Advertisement

Diamond Nanogrinding

  • Mark J. JacksonEmail author
  • Michael D. Whitfield
  • Grant M. Robinson
  • Jonathan S. Morrell
  • Waqar Ahmed
Chapter
  • 1.4k Downloads
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 79)

Abstract

Nanoscale fabrication requires a substrate made from an engineering material to be truly flat so that “bottom-up” nanofabrication techniques such as lithographically induced self-assembly and soft lithography can be used to deposit nanofeatures. The coating of piezoelectric materials with sub-micron size diamond particles has enabled the production of truly flat substrates so that nanofeatures can be created on engineering materials using a new manufacturing process known as “piezoelectric nanogrinding”. The principle of the process relies on applying an electric current to the diamond coated piezoelectric material that causes the material to strain. When the diamond-coated piezoelectric material is placed in close proximity to the substrate, the diamonds remove extremely small fragments of the substrate when the electric current is applied to the material. The magnitude of the applied current controls the material removal rate. The process can be used to process biomedical materials especially in the production of nanoscale ducts and channels in micro- and nanofluidic devices. To achieve the generation of truly flat surfaces, the process must be executed within a specially constructed vibration dampening space frame. The chapter describes the principle of the process of nanogrinding using coated piezoelectric materials, and correlates the wear of diamonds with stresses induced into the diamonds when an electric current is applied to the piezoelectric in order to remove very small amounts of material. The removal of material can also be performed using a porous tool with abrasive materials embedded in them such as diamonds that increases the material removal rate as long as the porous tool is engineered in such a way that the loss of abrasive fragments is eliminated. This is achieved by laser assisted dressing, by engineering the bond of the porous tool to resist wear, and by laser assisted microstructural modification of the surface of the porous tool. The chapter describes how the bonds in porous tools are engineered to minimize abrasive grain loss and how vitrified bonding bridges can be processed using a laser to form extremely sharp nanoscale cutting wedges. The porous nanogrinding tool can be bonded to a piezoelectric material so that it can be used in the piezoelectric nanogrinding process.

Keywords

Machining Diamond Nanogrinding Nanomachining Nanomaterials 

Notes

Acknowledgements

The authors thank Springer publishers for allowing the authors permission to re-print and update this chapter that was originally published in, ‘Micro and Nanomachining’, originally published by Springer in 2007 (ISBN 978-0387-25874-4). Re-printed with kind permission from Springer Science+Business Media B.V.

References

  1. 1.
    Q. Zhao, S. Dong, T. Sun, Research on diamond tip wear mechanism in atomic force microscope-based micro-and nanomachining. High Technol. Lett. 7(3), 84–89 (2001)Google Scholar
  2. 2.
    Q.L. Ahao, S. Dong, T. Sun, Investigation of an atomic force microscope diamond tip wear in micro- and nanomachining. Key Eng. Mater. 2(13), 315–350 (2001)Google Scholar
  3. 3.
    M.J. Jackson, Vitrification heat treatment during the manufacture of corundum grinding wheels. J. Manuf. Proc. 3, 17–28 (2001)Google Scholar
  4. 4.
    S.P. Timoshenko, J.N. Goodier, in Theory of Elasticity, 3rd edn—International student edn (McGraw-Hill Kogakusha Ltd., NY, 1970), pp. 109–113, 139–144Google Scholar
  5. 5.
    T.N. Loladze, Requirements of tool materials. in Proceedings of the 8th International Machine Tool Design and Research Conference (Pergamon Press, Oxfoard, 1967), pp. 821–842Google Scholar
  6. 6.
    S.T. Lundin, Studies on Triaxial Whiteware Bodies (Almqvist and Wiksell) (Stockholm, Sweden, 1959)Google Scholar
  7. 7.
    W. Storch, H. Ruf, H. Scholze, Berichte Deut. Keram. Ges. 61, 325 (1984)Google Scholar
  8. 8.
    E. Binns, Sci. Ceram. 1, 315 (1962)Google Scholar
  9. 9.
    W.F. Ford, J. White, Trans. J. Brit. Ceram. Soc. 50, 461 (1951)Google Scholar
  10. 10.
    G. Kirchoff, W. Pompe, H.A. Bahr, J. Mater. Sci. 17, 2809 (1982)CrossRefGoogle Scholar
  11. 11.
    M.J. Jackson, B. Mills, Dissolution of quartz in vitrified ceramic materials. J. Mater. Sci. 32, 5295–5304 (1997)CrossRefGoogle Scholar
  12. 12.
    I.E. Alexander, H.P. Klug, X-ray diffraction procedures. Anal. Chem. 20, 886 (1948)CrossRefzbMATHGoogle Scholar
  13. 13.
    S.K. Khandelwal, R.L. Cook, Effect of alumina additions on crystalline constituents and fired properties of electrical porcelain. Am. Ceram. Soc. Bull. 49, 522–526 (1970)Google Scholar
  14. 14.
    W. Jander, Reaktion im festen zustande bei hoheren temperaturen (Reactions in solids at high temperature). Z. Anorg. U. Allgem. Chem. 163, 1–30 (1927)CrossRefGoogle Scholar
  15. 15.
    P. Krause, E. Keetman, Zur kenntnis der keramischen brennvorgange (On combustion processes in ceramics). Sprechsaal 69, 45–47 (1936)Google Scholar
  16. 16.
    A. Monshi, Investigation into the strength of whiteware bodies, Ph.D. Thesis, University of Sheffield, United Kingdom, 1990Google Scholar
  17. 17.
    M.J. Jackson, A study of vitreous-bonded abrasive materials, Ph.D. Thesis, Liverpool John Moores University, United Kingdom, Dec 1995Google Scholar
  18. 18.
    A. Khangar, N. Dahotre, Morphological modification in laser-dressed grinding wheel material for microscale grinding. J. Mater. Process. Technol. 170, 1–10 (2005)CrossRefGoogle Scholar
  19. 19.
    A. Khangar, N.B. Dahotre, M.J. Jackson, G.M. Robinson, Laser dressing of alumina grinding wheels, in Proceedings of the International Surface Engineering Congress and Exposition. ASM Int. pp. 423–426 (2003)Google Scholar
  20. 20.
    D.J. Dingley, V. Randle, J. Mater. Sci. 27, 4585 (1992)CrossRefGoogle Scholar
  21. 21.
    M.J. Jackson, G.M. Robinson, Femtosecond laser micromachining of aluminum surfaces under controlled gas environments. J. Mater. Eng. Perform. 15, 155–160 (2006)Google Scholar
  22. 22.
    D. Triantafyllidis, L. Li, F.H. Stott, Surface treatment of alumina-based ceramic using combined laser sources. Appl. Surf. Sci. 186, 140–144 (2002)CrossRefGoogle Scholar
  23. 23.
    J. Lawrence, L. Li, J.T. Spencer, The effects of high power laser diode laser radiation on the wettability adhesion, and bonding characteristics of an alumina–silica based oxide and vitreous enamel. Surf. Coat. Technol. 115, 273–281 (1999)CrossRefGoogle Scholar
  24. 24.
    Y. Yuanzheng, Z. Youlan, L. Zhengyi, C. Yuzhi, Laser remelting of plasma sprayed alumina ceramic coatings and subsequent wear resistance. Mater. Sci. Eng. A291, 168–172 (2000)CrossRefGoogle Scholar
  25. 25.
    L. Bradley, L. Li, F.H. Stott, Flame assisted laser surface treatment of refractory materials for crack free densification. Mater. Sci. Eng. A278, 204–212 (2000)CrossRefGoogle Scholar
  26. 26.
    W. Kurz, R. Trivedi, Trans. ASME 114, 450 (1992)CrossRefGoogle Scholar
  27. 27.
    A. Kar, J. Mazumdar, J. Appl. Phys. 61, 2645 (1987)CrossRefGoogle Scholar
  28. 28.
    M. Rappaz, S. David, J.M. Vitek, L.A. Boatner, Metall. Trans. A 20A, 1125 (1989)CrossRefGoogle Scholar
  29. 29.
    D.J. Dingley, D.P. Field, Mater. Sci. Technol. 12, 1–9 (1996)CrossRefGoogle Scholar
  30. 30.
    D.P. Field, Ultramicroscopy 67, 1–9 (1997)CrossRefGoogle Scholar
  31. 31.
    B.K. Kim, J.A. Szpunar, Scripta. Met. 44, 2605 (2001)CrossRefGoogle Scholar
  32. 32.
    J. Farrer, J. Michael, C. Carter, Electron Backscatter Diffraction in Materials Science (Kluwer Academic Publishers, New York, 2000), p. 299CrossRefGoogle Scholar
  33. 33.
    K.Z. Baba-Kishi, J. Mater. Sci. 37, 1715 (2002)CrossRefGoogle Scholar
  34. 34.
    J. Mazumdar, W.M. Steen, J. Appl. Phys. 51, 941–947 (1980)CrossRefGoogle Scholar
  35. 35.
    M.C. Fleming, Solidification Processing (McGraw-Hill, New York, 1974)Google Scholar
  36. 36.
    O. Esquivel, J. Mazumdar, M. Bass, S.M. Copeley, Microstructural formation according to the theory of constitutional supercooling. in Rapid Solidification Processing, Processing and Technologies II (Claitors, Baton Rouge, 1980), pp. 150–173Google Scholar
  37. 37.
    L. Bradley, L. Li, F. Stott, Appl. Surf. Sci. 138–139, 522–528 (1998)Google Scholar
  38. 38.
    S.Z. Lee, K.H. Ghar, Mat. Wiss. Wekstofftech. 23, 117–123 (1992)CrossRefGoogle Scholar
  39. 39.
    J. Shieh, S. Wu, Appl. Phys. Lett. 59, 1512–1514 (1991)CrossRefGoogle Scholar
  40. 40.
    D. Rosenthal, J. Welding, Supplement 20, 220–234 (1941)Google Scholar
  41. 41.
    D. Rosenthal, Trans. ASME 68, 849 (1946)Google Scholar
  42. 42.
    H. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1962)zbMATHGoogle Scholar
  43. 43.
    S. Kou, R. Mehrabian, Modelling of Casting and Welding Processes III (The Metals and Minerals Society, TMS, Warrendale, 1986)Google Scholar
  44. 44.
    D. Bauerle, Laser Processing and Chemistry, 3rd edn. (Springer-Verlag, Berlin, Germany, 2000), pp. 168–176CrossRefGoogle Scholar
  45. 45.
    M.J. Jackson, G.M. Robinson, N. Dahotre, A. Khangar, R. Moss, Laser dressing of vitrified aluminium oxide grinding wheels. Br. Ceram. Trans. 102, 237–245 (2003)CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Mark J. Jackson
    • 1
    Email author
  • Michael D. Whitfield
    • 1
  • Grant M. Robinson
    • 1
  • Jonathan S. Morrell
    • 2
  • Waqar Ahmed
    • 3
  1. 1.Micro Machinists CorporationCambridgeUSA
  2. 2.Technology DevelopmentOak RidgeUSA
  3. 3.School of Medicine and DentistryUniversity of Central LancashirePrestonUK

Personalised recommendations