates using an ultra-high vacuum laser assisted molecular beam epitaxy (LMBE) system under different growth conditions. GaN epitaxial layers have been grown by laser ablating liquid Ga metal and polycrystalline solid GaN targets in the presence of active nitrogen environment supplied by radio frequency nitrogen plasma source. The structural and optical properties of the epitaxial GaN layers were characterized using reflection high energy electron diffraction, high resolution x-ray diffraction, atomic force microscopy, Raman spectroscopy, Rutherford Backscattering Spectroscopy, secondary ion mass spectroscopy and photoluminescence spectroscopy. The low temperature LMBE grown GaN layers showed high crystalline structures with a screw dislocation density in the range of 107 cm−2 as calculated from the x-ray rocking measurements along (0002) plane, which is the lowest value obtained so far using LMBE technique. A strong near band-edge photoluminescence emission has been obtained for the grown GaN layers at room temperature with a relatively weak yellow band emission. Our results indicate that the LMBE technique is capable of growing high quality III-nitride crystalline films at a relatively lower growth temperature compared to the conventional growth techniques.


GaN Laser molecular beam epitaxy Sapphire High resolution x-ray diffraction Atomic force microscopy Raman spectroscopy Rutherford backscattering spectroscopy Secondary ion mass spectroscopy Photoluminescence spectroscopy 



Prof. R.C. Budhani is thanked for constant encouragement and support. The authors would like to thank Dr. K.K. Maurya, Dr. N.D. Sharma, Dr. Prabir Pal, Dr. M.K. Dalai, Mr. Sandeep Singh (CSIR-NPL), Dr. P.K. Tyagi (DTU, Delhi), Dr. B.S. Yadav (SSPL, Delhi) and Dr. S. Ojha (IUAC, New Delhi) for their help in different characterization used in this chapter. This work has been supported by Council of Scientific and Industrial Research (CSIR) under networking projects PSC-0109 and NWP-55.


  1. 1.
    S. Nakamura, The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281, 956 (1998)CrossRefGoogle Scholar
  2. 2.
    D. Li, X. Sun, H. Song, Z. Li, Y. Chen, H. Jiang, G. Miao, Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv. Mater. 24, 845 (2012)CrossRefGoogle Scholar
  3. 3.
    T. Wang, Y.H. Liu, Y.B. Lee, Y. Izumi, J.P. Ao, J. Bai, H.D. Li, S. Sakai, Fabrication of high performance of AlGaN/GaN-based UV light-emitting diodes. J. Cryst. Growth 235, 177 (2002)CrossRefGoogle Scholar
  4. 4.
    J.-K. Sheu, F.-W. Huang, C.-H. Lee, M.-L. Lee, Y.-H. Yeh, P.-C. Chen, W.C. Lai, Improved conversion efficiency of GaN-based solar cells with Mn-doped absorption layer. Appl. Phys. Lett. 103, 063906 (2013)CrossRefGoogle Scholar
  5. 5.
    M.X. Feng, J.P. Liu, S.M. Zhang, D.S. Jiang, Z.C. Li, K. Zhou, D.Y. Li, L.Q. Zhang, F. Wang, H. Wang, P. Chen, Z.S. Liu, D.G. Zhao, Q. Sun, H. Yang, High efficient GaN-based laser diodes with tunnel junction. Appl. Phys. Lett. 103, 043508 (2013)CrossRefGoogle Scholar
  6. 6.
    H.Y. Ryu, W.J. Choi, K.S. Jeon, M.G. Kang, Y. Choi, J.S. Lee, Analysis of below-threshold efficiency characteristics of InGaN-based blue laser diodes. J. Appl. Phys. 112, 083109 (2012)CrossRefGoogle Scholar
  7. 7.
    P. Chen, M.X. Feng, D.S. Jiang, D.G. Zhao, Z.S. Liu, L. Li, L.L. Wu, L.C. Le, J.J. Zhu, H. Wang, S.M. Zhang, H. Yang, Improvement of characteristics of InGaN-based laser diodes with undoped InGaN upper waveguide layer. J. Appl. Phys. 112, 113105 (2012)CrossRefGoogle Scholar
  8. 8.
    D. Li, X. Sun, H. Song, Z. Li, H. Jiang, Y. Chen, G. Miao, B. Shen, Effect of asymmetric Schottky barrier on GaN-based metal-semiconductor-metal ultraviolet detector. Appl. Phys. Lett. 99, 261102 (2011)CrossRefGoogle Scholar
  9. 9.
    S.L. Rumyantsev, N. Pala, M.S. Shur, R. Gaska, M.E. Levinshtein, M.A. Khan, G. Simin, X. Hu, J. Yang, Effect of gate leakage current on noise properties of AlGaN/GaN field effect transistors. J. Appl. Phys. 88, 6726 (2000)CrossRefGoogle Scholar
  10. 10.
    Y.-J. Lee, Y.-C. Yao, C.-Y. Huang, T.-Y. Lin, L.-L. Cheng, C.-Y. Liu, M.-T. Wang, J.-M. Hwang, High breakdown voltage in AlGaN/GaN HEMTs using AlGaN/GaN/AlGaN quantum-well electron-blocking layers. Nanoscale Res. Lett. 9, 434 (2014)CrossRefGoogle Scholar
  11. 11.
    S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, A.H. Onstine, B.P. Gila, F. Ren, B. Lou, J. Kim, New applications advisable for gallium nitride. Mater. Today 5, 24 (2002)CrossRefGoogle Scholar
  12. 12.
    A. Guillén-Cervantes, Z. Rivera-Álvarez, M. López-López, A. Ponce-Pedraza, C. Guarneros, V.M. Sánchez-Reséndiz, Structural and optical properties of GaN thin films grown on Al2O3 substrates by MOCVD at different reactor pressures. Appl. Surf. Sci. 258, 1267 (2011)CrossRefGoogle Scholar
  13. 13.
    D. Kapolnek, X.H. Wu, B. Heying, S. Keller, B.P. Keller, U.K. Mishra, S.P. DenBaars, J.S. Speck, Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire. Appl. Phys. Lett. 67, 1541 (1995)CrossRefGoogle Scholar
  14. 14.
    B.L. Liu, M. Lachab, A. Jia, A. Yoshikawaa, K. Takahashi, MOCVD growth of device-quality GaN on sapphire using a three-step approach. J. Cryst. Growth 234, 637 (2002)CrossRefGoogle Scholar
  15. 15.
    S. Raghvan, X. Weng, E. Dickey, J.M. Redwing, Effect of AlN interlayers on growth stress in GaN layers deposited on (111) Si. Appl. Phys. Lett. 87, 142101 (2005)CrossRefGoogle Scholar
  16. 16.
    P.R. Hageman, J.J. Schermer, P.K. Larsen, GaN growth on single-crystal diamond substrates by metalorganic chemical vapour deposition and hydride vapour deposition. Thin Solid Films 443, 9 (2003)CrossRefGoogle Scholar
  17. 17.
    B.-R. Shim, H. Okita, K. Jeganathan, M. Shimizu, H. Okumura, Structural properties of GaN films with AlN buffer layers with varying growth temperatures by plasma-assisted molecular beam epitaxy. Jpn. J. Appl. Phys. 42, 2265 (2003)CrossRefGoogle Scholar
  18. 18.
    P. Gupta, A.A. Rahman, N. Hatui, M.R. Gokhale, M.M. Deshmukh, A. Bhattacharya, MOVPE growth of semipolar III-nitride semiconductors on CVD graphene. J. Cryst. Growth 372, 105 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Katagiri, H. Fang, H. Miyake, K. Hiramatsu, H. Oku, H. Asamura, K. Kawamura, MOVPE growth of GaN on Si substrate with 3C-SiC buffer layer. Jpn. J. Appl. Phys. 53, 05FL09 (2014)Google Scholar
  20. 20.
    C. Cobet, T. Schmidtling, M. Drago, N. Wollschlager, N. Esser, W. Richter, Surface termination during GaN growth by metalorganic vapor phase epitaxy determined by ellipsometry. J. Appl. Phys. 94, 6997 (2003)CrossRefGoogle Scholar
  21. 21.
    S.S. Kushvaha, P. Pal, A.K. Shukla, A.G. Joshi, G. Gupta, M. Kumar, S. Singh, B.K. Gupta, D. Haranath, Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy. AIP Adv. 4, 027114 (2014)CrossRefGoogle Scholar
  22. 22.
    G. Koblmuller, F. Reurings, F. Tuomisto, J.S. Speck, Influence of Ga/N ratio on morphology, vacancies, and electrical transport in GaN grown by molecular beam epitaxy at high temperature. Appl. Phys. Lett. 97, 191915 (2010)CrossRefGoogle Scholar
  23. 23.
    T. Schumann, T. Gotschke, F. Limbach, T. Stoica, R. Calarco, Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer. Nanotechnology 22, 095603 (2011)CrossRefGoogle Scholar
  24. 24.
    G. Koblmüller, R.M. Chu, A. Raman, U.K. Mishra, J.S. Speck, High-temperature molecular beam epitaxial growth of AlGaN/GaN on GaN templates with reduced interface impurity levels. J. Appl. Phys. 107, 043527 (2010)CrossRefGoogle Scholar
  25. 25.
    M. Kumar, B. Roul, T.N. Bhat, M.K. Rajpalke, S.B. Krupanidhi, Structural characterization and ultraviolet photoresponse of GaN nanodots grown by molecular beam epitaxy. Appl. Phys. Exp. 5, 085202 (2012)CrossRefGoogle Scholar
  26. 26.
    K. Anand, M.P. Mamgain, A.K. Shukla, S.S. Kushvaha, P. Pal, S.P. Khanna, Growth and characterization of plasma assisted MBE grown GaN films at different plasma powers. Adv. Sci. Lett. 20, 1401 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Kesaria, S. Shetty, S.M. Shivaprasad, Evidence for dislocation induced spontaneous formation of GaN nanowalls and nanocolumns on bare C-plane sapphire. Cryst. Growth Des. 11, 4900 (2011)CrossRefGoogle Scholar
  28. 28.
    K. Yamane, M. Ueno, H. Furuya, N. Okada, K. Tadatomo, Successful natural stress-induced separation of hydride vapor phase epitaxy-grown GaN layers on sapphire substrates. J. Cryst. Growth 358, 1 (2012)CrossRefGoogle Scholar
  29. 29.
    L. Zhang, J. Yu, X. Hao, Y. Wu, Y. Dai, Y. Shao, H. Zhang, Y. Tian, Influence of stress in GaN crystals grown by HVPE on MOCVD-GaN/6H-SiC substrate. Sci. Rep. 4, 4179 (2014)Google Scholar
  30. 30.
    D. Gogova, E. Talik, I.G. Ivanov, B. Monemar, Large-area free-standing GaN substrate grown by hydride vapor phase epitaxy on epitaxial lateral overgrown GaN template. Phys. B Cond. Matter. 371, 133 (2006)CrossRefGoogle Scholar
  31. 31.
    R.D. Vispute, V. Talyansky, R.P. Sharma, S. Choopun, M. Downes, T. Venkatesan, K.A. Jones, A.A. Iliadis, M.A. Khan, J.W. Yang, Growth of epitaxial GaN films by pulsed laser deposition. Appl. Phys. Lett. 71, 102 (1997)CrossRefGoogle Scholar
  32. 32.
    G. Li, S.J. Shih, Z. Fu, A new system for synthesis of high quality nonpolar GaN thin films. ChemComm 46, 1206 (2010)Google Scholar
  33. 33.
    M.S. Kumar, S.S. Kushvaha, K.K. Maurya, Low temperature growth of GaN epitaxial layers on sapphire (0001) by pulsed laser deposition using liquid gallium target. Sci. Adv. Mater. 6, 1215 (2014)CrossRefGoogle Scholar
  34. 34.
    P. Merel, M. Chaker, M. Tabbal, H. Pepin, Structural and electrical characteristics of epitaxial GaN thin films grown using pulsed laser deposition assisted by an atomic nitrogen source. Appl. Surf. Sci. 177, 165 (2001)CrossRefGoogle Scholar
  35. 35.
    L. Ying-Ying, Z. Jun, L. Wen-Bo, H. Lan-Zhong, Z. Ying, L. Yan-Rong, Effect of thickness on the microstructure of GaN films on Al2O3 (0001) by laser molecular beam epitaxy. Chin. Phys. B 20, 108102 (2011)CrossRefGoogle Scholar
  36. 36.
    P. Sanguino, M. Niehus, L.V. Melo, R. Schwarz, S. Koynov, T. Monteiro, J. Soares, H. Alves, B.K. Meyer, Characterisation of GaN films grown on sapphire by low-temperature cyclic pulsed laser deposition/nitrogen rf plasma. Solid-State Electron. 47, 559 (2003)CrossRefGoogle Scholar
  37. 37.
    M.H. Kim, M. Oshima, H. Kinoshita, Y. Shirakura, K. Miyamura, J. Ohta, A. Kobayashi, H. Fujioka, Investigation of the initial stage of GaN epitaxial growth on 6H-SiC (0001) at room temperature. Appl. Phys. Lett. 89, 031916 (2006)CrossRefGoogle Scholar
  38. 38.
    K. Uchida, A. Watanabe, F. Yano, M. Kouguchi, T. Tanaka, S. Minagawa, Nitridation process of sapphire substrate surface and its effect on the growth of GaN. J. Appl. Phys. 79, 3487 (1996)CrossRefGoogle Scholar
  39. 39.
    L. Neumann, J.W. Gerlach, B. Rauschenbach, Initial stages of the ion-beam assisted epitaxial GaN film growth on 6H-SiC(0001). Thin Solid Films 520, 3936 (2012)CrossRefGoogle Scholar
  40. 40.
    S. Dasgupta, Nidhi, F. Wu, J.S. Speck, U.K. Mishra, Growth and characterization of N-polar GaN films on Si(111). Jpn. J. Appl. Phys. 51, 115503 (2012)Google Scholar
  41. 41.
    Z.J. Xu, L.X. Zhang, H.T. He, J.N. Wang, M.H. Xie, Growth of GaN on Si(111): surfaces and crystallinity of the epifilms and the transport behavior of GaN/Si heterojunctions. J. Appl. Phys. 110, 093514 (2011)CrossRefGoogle Scholar
  42. 42.
    S.S. Kushvaha, M. Senthil Kumar, K.K. Maurya, M.K. Dalai, N.D. Sharma, Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target. AIP Adv. 3, 092109 (2013)CrossRefGoogle Scholar
  43. 43.
    M. Senthil Kumar, S.S. Kushvaha, K.K. Maurya, Low temperature growth of GaN epitaxial layer on sapphire (0001) substrate by laser molecular beam epitaxy technique. Phys. Semicond. Devices 807 (2014)Google Scholar
  44. 44.
    Y. Tomida, S. Nitta, S. Kamiyama, H. Amano, I. Akasaki, S. Otani, H. Kinoshita, R. Liu, A. Bell, F.A. Ponce, Growth of GaN on ZrB2 substrate by metal-organic vapor phase epitaxy. Appl. Surf. Sci. 216, 502 (2003)CrossRefGoogle Scholar
  45. 45.
    Y. Kawaguchi, J. Ohta, A. Kobayashi, H. Fujioka, Room-temperature epitaxial growth of GaN on lattice-matched ZrB2 substrates by pulsed-laser deposition. Appl. Phys. Lett. 87, 221907 (2005)CrossRefGoogle Scholar
  46. 46.
    A. Kobayashi, H. Fujioka, J. Ohta, M. Oshima, Room temperature layer-by-layer growth of GaN on atomically-flat ZnO. Jpn. J. Appl. Phys. 43, L53 (2004)CrossRefGoogle Scholar
  47. 47.
    W. Wang, S. Zhou, Z. Liu, W. Yang, Y. Lin, H. Qian, F. Gao, G. Li, Investigation on the structural properties of GaN films grown on La0.3Sr1.7AlTaO6 substrates. Mater. Res. Express 1, 025903 (2014)Google Scholar
  48. 48.
    W. Yang, W. Wang, Z. Liu, Y. Lin, S. Zhou, H. Qian, G. Li, Epitaxial growth and its mechanism of GaN films on nitrided LiGaO2 (001) substrates by pulsed laser deposition. CrystEngComm 17, 1073 (2015)CrossRefGoogle Scholar
  49. 49.
    H. Takahashi, J. Ohta, H. Fujioka, M. Oshima, M. Kimura, G-GIXD characterization of GaN grown by laser MBE. J. Cryst. Growth 237–239, 1158 (2002)CrossRefGoogle Scholar
  50. 50.
    A.P. McKiernan, J.-P. Mosnier, Study of expansion of laser ablation plumes of Ga and GaN in various N2 atmospheres using stigmatic emission spectroscopy. Appl. Surf. Sci. 197–198, 325 (2002)CrossRefGoogle Scholar
  51. 51.
    S.S. Kushvaha, M. Senthil Kumar, M. Maheshwari, A.K. Shukla, P. Pal, K.K. Maurya, Structural and electronic properties of epitaxial GaN layer grown on sapphire (0001) using laser molecular beam epitaxy. Mater. Res. Express 1, 035903 (2014)Google Scholar
  52. 52.
    J. Ohta, H. Fujioka, M. Oshima, K. Fujiwara, A. Ishii, Experimental and theoretical investigation on the structural properties of GaN grown on sapphire. Appl. Phys. Lett. 83, 3075 (2003)CrossRefGoogle Scholar
  53. 53.
    M.A. Moram, M.E. Vickers, X-ray diffraction of III-nitrides. Rep. Prog. Phys. 72, 036502 (2009)CrossRefGoogle Scholar
  54. 54.
    E. Arslan, M.K. Ozturk, A. Teke, S. Ozcelik, E. Ozbay, Buffer optimization for crack-free GaN epitaxial layers grown on Si(1 1 1) substrate by MOCVD. J. Phys. D Appl. Phys. 41, 155317 (2008)CrossRefGoogle Scholar
  55. 55.
    X.H. Zheng, H. Chen, Z.B. Yan, Y.J. Han, H.B. Yu, D.S. Li, Q. Huang, J.M. Zhou, Determination of twist angle of in-plane mosaic spread of GaN films by high-resolution X-ray diffraction. J. Cryst. Growth 255, 63 (2003)CrossRefGoogle Scholar
  56. 56.
    P. Gay, P.B. Hirsch, A. Kelly, The estimation of dislocation densities in metals from X-ray data. Acta Metall. 1, 315 (1953)CrossRefGoogle Scholar
  57. 57.
    M.A. Moram, C.C. Ghedia, D.V.S. Rao, J.S. Barnard, Y. Zhang, M.J. Kappers, C.J. Humphreys, On the origin of threading dislocations in GaN films. J. Appl. Phys. 106, 073513 (2009)CrossRefGoogle Scholar
  58. 58.
    T.B. Wei, R.F. Duan, J.X. Wang, J.M. Li, Z.Q. Huo, Y.P. Zeng, Hillocks and hexagonal pits in a thick film grown by HVPE. Microelectron. J. 39, 1556 (2008)CrossRefGoogle Scholar
  59. 59.
    Z.C. Feng, W. Wang, S.J. Chua, P.X. Zhang, K.P.J. Williams, G.D. Pitt, Raman scattering properties of GaN thin films grown on sapphire under visible and ultraviolet excitation. J. Raman Spectrosc. 32, 840 (2001)CrossRefGoogle Scholar
  60. 60.
    A. Kasic, D. Gogova, H. Larsson, C. Hemmingsson, I. Ivanov, B. Monemar, C. Bundesmann, M. Schubert, Micro-Raman scattering profiling studies on HVPE-grown free-standing GaN. Phys. Stat. sol. (a) 201, 2773 (2004)Google Scholar
  61. 61.
    VYu. Davydov, YuE Kitaev, I.N. Goncharuk, A.N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M.B. Smirnov, A.P. Mirgorodsky, R.A. Evarestov, Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 58, 12899 (1998)CrossRefGoogle Scholar
  62. 62.
    H. Harima, Properties of GaN and related compounds studied by means of Raman scattering. J. Phys. Condens. Matter. 14, R967 (2002)CrossRefGoogle Scholar
  63. 63.
    X. Hai-Ying, N. Ping-Juan, X. Yu-Xin, The properties of GaMnN lms grown by metalorganic chemical vapour deposition using Raman spectroscopy. Chin. Phys. B 21, 077801 (2012)CrossRefGoogle Scholar
  64. 64.
    M.S. Kumar, S.S. Kushvaha, K.K. Maurya, K. Saravanan, S. Ojha, High resolution X-ray diffraction and Rutherford backscattering spectroscopy studies on laser molecular beam epitaxy grown GaN layers on sapphire (0001). Adv. Sci. Lett. 20, 1406 (2014)CrossRefGoogle Scholar
  65. 65.
    P. Jensen, Growth of nanostructures by cluster deposition: Experiments and simple models. Rev. Mod. Phys. 71, 1695 (1999)CrossRefGoogle Scholar
  66. 66.
    R. Alayan, L. Arnaud, M. Broyer, E. Cottancin, J. Lermé, J.L. Vialle, M. Pellarin, Morphology and growth of metal clusters in the gas phase: a transition from spherical to ramified structures. Phys. Rev. B 73, 125444 (2006)CrossRefGoogle Scholar
  67. 67.
    S.S. Kushvaha, M. Senthil Kumar, B.S. Yadav, P.K. Tyagi, S. Ojha, K.K. Maurya, B.P. Singh, Influence of laser repetition rate on the structural and optical properties of GaN layers grown on sapphire (0001) by Laser Molecular Beam Epitaxy. CrystEngComm 18, 744 (2016)Google Scholar
  68. 68.
    M.A. Reshchikov, H. Morkoc, Luminescence properties of defects in GaN. J. Appl. Phys. 97, 061301 (2005)CrossRefGoogle Scholar
  69. 69.
    C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J.W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, E.R. Weber, M.D. Bremser, R.F. Davis, Strain-related phenomena in GaN thin films. Phys. Rev. B 54, 17745 (1996)CrossRefGoogle Scholar
  70. 70.
    L. Macht, J.L. Weyher, A. Grzegorczyk, P.K. Larsen, Statistical photoluminescence of dislocations and associated defects in heteroepitaxial GaN grown by metal organic chemical vapor deposition. Phys. Rev. B 71, 073309 (2005)CrossRefGoogle Scholar
  71. 71.
    H.C. Yang, T.Y. Lin, Y.F. Chen, Nature of the 2.8-eV photoluminescence band in Si-doped GaN. Phys. Rev. B 62, 12593 (2000)CrossRefGoogle Scholar
  72. 72.
    M.A. Reshchikov, R.Y. Korotkov, Analysis of the temperature and excitation intensity dependencies of photoluminescence in undoped GaN films. Phys. Rev. B 64, 115205 (2001)CrossRefGoogle Scholar
  73. 73.
    D.O. Demchenko, I.C. Diallo, M.A. Reshchikov, Yellow Luminescence of gallium nitride generated by carbon defect complexes. Phys. Rev. Lett. 110, 087404 (2013)CrossRefGoogle Scholar
  74. 74.
    M.H. Kim, Y.C. Bang, N.M. Park, C.J. Choi, T.Y. Seong, S.J. Park, Growth of high-quality GaN on Si(111) substrate by ultrahigh vacuum chemical vapor deposition. Appl. Phys. Lett. 78, 2858 (2001)CrossRefGoogle Scholar
  75. 75.
    J. Cao, D. Pavlidis, A. Eisenbach, A. Philippe, C.B. Chevallier, G. Guillot, Photoluminescence properties of GaN grown on compliant silicon-on-insulator substrates. Appl. Phys. Lett. 71, 3880 (1997)CrossRefGoogle Scholar
  76. 76.
    M. Cazzanelli, D. Cole, J.F. Donegan, J.G. Lunney, P.G. Middleton, K.P. O’Donnell, C. Vinegoni, L. Pavesi, Photoluminescence of localized excitons in pulsed-laser-deposited GaN. Appl. Phys. Lett. 73, 3390 (1998)CrossRefGoogle Scholar
  77. 77.
    T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, P. Yang, Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections. Nano Lett. 3, 1063 (2003)CrossRefGoogle Scholar
  78. 78.
    Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Gallium nitride nanowire nanodevices. Nano Lett. 2, 101 (2002)CrossRefGoogle Scholar
  79. 79.
    S.J. Chung, M.S. Jeong, O.H. Cha, C.H. Hong, E.K. Suh, H.J. Lee, Y.S. Kim, B.H. Kim, Optical absorption and anomalous photoconductivity in undoped n-type GaN. Appl. Phys. Lett. 76, 1021 (2000)CrossRefGoogle Scholar
  80. 80.
    H.M. Chen, Y.F. Chen, M.C. Lee, M.S. Fang, Persistent photoconductivity in n-type GaN. J. Appl. Phys. 82, 899 (1997)CrossRefGoogle Scholar
  81. 81.
    J.Z. Li, J.Y. Lin, H.X. Jianga, M.A. Khan, Q. Chen, Persistent photoconductivity in a two-dimensional electron gas system formed by an AlGaN/GaN heterostructure. J. Appl. Phys. 82, 1227 (1997)CrossRefGoogle Scholar
  82. 82.
    V.V. Ursaki, I.M. Tiginyanu, P.C. Riccia, A. Anedda, S. Hubbard, D. Pavlidis, Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation. J. Appl. Phys. 94, 3875 (2003)CrossRefGoogle Scholar
  83. 83.
    J.Z. Li, J.Y. Lin, H.X. Jiang, A. Salvador, A. Votchkarev, H. Morkoc, Nature of Mg impurities in GaN. Appl. Phys. Lett. 69, 1474 (1996)CrossRefGoogle Scholar
  84. 84.
    H.M. Chen, Y.F. Chen, M.C. Lee, M.S. Feng, Yellow luminescence in n-type GaN epitaxial films. Phys. Rev. B 56, 6942 (1997)CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Physics of Energy Harvesting DivisionCSIR-National Physical LaboratoryNew DelhiIndia

Personalised recommendations