Metal Oxide Nanostructures: Growth and Applications

  • Mukesh KumarEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 79)


This chapter provides a comprehensive review of metal oxide nanostructures, their growth and applications. These metal oxides are important transparent conducting materials that have drawn great attention in the scientific community owing to their high optical transparency (~85–95 %) in the visible region of spectrum along with high electrical conductivity (103–104 Ω−1 cm−1). The combination of these properties make these materials suitable for many technological applications in solar cells, heat mirrors, transparent conducting electrodes, display devices and light emitting diodes. The metal oxide nanostructures, particularly nanowires and nanotubes, have also drawn considerable research interest as sensor material because of their high surface-to-volume ratio and suitable surface chemistry for verities of sensor applications. This has opened up potential applications of these materials in the area of environment control devices with high sensing response, low detection limit, low power consumption and high compatibility with microelectronic processing for IC’s. Thus, 1-D metal oxide nanostructures have proven to be the most promising interface for communicating with the outer world. Different growth techniques and various growth models have been discussed for the growth of nanowires, metal-filled nanotubes, octahedrons and nanoflute structures. The article concludes with a glimpse of some recent work based on metal oxide photodetector especially in deep ultraviolet region (DUV) (<280 nm) which would provide futuristic application in optical switching, single photon detection and communication.


Metal oxide nanostructures Nanowires Nanotubes growth techniques Growth models and applications 


  1. 1.
    D.S. Ginley, H. Hosono, D.C. Paine (eds.), Hand book of transparent conductors (Springer, Berlin, 2010). ISBN 978-1-4419-1637-2Google Scholar
  2. 2.
    K.L. Chopra, S. Major, D.K. Pandya, Transparent conductors: a status review. Thin Film 102, 1 (1983)CrossRefGoogle Scholar
  3. 3.
    T. Kamiya, H. Hosono, Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater 2, 15 (2010)CrossRefGoogle Scholar
  4. 4.
    G.Z. Xing, J.B. Yi, D.D. Wang, L. Liao, T. Yu, Z.X. Shen, C.H.A. Huan, T.C. Sum, J. Ding, T. Wu, Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3−δ nanostructures. Phys. Rev. B 79, 174406 (2009)CrossRefGoogle Scholar
  5. 5.
    H.T. Chen, S.J. Xiong, X.L. Wu, J. Zhu, J.C. Shen, Tin oxide nanoribbons with vacancy structures in luminescence-sensitive oxygen sensing. Nano Lett. 09, 1926 (2009)CrossRefGoogle Scholar
  6. 6.
    R.M. Pasquarelli, D.S. Ginley, R. O’Hayrea, Solution processing of transparent conductors: from flask to film. Chem. Soc. Rev. 40, 5406 (2011)CrossRefGoogle Scholar
  7. 7.
    M.P. Taylor, D.W. Readey, C.W. Teplin, M.F.A.M. van Hest, J.L. Alleman, M.S. Dabney, L.M. Gedvilas, B.M. Keyes, B. To, J.D. Perkins, D.S. Ginley, The electrical, optical and structural properties of InxZn1−xOy (0 ≤ x ≤ 1) thin films by combinatorial techniques. Meas. Sci. Technol. 16, 90 (2005)CrossRefGoogle Scholar
  8. 8.
    S. Limpijumnong, P. Reunchan, A. Janotti, C.G.V. de Walle, Hydrogen doping in indium oxide: an ab initio study. Phys. Rev. B 80, 193202 (2009)CrossRefGoogle Scholar
  9. 9.
    P. Nguyen, H.T. Ng, T. Yamada, M.K. Smith, J. Li, J. Han, M. Meyyappan, Direct integration of metal oxide nanowire in vertical field-effect transistor. Nano Lett. 04, 651 (2004)CrossRefGoogle Scholar
  10. 10.
    H. Cao, X. Qiu, Y. Liang, Q. Zhu, M. Zhao, Room-temperature ultraviolet-emitting In2O3 nanowires. Appl. Phys. Lett. 83, 761 (2003)CrossRefGoogle Scholar
  11. 11.
    R.G. Gordon, Criteria for choosing transparent conductors. Mater. Res. Soc. Bull. 25, 52 (2000)CrossRefGoogle Scholar
  12. 12.
    H. Jia, Y. Zhang, X. Chen, J. Shu, X. Luo, Z. Zhang, D. Yu, Polycrystalline silicon/CoSi2 Schottky diode with integrated SiO2 antifuse: a nonvolatile memory cell. Appl. Phys. Lett. 82, 4163 (2003)CrossRefGoogle Scholar
  13. 13.
    C. Li, W. Fan, B. Lei, D. Zhang, S. Han, T. Tang, X. Liu, Z. Liu, S. Asano, M. Meyyappan, J. Han, C. Zhou, Multilevel memory based on molecular devices. Appl. Phys. Lett. 84, 1949 (2004)CrossRefGoogle Scholar
  14. 14.
    P.C. Chen, G. Shen, S. Sukcharoenchoke, C. Zhou, Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Appl. Phys. Lett. 94, 043113 (2009)CrossRefGoogle Scholar
  15. 15.
    M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 (2000)CrossRefGoogle Scholar
  16. 16.
    A. Thiaville, J. Miltat, Small is beautiful. Science 284, 1939 (1999)CrossRefGoogle Scholar
  17. 17.
    A.P. Alivisatos, P.F. Barbara, A.W. Castleman, J. Chang, D.A. Dixon, M.L. Klein, G.L. McLendon, J.S. Miller, M.A. Ratner, P.J. Rossky, S.I. Stupp, M.E. Thompson, From molecules to materials: current trends and future directions. Adv. Mater. 10, 1297 (1998)CrossRefGoogle Scholar
  18. 18.
    H.S. Nalwa, Handbook of nanostructure materials and nanotechnology (Academic Press, New York, 2000)Google Scholar
  19. 19.
    V.V. Mitin, V.A. Kochelap, M.A. Strasico, Quantum heterostructures-microelectrnics and optoelectronics (Cambridge University Press, USA, 1996)Google Scholar
  20. 20.
    I. Aruna, B.R. Mehta, L.K. Malhotra, S.M. Shivaprasad, A color-neutral, Gd nanoparticle switchable mirror with improved optical contrast and response time. Adv. Mater. 16, 169 (2004)CrossRefGoogle Scholar
  21. 21.
    P.E. Lippens, M. Lannoo, Calculation of the band gap for small CdS and ZnS crystallites. Phys. Rev. B 39, 10942 (1989)CrossRefGoogle Scholar
  22. 22.
    W.L. Hughes, Z.L. Wang, Nanobelt as nanocantilever. Appl. Phys. Lett. 82, 2886 (2003)CrossRefGoogle Scholar
  23. 23.
    B. Zenga, G. Xiong, S. Chen, S.H. Jo, W.Z. Wang, D.Z. Wang, Z.F. Rena, Field emission of silicon nanowires. Appl. Phys. Lett. 88, 213108 (2006)CrossRefGoogle Scholar
  24. 24.
    P. Zijlstra, J.W.M. Chon, M. Gu, Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459, 410 (2009)CrossRefGoogle Scholar
  25. 25.
    X.W. Sun, J.Z. Huang, J.X. Wang, Z. Xu, A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm. Nano Lett. 8, 1219 (2008)CrossRefGoogle Scholar
  26. 26.
    A. Modi, N. Koratkar, E. Lass, B. Wei, P.M. Ajayan, Miniaturized gas ionization sensors using carbon nanotubes. Nature 424, 171 (2003)CrossRefGoogle Scholar
  27. 27.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001)CrossRefGoogle Scholar
  28. 28.
    Y.L.F. Qian, J. Xiang, C.M. Lieber, Nanowire electronic and optoelectronic devices. Mater. Today 9, 18 (2006)Google Scholar
  29. 29.
    X.C. Wu, J.M. Hong, Z.J. Han, Y.R. Tao, Fabrication and photoluminescence characteristics of single crystalline In2O3 nanowires. Chem. Phys. Lett. 373, 28 (2003)CrossRefGoogle Scholar
  30. 30.
    Y.F. Hao, G.W. Meng, C.H. Ye, L.D. Zhang, Controlled synthesis of In2O3 octahedrons and nanowires. Cryst. Growth Design 5, 1617 (2005)CrossRefGoogle Scholar
  31. 31.
    Y. Li, Y. Bando, D. Goldberg, Single-crystalline In2O3 nanotubes filled with In. Adv. Mater. 15, 581 (2003)CrossRefGoogle Scholar
  32. 32.
    Y. Yan, Y. Zhang, H. Zeng, J. Zhang, X. Cao, L. Zhang, Tunable synthesis of In2O3 nanowires, nanoarrows and nanorods. Nanotechnology 18, 175601 (2007)CrossRefGoogle Scholar
  33. 33.
    M.J. Zheng, L.D. Zhang, G.H. Li, X.Y. Zhang, X.F. Wang, Ordered indium-oxide nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 79, 839 (2001)CrossRefGoogle Scholar
  34. 34.
    B. Cheng, E.T. Samulski, Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3. J. Mater. Chem. 11, 2901 (2001)CrossRefGoogle Scholar
  35. 35.
    G.Q. Ding, W.Z. Shen, M.J. Zheng, Z.B. Zhou, Indium oxide “rods in dots” nanostructures. Appl. Phys. Lett. 89, 063113 (2006)CrossRefGoogle Scholar
  36. 36.
    J.S. Jeong, J.Y. Lee, C.J. Lee, S.J. An, G.-C. Yi, Synthesis and characterization of high-quality In2O3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature. Chem. Phys. Lett. 384, 246 (2004)CrossRefGoogle Scholar
  37. 37.
    C. O’Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S.B. Newcomb, C.M. Sotomayor Torres, Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices. Nature Nanotech. 4, 239 (2009)CrossRefGoogle Scholar
  38. 38.
    C. Li, D. Zhang, S. Han, X. Liu, T. Tang, C. Zhou, Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties. Adv. Mater. 15, 143 (2003)CrossRefGoogle Scholar
  39. 39.
    H.W. Kim, N.H. Kim, C. Lee, An MOCVD route to In2O3 one-dimensional materials with novel morphologies. Appl. Phys. A 81, 1135 (2005)CrossRefGoogle Scholar
  40. 40.
    Q. Liu, R. Zou, Y. Bando, D. Golberg, J. Hu, Nanowires sheathed inside nanotubes: manipulation, properties and applications. Prog. Mater. Sci. 70, 1 (2015)CrossRefGoogle Scholar
  41. 41.
    Mukesh Kumar, V.N. Singh, B.R. Mehta, J.P. Singh, Tunable synthesis of indium oxide octahedra, nanowires and tubular nanoarrow structures under oxidizing and reducing ambients. Nanotechnology 20, 235608 (2009)CrossRefGoogle Scholar
  42. 42.
    Y. Gao, Y. Bando, D. Goldberg, Melting and expansion behavior of indium in carbon nanotubes. Appl. Phys. Lett. 81, 4133 (2002)CrossRefGoogle Scholar
  43. 43.
    Z.R. Dai, Z.W. Pan, Z.L. Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13, 9 (2003)CrossRefGoogle Scholar
  44. 44.
    H.W. Kim, N.H. Kim, Growth of β-Ga2O3 nanobelts on Ir-coated substrates. Appl. Phys. A 80, 537 (2004)CrossRefGoogle Scholar
  45. 45.
    K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362 (2004)CrossRefGoogle Scholar
  46. 46.
    L.E. Jensen, M.T. Björk, S. Jeppesen, A.I. Persson, B.J. Ohlsson, L. Samuelson, Role of surface diffusion in chemical beam epitaxy of inas nanowires. Nano Lett. 4, 1961 (2004)CrossRefGoogle Scholar
  47. 47.
    P.M. Ajayan, S. Iijima, Capillarity-induced filling of carbon nanotubes. Nature 361, 333 (1993)CrossRefGoogle Scholar
  48. 48.
    Y. Gao, Y. Bando, Nanothermodynamic analysis of surface effect on expansion characteristics of Ga in carbon nanotubes. Appl. Phys. Lett. 81, 3966 (2002)CrossRefGoogle Scholar
  49. 49.
    Mukesh Kumar, V.N. Singh, B.R. Mehta, J.P. Singh, On the origin of photoluminescence in indium oxide octahedron structures. Appl. Phys. Lett. 92, 171907 (2008)CrossRefGoogle Scholar
  50. 50.
    Mukesh Kumar, V.N. Singh, B.R. Mehta, J.P. Singh, Tunable growth of indium oxide from nanoflute to metal-filled nanotubes. J. Phys. Chem. C 116, 5450 (2012)CrossRefGoogle Scholar
  51. 51.
    X. Gou, G. Wang, X. Kong, D. Wexler, J. Horvat, J. Yang, J. Park, Flutelike porous hematite nanorods and branched nanostructures: synthesis, characterisation and application for gas-sensing. Chem. Eur. J. 14, 5996 (2008)CrossRefGoogle Scholar
  52. 52.
    Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Formation of Hollow nanocrystals through the nanoscale kirkendall effect. Science 304, 711 (2004)CrossRefGoogle Scholar
  53. 53.
    A. Cabot, V.F. Puntes, E. Shevchenko, Y. Yin, L. Balcells, A. Matthew, M.A. Marcus, S.M. Hughes, A.P. Alivisatos, Vacancy coalescence during oxidation of iron nanoparticles. J. Am. Chem. Soc. 129, 10358 (2007)CrossRefGoogle Scholar
  54. 54.
    K. Yadav, B.R. Mehta, J.P. Singh, Template-free synthesis of vertically aligned crystalline indium oxide nanotube arrays by pulsed argon flow in a tube-in-tube chemical vapor deposition system. J. Mater. Chem. C 2, 6362 (2014)CrossRefGoogle Scholar
  55. 55.
    H.B. Lu, H. Li, L. Liao, Y. Tian, M. Shuai, J.C. Li, M.F. Hu, Q. Fu, B.P. Zhu, Low-temperature synthesis and photocatalytic properties of ZnO nanotubes by thermal oxidation of Zn nanowires. Nanotechnology 19, 045605 (2008)CrossRefGoogle Scholar
  56. 56.
    A. Karn, M. Kumar, V.N. Singh, B.R. Mehta, S. Aravindan, J.P. Singh, Growth of indium oxide and zinc-doped indium oxide nanostructures. Chem. Vap. Deposition 18, 295 (2012)CrossRefGoogle Scholar
  57. 57.
    L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U.K. Gautam, A. Lugstein, Y. Koide, Y. Bando, D. Golberg, Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts. NanoScale 3, 1120 (2011)CrossRefGoogle Scholar
  58. 58.
    C.L. Kuo, M.H. Huang, The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates. Nanotechnology 19, 155604 (2008)CrossRefGoogle Scholar
  59. 59.
    S.C. Chang, Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements. J. Vac. Sci. Technol. 17, 366 (1980)CrossRefGoogle Scholar
  60. 60.
    G. Korotcenkov, V. Brinzari, J.R. Stetter, I. Blinov, V. Blaja, The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response. Sens. Actuators B 128, 51 (2007)CrossRefGoogle Scholar
  61. 61.
    W. Gopel, New materials and transducers for chemical sensors. Sens. Actuators 18, 1 (1994)CrossRefGoogle Scholar
  62. 62.
    Y. Zhang, J. Xu, Q. Xiang, H. Li, Q. Pan, P. Xu, Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J. Phys. Chem. C 113, 3430 (2009)CrossRefGoogle Scholar
  63. 63.
    H.T. Chen, S.J. Xiong, X.L. Wu, J.C. Shen, P.K. Chu, Tin oxide nanoribbons with vacancy structures in luminescence-sensitive oxygen sensing. Nano Lett. 09, 1926 (2009)CrossRefGoogle Scholar
  64. 64.
    M. Kumar, V.N. Singh, J.P. Singh, B.R. Mehta, The role of stoichiometry of indium and oxygen on gas sensing properties of indium oxide nanostructures. Appl. Phys. Lett. 96, 123114 (2010)CrossRefGoogle Scholar
  65. 65.
    H. Ogawa, M. Nishikawa, A. Abe, Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J. Appl. Phys. 53, 4448 (1982)CrossRefGoogle Scholar
  66. 66.
    T. Zhai, X. Fang, XXu Meiyong Liao, H. Zeng, B. Yoshio, D. Golberg, A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 9, 6504 (2009)CrossRefGoogle Scholar
  67. 67.
    C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003 (2007)CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Functional and Renewable Energy Materials LaboratoryDepartment of Physics, Indian Institute of Technology RoparRupnagarIndia

Personalised recommendations