Metal Matrix Nanocomposites and Their Application in Corrosion Control

  • Pallav GuptaEmail author
  • Devendra Kumar
  • M. A. Quraishi
  • Om Parkash
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 79)


The present chapter gives an overview of nanocomposites which are novel materials for corrosion control. Nanocomposites comprise of more than one phase where size of each phase is less than 100 nm respectively. There are basically three types of nanocomposites: Ceramic-Matrix Nanocomposites, Metal-Matrix Nanocomposites and Polymer Matrix Nanocomposites. Several synthesis routes have been proposed for the fabrication of MMNCs such as Stir Casting, Powder Metallurgy, CVD, PVD etc. Major applications of metal matrix nanocomposites are in automobile and aerospace industries. Among various properties corrosion is an important property for determining the life expectancy of any nanocomposite material. In the present chapter a brief account of corrosion and its control using nanocomposites has been discussed. It is expected that the present chapter will help the readers to get a glimpse of nanocomposite materials for its wider use in industrial applications.


Nanocomposites and its types Powder Metallurgy Applications 


  1. 1.
    N. Chawla, K.K. Chawla, Metal Matrix Composites (Kluwer Academic Publishers, Boston, 2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Z. Zhang, D.L. Chen, Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater. Sci. Eng. A 483–484, 148–152 (2008)CrossRefGoogle Scholar
  3. 3.
    K.U. Kainer, Basics of Metal Matrix Composites (Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim, 2006). ISBN 3-527-31360-5Google Scholar
  4. 4.
    P. Istomin, A. Nadutkin, V. Grass, Fabrication of Ti3SiC2-based ceramic matrix composites by a powder-free SHS technique. Ceram. Int. 39, 3663–3667 (2013)CrossRefGoogle Scholar
  5. 5.
    D. Sarkara, S. Adak, N.K. Mitra, Preparation and characterization of an Al2O3–ZrO2 nanocomposite, Part I: powder synthesis and transformation behavior during fracture. Compos. A Appl. Sci. Manuf. 38, 124–131 (2007)CrossRefGoogle Scholar
  6. 6.
    T. Hernandez, M.C. Bautista, The role of the synthesis route to obtain densified TiO2-doped alumina ceramics. J. Eur. Ceram. Soc. 25, 663–672 (2005)CrossRefGoogle Scholar
  7. 7.
    J.M. Torralba, C.E. da Costa, F. Velasco, P/M aluminum matrix composites: an overview. J. Mater. Process. Technol. 133, 203–206 (2003)CrossRefGoogle Scholar
  8. 8.
    S.C. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix matrix composites. Mater. Sci. Eng. 29, 49–113 (2000)CrossRefGoogle Scholar
  9. 9.
    C. Bathias, An engineering point of view about fatigue of polymer matrix composite materials. Int. J. Fatigue 28, 1094–1099 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    M. Yashima, T. Kato, M. Kakihana, M.A. Gulgun, Y. Matsuo, M. Yoshimura, Crystallization of hafnia and zirconia during the pyrolysis of acetate gels. J. Mater. Res. 12, 2575–2583 (1997)CrossRefGoogle Scholar
  11. 11.
    J.M. Torralba, C.E. da Costa, F. Velasco, P/M aluminum matrix composites: an overview. J. Mater. Process. Technol. 133, 203–206 (2003)CrossRefGoogle Scholar
  12. 12.
    T.S. Srivatasan, I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, Processing techniques for particulate-reinforced metal aluminium matrix composites. J. Mater. Sci. 26, 5965–5978 (1991)CrossRefGoogle Scholar
  13. 13.
    Y.H. Seo, C.G. Kang, The effect of applied pressure on particle dispersion characteristics and mechanical properties in melt-stirring squeeze-cast SiC/Al composites. J. Mater. Process. Technol. 55, 370–379 (1995)CrossRefGoogle Scholar
  14. 14.
    S.P. Rawal, Metal-Matrix Composites for Space Applications. J. Miner. Met. Mater. Soc. 53(4), 14–17 (2001)CrossRefGoogle Scholar
  15. 15.
    P.P. Trzaskoma, E. McCafferty, C.R. Crowe, Corrosion Behavior of SiC/Al Metal Matrix Composites. J. Electrochem. Soc. 130(9), 1804–1809 (1983)CrossRefGoogle Scholar
  16. 16.
    J. Xu, J. Tao, S. Jiang, Z. Xu, Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer. Appl. Surf. Sci. 254, 4036–4043 (2008)CrossRefGoogle Scholar
  17. 17.
    R. Escalera-Lozano, C.A. Gutiérrez, M.A. Pech-Canul, M.I. Pech-Canul, Corrosion characteristics of hybrid Al/SiCp/MgAl2O4 composites fabricated with fly ash and recycled aluminium. Mater. Charact. 58, 953–960 (2007)CrossRefGoogle Scholar
  18. 18.
    P. Gupta, D. Kumar, M.A. Quraishi, O. Parkash, Corrosion behavior of Al2O3 reinforced Fe metal matrix nanocomposites produced by powder metallurgy technique. Adv. Sci. Eng. Med. (American Scientific Publishers) 5(4), 366–370 (2013)CrossRefGoogle Scholar
  19. 19.
    P. Gupta, D. Kumar, M.A. Quraishi, O. Parkash, Effect of sintering parameters on the corrosion characteristics of iron-alumina metal matrix nanocomposites. J. Mater. Environ. Sci. 6(1), 155–167 (2015)Google Scholar
  20. 20.
    P. Gupta, D. Kumar, M.A. Quraishi, O. Parkash, Effect of cobalt oxide doping on the corrosion behavior of iron-alumina metal matrix nanocomposites. Adv. Sci. Eng. Med. (American Scientific Publishers) 5(12), 1279–1291 (2013)CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Pallav Gupta
    • 1
    Email author
  • Devendra Kumar
    • 2
  • M. A. Quraishi
    • 3
  • Om Parkash
    • 2
  1. 1.Department of Mechanical and Automation Engineering, A.S.E.TAmity UniversityNoidaIndia
  2. 2.Department of Ceramic EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  3. 3.Department of ChemistryIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations