Chalcogenides to Nanochalcogenides; Exploring Possibilities for Future R&D

  • Zishan H. KhanEmail author
  • Shamshad A. Khan
  • Faisal A. Agel
  • Numan A. Salah
  • M. Husain
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 79)


Chalcogenides (Se, Te and S) are one of the interesting classes of materials studied so far. They have potential applications in phase change recording, memory and switching and various other solid state electronic devices. These materials got a great deal of attention of the scientists worldwide due to their low phonon energy, infrared transparency, large value of refractive index, high photosensitivity, reversible phase transformation etc. There are several techniques for the synthesis of chalcogenide materials, which include melt quenching, thermal evaporation, sputtering, chemical vapor deposition etc. Among all these techniques, melt quenching is one of the simplest and popular techniques for producing chalcogenide glasses. Recently, a lot of work is focussed on production of chalcogenides at nanoscale. The understanding of electrical, optical and thermal properties of these chalcogenides at nanoscale is of great interest both from fundamental and technological point of view. Due to their interesting physical properties, these nanochalcogenides has raised considerable deal of research interest followed by technological applications in the field of micro/optoelectronics. The structure of chalcogenides is disordered at the atomic scale. Therefore, the nanostructures of these materials can easily be tailored and may yield a greater variety than that of crystalline nanostructures. The synthesis of chalcogenide nanostructures in the form of nanoparticles, nanobelts, nanorods, and nanowires has stimulated intense research activity due to their improved properties at nanoscale. With these interesting results, the nano-chalcogenides have become the focus of attention and are expected to present interesting properties. A dramatic change in the physical and chemical properties of these materials is observed due to size reduction. Moreover, the work on the synthesis and characterization of nano-chalcogenides is still in the primarily stages and accordingly, overall features have not been explored so far. Therefore, more research work on these nanochalcogenides is needed for complete understanding of the mechanism responsible for change in properties in these materials at nanoscale. This chapter provides a comprehensive review of chalcogenides and nanochalcogenides, their synthesis and applications.


Chalcogenides Nanochalcogenides DC conductivity Optical band gap Crystallization kinetics 


  1. 1.
    B.T. Kolomiets, Vitreous semiconductors (I), (II). in Proceedings of International Conference on Semiconductor Physics, 1960, (Czechoslovak Academy of Science) p. 884, Phys. Stat. Solidi, 1964, 7, p. 359Google Scholar
  2. 2.
    W.E. Spear, Amorphous and liquid semiconductors. Proc. Phys. Soc. (London) 870, 1139 (1957)Google Scholar
  3. 3.
    J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Stat. Solidi 15, 627 (1966)CrossRefGoogle Scholar
  4. 4.
    S.R. Ovshinisky, Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450 (1968)CrossRefGoogle Scholar
  5. 5.
    Y. Shen, X. Wang, A. Xie, L. Huang, J. Zhu, L. Chen, Synthesis of dextran/Se nanocomposites for nanomedicine application. Mater. Chem. Phys. 109, 534–540 (2008)CrossRefGoogle Scholar
  6. 6.
    H.S. Lee, B. Cheong, T.S. Lee, K.S. Lee, W.M. Kim, J.Y. Huh, Optic material for potential application to super-resolution optical data storage. Surf. Coat. Technol. 193, 335–339 (2005)CrossRefGoogle Scholar
  7. 7.
    J. Pinkas, V. Reichlova, R. Zboril, Z. Moravec, P. Bezdicka, Sonochemical synthesis of amorphous nanoscopic iron(III) oxide from Fe(acac)3. Ultrason. Sonochem. 15, 257–264 (2008)CrossRefGoogle Scholar
  8. 8.
    B. Molina Concha, E. De Biasi, R.D. Zysler, Monte Carlo simulation of Fe–Co amorphous nanoparticles magnetization. Phys. B 403, 390–393 (2008)CrossRefGoogle Scholar
  9. 9.
    L.F. Xi, Y.M. Lam, Synthesis and characterization of CdSe nanorods using a novel microemulsion method at moderate temperature. J. Colloid Interface Sci. 316, 771–778 (2007)CrossRefGoogle Scholar
  10. 10.
    M. Rajamathi, R. Seshadri, Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions. Curr. Opin. Solid State Mater. Sci. 6, 337–345 (2002)CrossRefGoogle Scholar
  11. 11.
    D. Nesheva, H. Hofmeister, Z. Levi, Z. Aneva, Nanoparticle layers of CdSe buried in oxide and chalcogenide thin film matrices. Vacuum 65, 109–113 (2002)CrossRefGoogle Scholar
  12. 12.
    R.A. Street, N.F. Mott, States in the gap in glassy semiconductors. Phys. Rev. Iett. 35, 1293 (1975)Google Scholar
  13. 13.
    N.F. Mott, E.A. Davis, R.A. Street, States in a gap and recombination in amorphous semiconductors. Phil. Mag. 32, 961 (1975)CrossRefGoogle Scholar
  14. 14.
    M. Kastner, D. Adler, H. Fritzsche, Valence-alternation model for localized gap states in lone-pair semiconductors. Phys. Rev. Lett. 37, 1504 (1976)CrossRefGoogle Scholar
  15. 15.
    M.H. Cohen, H. Fritzsche, S.R. Ovshinsky, Simple band model for amorphous semiconducting alloys. Phys. Rev. Lett. 22, 1065 (1969)CrossRefGoogle Scholar
  16. 16.
    N.F. Mott, Introduction to the electron theory of metals. Phil. Mag. 13, 989 (1966)CrossRefGoogle Scholar
  17. 17.
    E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors. Phil. Mag. 22, 903 (1970)CrossRefGoogle Scholar
  18. 18.
    N.F. Mott, Tetrahedrally-bonded amorphous semiconductors. Phil. Mag. 26, 505 (1972)CrossRefGoogle Scholar
  19. 19.
    A.V. Kastner, H. Fritzsche, Photo-induced metastability in amorphous semiconductors. Phil. Mag. 37, 199 (1978)CrossRefGoogle Scholar
  20. 20.
    M. Pollak, T.H. Geballe, Low-frequency conductivity due to hopping processes in silicon. Phys. Rev. 122, 1742 (1961)CrossRefGoogle Scholar
  21. 21.
    S.R. Elliot, A theory of AC conduction in chalcogenide glasses. Phil. Mag. 36, 1291 (1977)CrossRefGoogle Scholar
  22. 22.
    M. Pollak, Coherence and energy transfer in glasses. Phil. Mag. 23, 519 (1976)CrossRefGoogle Scholar
  23. 23.
    M. Grevers, F. Du Pre, Discuss Faraday Soc. A. 42, 47 (1946)CrossRefGoogle Scholar
  24. 24.
    H. Frohlich, Theory of dielectrics; dielectric constant and dielectric loss (Clarendon Press, Oxford, 1949)zbMATHGoogle Scholar
  25. 25.
    G.E. Pike, AC conductivity of scandium oxide and a new hopping model for conductivity. Phys. Rev. 8(6), 1572 (1972)CrossRefGoogle Scholar
  26. 26.
    H. Fritzsche, in Amorphous and Liquid Semiconductors, ed. by J. Tau (Plenum, London, 1974), p. 232Google Scholar
  27. 27.
    N.F. Mott, Localized states in a pseudogap and near extremities of conduction and valence bands. Phil. Mag. 19, 3 (1969)CrossRefGoogle Scholar
  28. 28.
    N.F. Mott, Introductory talk; conduction in non-crystalline materials. J. Non-Crys. Solids 1(72), p. 8 (1993)Google Scholar
  29. 29.
    V. Ambegokar, B.I. Helperin, J.S. Langer, Hopping conductivity in disordered systems. Phys. Rev. B, 4, p. 2162 (1971)Google Scholar
  30. 30.
    A.M. Phak, Electrical properties of thermally evaporated tellurium films. Thin Solid Films 41, 235 (1977)CrossRefGoogle Scholar
  31. 31.
    S.K. Srivastava, Krishna K. Srivastava, Shiveom Srivastava, Narayan P. Srivastava, Optical study of thin film of Ge10Se90−xbix. Int. J. Emerg. Technol. 3(2), 4 (2012)Google Scholar
  32. 32.
    J.P. Borgogro, B. Lazarides, E. Pelletier, Automatic determination of the optical constants of inhomogeneous thin films. Appl. Optics. 21, 4020 (1982)CrossRefGoogle Scholar
  33. 33.
    S.V. Babu, M. David. R.C. Patel, Improved hybrid solar cells via in situ UV polymerization. Appl. Optics. 30(7), p. 839 (1991)Google Scholar
  34. 34.
    F.J. Biatt, Physics of Electron Conduction in Solids (McGraw-Hill, New York, 1968)Google Scholar
  35. 35.
    K.L. Chopra, in Thin Film Phenomena (Mcgraw-Hill, New York, 1969)Google Scholar
  36. 36.
    K.A. Rubin, M. Chen, Progress and issues of phase-change erasable optical recording media. Thin Solid Films 181, 129 (1989)CrossRefGoogle Scholar
  37. 37.
    J. Tauc, in Amorphous and Liquid Semiconductors, ed. by J. Tauc (Plenum Press, New York, 2012) 197, p. 159Google Scholar
  38. 38.
    F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)CrossRefGoogle Scholar
  39. 39.
    T.T. Nang, M. Okuda, T. Matsushita, S. Yokota, A. Suzuki, Electrical and optical properties of gese amorphous thin films. Jpn. J. Appl. Phys. 14, 849 (1976)CrossRefGoogle Scholar
  40. 40.
    M.L. Theye, in Proceedings 5th International Conference on Amorphous and Liquid Semiconductors, vol. 1, p. 479 (1973)Google Scholar
  41. 41.
    YuG Vlasov, E.A. Bychkov, Ion-selective chalcogenide glass electrodes. Ion-sel. Electrode Rev. 9, 5 (1987)Google Scholar
  42. 42.
    Y.G. Vlasov, New solid-state ion-selective electrodes—sensors for chemical analysis of solution. Fres. Z. Anal. Chem. 335, 92 (1989)CrossRefGoogle Scholar
  43. 43.
    Y.G. Vlasov, E.A. Bychkov, A.V. Legin, Chalcogenide glass chemical sensors: research and analytical applications. Talanta 41, 1059 (1994)CrossRefGoogle Scholar
  44. 44.
    J.H. Christensen, P. Clemmesen, G.H. H, K. Liltorp, J. Mortensen, Response characteristics and application of chalcogenide glass Cr(VI) selective electrode. Sens. Actuators B 45(3), 2393 (1997)CrossRefGoogle Scholar
  45. 45.
    R. Todorov, T. Iliev, K. Prtkev, Light-induced changes in the optical properties of thin films of Ge–S–Bi(Tl, In) chalcogenides. J. Non-Crys. Solid 263, 326 (2003)Google Scholar
  46. 46.
    A.A. Alnajjar, The role of thermal treatment on the optical properties of Ge0.15Se0.85 system. Renew. Energy 34, 71 (2009)CrossRefGoogle Scholar
  47. 47.
    M.B. El-Den, N.B. Olsen, I.H. Pedersen, P. Viscor, Dc and ac electrical transport in assete systems. J. Non-Crys. Solids 92, 20 (1987)CrossRefGoogle Scholar
  48. 48.
    S.A. Khan, F.S. Al-Hazmi, A.M. Al-Sanosi, A.S. Faidah, S.J. Yaghmour, A.A. Al-Ghamdi, Effect of Ag incorporation on electrical and optical properties of Se–S chalcogenide thin films. Phys. B 404, 1415 (2009)CrossRefGoogle Scholar
  49. 49.
    Z.H. Khan, M. Zulfequar, M. Ilyas, M. Husain, K.S. Begum, Electrical and thermal properties of a-(Se70Te30)100−x(Se98Bi2)x alloys. Current Appl. Phys. 2, 167 (2002)CrossRefGoogle Scholar
  50. 50.
    A. Ahmad, S.A. Khan, K. Sinha, L. Kumar, Z.H. Khan, M. Zulfequar, M. Husain, Optical characterization of vacuum evaporated a-Se80Te20−x Cux thin films. Vacuum 82, 608 (2008)CrossRefGoogle Scholar
  51. 51.
    E. Abd El-Wahabb, A.M. Farid, Electrical conductivity and optical absorption of (Ge2S3)1(Sb2Te3)1 amorphous thin films. J. Alloys Comp. 472, 352 (2009)CrossRefGoogle Scholar
  52. 52.
    Ambika P.B. Barman, An optical study of vacuum evaporated Se85−x Te15 Bix chalcogenide thin films. Phys. B Condense Matter 405, 822 (2010)CrossRefGoogle Scholar
  53. 53.
    A.M. Salem, Y.A. El-Gendy, E.A. El-Sayad, Optical and electrical properties of thermally evaporated In49Se48Sn3 films. Phys. B 404, 2425 (2009)CrossRefGoogle Scholar
  54. 54.
    S.A. Khan, F.S. Al-Hazmi, S. Al-Heniti, A.S. Faidah, A.A. Al-Ghamdi, Effect of cadmium addition on the optical constants of thermally evaporated amorphous Se–S–Cd thin films. Current Appl. Phys. 10, 145 (2010)CrossRefGoogle Scholar
  55. 55.
    A.S. Khomane, P.P. Hankare, Structural, optical and electrical characterization of chemically deposited cdSe thin films. J. Alloys Comp. 489, 605 (2010)CrossRefGoogle Scholar
  56. 56.
    K.A. Aly, N. Afify, A.M. Aboushly, Incorporation of Bi, Cd and Zn on the optical properties of Ge20Se80 thin films. Phys. B Condense Matter. 405, 1846 (2010)CrossRefGoogle Scholar
  57. 57.
    J. Orava, T. Kohoutek, T. Wagner, Z. Cerna, M. Vlcek, L. Benes, B. Frumarova, M. Frumar, Optical and structural properties of Ge–Se bulk glasses and Ag–Ge–Se thin films. J. Non-Crys. Solids 355, 1951 (2009)CrossRefGoogle Scholar
  58. 58.
    V. Takats, P. Nemec, A. Csik, S. Kokenyesi, Photo-and thermally induced interdiffusion in Se/As2S3 nanomultilayers prepared by pulsed laser deposition and thermal evaporation. J. Phys. Chem. Solids 68, 948 (2007)CrossRefGoogle Scholar
  59. 59.
    F.A. Al-Agel, S.A. Khan, E.A. Al-Arfaj, F.M. Al-Marzouki, A.A. Al-Ghamdi, Z.H. Khan, M. Zulfequar, Influence of laser-irradiation on structural and optical properties of phase change Ga25Se75−xTex thin films. Mater. Lett. 92, 424 (2013)CrossRefGoogle Scholar
  60. 60.
    M.A. Alvi, S.A. Khan, A.A. Al-Ghamdi, Photo-induced effects on structural and optical properties of Ga15Se81Ag4 chalcogenide thin films. J. Luminescence 132, 1237 (2012)CrossRefGoogle Scholar
  61. 61.
    F.A. Al-Agel, Structural and optical properties of Te doped Ge–Se phase-change thin films: a material for optical storage. Mater. Sci. Semicond. Process. 18, 36 (2014)CrossRefGoogle Scholar
  62. 62.
    Z.H. Khan, N. Salah, S. Habib, A.A. Al-Ghamdi, S.A. Khan, Electrical and optical properties of a-SexTe100−x thin films. Opt. Laser Technol. 44, 6 (2012)CrossRefGoogle Scholar
  63. 63.
    A.A. Shaheen, M.M.A. Imran, O.A. Lafi, M.I. Awadallah, M.K. Abdullah, Optical properties of a-Se90In10−xSnx chalcogenide thin films before and after gamma irradiation. Radiat. Phys. Chem. 79(9), 923 (2010)CrossRefGoogle Scholar
  64. 64.
    F.A. Al-Agel, Effects of annealing temperatures on optical and electrical properties of vacuum evaporated Ga 15Se77In8 chalcogenide thin films. Vacuum 85(9), 892 (2011)CrossRefGoogle Scholar
  65. 65.
    A.A. El-Sebaii, S.A. Khan, F.M. Al-Marzouki, A.S. Faidah, A.A. Al-Ghamdi, Role of heat treatment on structural and optical properties of thermally evaporated Ga10Se81Pb9 chalcogenide thin films. J. Luminescence 132(8), 2082–2087 (2012)CrossRefGoogle Scholar
  66. 66.
    A.A. Al-Ghamdi, S.A. Khan, S. Al-Heniti, F.A. Al-Agel, T. Al-Harbi, M. Zulfequar, Effects of laser irradiation on optical properties of amorphous and annealed Ga15Se81In4 and Ga15Se79In6 chalcogenide thin films. J. Alloys Compd. 505(1), 229 (2010)CrossRefGoogle Scholar
  67. 67.
    S.A. Khan, J.K. Lal, A.A. Al-Ghamdi, Thermal annealing effect of on optical constants of vacuum evaporated Se75S25−xCdx chalcogenide thin films, Opt. Laser Technol. 42(5), p. 839 (2010)Google Scholar
  68. 68.
    F.S. Al-Hazmi, Effect of annealing on optical constants of Se75S25−xCdx chalcogenide thin films. Phys. B 404(8–11), 1354 (2009)CrossRefGoogle Scholar
  69. 69.
    R. Chauhan, A.K. Srivastava, A. Tripathi, K.K. Srivastava, Photo-induced optical changes in GexAs40Se60−x thin films. Prog. Nat. Sci. Mater. Int. 20, 54 (2010)CrossRefGoogle Scholar
  70. 70.
    A.M. Farid, I.K. El-Zawawi, A.H. Ammar, Compositional effects on the optical properties of GexSb40−xSe60 thin films. Vacuum 86(9), 1255 (2012)CrossRefGoogle Scholar
  71. 71.
    R. Chauhan, A.K. Srivastava, A. Tripathi, K.K. Srivastava, Linear and nonlinear optical changes in amorphous As2Se3 thin film upon UV exposure. Prog. Nat. Sci. Matet. Int. 21(3), 205 (2011)CrossRefGoogle Scholar
  72. 72.
    M.M.A. Imran, O.A. Lafi, M. Abu-Samak, Effect of thermal annealing on some electrical properties and optical band gap of vacuum evaporated Se65Ga30In5 thin films. Vacuum 86(10), 1589 (2012)CrossRefGoogle Scholar
  73. 73.
    M. Mishra, R. Cauhan, A. Katiyar, K.K. Srivastava, Optical properties of amorphous thin film of Se–Te–Ag system prepared by using thermal evaporation technique. Prog. Nat. Sci. Mater. Int. 21(1), 36–39 (2011)CrossRefGoogle Scholar
  74. 74.
    M. Abdel Rafea, H. Farid, Mater. Chem. Phys. 113, 268 (2009)CrossRefGoogle Scholar
  75. 75.
    A.H. Ammar, N.M. Abdel-Moniem, M. Farag, Influence of indium content on the optical, electrical and crystallization kinetics of Se100−xInx thin films deposited by flash evaporation technique. Phys. B 407(3), 356 (2012)CrossRefGoogle Scholar
  76. 76.
    A.K. Diab, M.M. Wakkad, EKh Shokr, W.S. Mohamed, Structural and optical properties of In35Sb45Se20−xTex phase-change thin films. J. Phys. Chem. Solids 71(9), 1381 (2010)CrossRefGoogle Scholar
  77. 77.
    A.F. Qasrawi, Temperature effects on the optoelectronic properties of agin 5s8 thin films. Thin Solid Films 519(11), p. 3768 (2011)Google Scholar
  78. 78.
    K.A. Aly, N. Afify, A.M. Abousehlly, A.M. Abd Elnaeim, Optical band gap and refractive index dispersion parameters of In–Se–Te amorphous films. J. Non-Crys. Solids 357(10), 2029 (2011)CrossRefGoogle Scholar
  79. 79.
    M.A. Alvi, S.A. Khan, A.A. Al-Ghamdi, Photo-induced effects on electrical properties of Ga15Se81Ag4 chalcogenide thin films. Mater. Lett. 66(1), 273 (2012)CrossRefGoogle Scholar
  80. 80.
    Zong-Hong Lin and R. Chris, “Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles” Maters. Chem. Phys., 2005, 92(2–3), p.591Google Scholar
  81. 81.
    Xueyun Gao, Tao Gao, Lide Zhang, Solution-solid growth of α-monoclinic selenium nanowires at room temperature. J. Mater. Chem. 13, 6 (2003)CrossRefGoogle Scholar
  82. 82.
    X.L. Liu, Y.J. Zhu, A precursor nanowire templated route to CdS nanowires. Mater. Lett. 63, 1085 (2009)CrossRefGoogle Scholar
  83. 83.
    M.F. Kotkata, A.E. Masoud, M.B. Mohamed, E.A. Mahmoud, Synthesis and structural characterization of CdS nanoparticles. Phys. E 41, 640–645 (2009)CrossRefGoogle Scholar
  84. 84.
    S. Wageh, M.H. Badr, M.H. Khalil, A.S. Eid, Strong confinement of PbSe nanocrystals in phosphate glass. Phys. E 41, 1157–1163 (2009)CrossRefGoogle Scholar
  85. 85.
    R. Todorov, A. Paneva, K. Petkov, Optical characterization of thin chalcogenide films by multiple-angle-of-incidence ellipsometry. Thin Solid Films 518(12), 3280 (2010)CrossRefGoogle Scholar
  86. 86.
    Z. Chaia, Z. Penga, C. Wanga, H. Zhang, Synthesis of polycrystalline nanotubular Bi2Te3. Mater. Chem. Phys. 113, 664 (2009)CrossRefGoogle Scholar
  87. 87.
    S. Li, H.Z. Wang, W.W. Xu, H. Si, X. Tao, S. Lou, Z. Du, L.S. Li, Synthesis and assembly of monodisperse spherical Cu2S nanocrystals. J. Colloid. Interface Sci. 330, 483 (2009)CrossRefGoogle Scholar
  88. 88.
    J.K. Dongre, V. Nogriya, M. Ramrakhiani, Structural, optical and photoelectrochemical characterization of CdS nanowire synthesized by chemical bath deposition and wet chemical etching. Appl. Surf. Sci. 255, 6115 (2009)CrossRefGoogle Scholar
  89. 89.
    G.L. Tan, J.H. Du, Q.J. Zhang, Structural evolution and optical properties of CdSe nanocrystals prepared by mechanical alloying. J. Alloys Compd. 468, 421 (2009)CrossRefGoogle Scholar
  90. 90.
    Y. Yang, Y. Chai, D. Fanglin, Controllable synthesis of flower-like Cd1−xZnxSe microstructures from the self-prepared precursor. J. Alloys Compd. 478, 513 (2009)CrossRefGoogle Scholar
  91. 91.
    P.P. Ingole, P.M. Joshi, S.K. Haram, Room temperature synthesis of 1-hexanethiolate capped Cu2−xSe quantum dots in Triton X-100 water-in-oil microemulsions. Colloids Surf. A Physicochem. Eng. Aspects 337, 136 (2009)CrossRefGoogle Scholar
  92. 92.
    S. Lee, S. Hong, B. Park, S.R. Paik, S. Jung, Agarose and gellan as morphology-directing agents for the preparation of selenium nanowires in water. Carbohydr. Res. 344, 260 (2009)CrossRefGoogle Scholar
  93. 93.
    Q. Han, L. Chen, W. Zhu, M. Wang, X. Wang, X. Yang, L. Lu, Synthesis of Sb2S3 peanut-shaped superstructures. Mater. Lett. 63, 1030 (2009)CrossRefGoogle Scholar
  94. 94.
    K. Liu, H. Liu, J. Wang, L. Feng, Synthesis and characterization of SnSe2 hexagonal nanoflakes. Mater. Lett. 63, 512 (2009)CrossRefGoogle Scholar
  95. 95.
    Z. Li, X. Tao, W. Zhishen, P. Zhang, Z. Zhang, Preparation of In2S3 nanopraricle by ultrasonic dispersion and its tribology property. Ultrason. Sonochem. 16, 221 (2009)CrossRefGoogle Scholar
  96. 96.
    Y. Li, Y. Zhu, C. Li, X. Yang, C. Li, Synthesis of ZnS nanoparticles into the pore of mesoporous silica spheres. Mater. Lett. 63, p. 1068 (2009)Google Scholar
  97. 97.
    Z.H. Khan, S.A. Khan, N. Salah, S. Habib, S.M. Abdallah El-Hamidy, A.A. Al-Ghamdi, Effect of composition on electrical and optical properties of thin films of amorphous GaxSe100−x Nanorods. Nano Res. Letts. 5, 1512 (2010)CrossRefGoogle Scholar
  98. 98.
    Z.H. Khan, A.A. Al-Ghamdi, S.A. Khan, S. Habib, N. Salah, Morphology and optical properties of thin films of GaxSe100−x nanoparticles. Nanosci. Naotech. Lett. 3, 1 (2010)Google Scholar
  99. 99.
    Z.H. Khan, S.A. Khan, N. Salah, A.A. Al-Ghamdi, S. Habib, Electrical properties of thin films of a-GaxTe100−x composed of nanoparticles. Phil. Mag. Lett. 93(7), 207 (2010)Google Scholar
  100. 100.
    Z.H. Khan, S.A. Khan, N. Salah, A.A. Al-Ghamdi, S. Habib, Electrical transport properties of a-Se87Te13 nanorods. J. Expt. Nanosci. 6, 337 (2010)CrossRefGoogle Scholar
  101. 101.
    S.A. Khan, F.A. Al-Agel, A.S. Faidah, S.J. Yaghmour, A.A. Al-Ghamdi, Characterization of Se88Te12 nanostructured chalcogenide prepared by ball milling. Mater. Lett. 64, 1391 (2010)CrossRefGoogle Scholar
  102. 102.
    A.A. Al-Ghamdi, S.A. Khan, A. Nagat, M.S. Abd El-Sadek, Synthesis and Optical characterization of nanocrystalline cdte thin films. Opt. Laser Technol. 42, 1181 (2010)CrossRefGoogle Scholar
  103. 103.
    S.A. Khan, F.A. Al-Agel, A.A. Al-Ghamdi, Optical characterization of nanocrystalline and chalcogenides. Superlattices Microstruct. 47, 695 (2010)CrossRefGoogle Scholar
  104. 104.
    N. Salah, S.S. Habib, A. Memic, N.D. Alharbi, S.S. Babkair, Z.H. Khan, Syntheses and characterization of thin films of Te94Se6 nanoparticles for semiconducting and optical devices. Thin Solid Films 531, 70 (2013)CrossRefGoogle Scholar
  105. 105.
    F.A. Agel, Optical and structural properties of a-SexTe100−x aligned nanorods. Nanoscale Res. Lett. 8, 520 (2013)CrossRefGoogle Scholar
  106. 106.
    M.A. Alvi, Z.H. Khan, Synthesis and characterization of nanoparticle thin films of a-(PbSe)100−xCdx lead chalcogenides. Nanoscale Res. Lett. 8, 148 (2013)CrossRefGoogle Scholar
  107. 107.
    N. Salah, S.S. Habib, Z.H. Khan, E. Alarfaj, S.A. Khan, Synthesis and characterization of Se35Te65−xgex nanoparticle films and their optical properties. J. Nanomater. 2012, p. 393084 (2012)Google Scholar
  108. 108.
    Z.H. Khan, M. Husain, Electrical and optical properties of thin film of a-Se70Te30 nanorods. J. Alloy. Compd. 486, 774 (2009)CrossRefGoogle Scholar
  109. 109.
    R.M. Mehra, P.C. Mathur, Analysis of single polaron hopping in ac conductivity of amorphous Ge20SbxSe80−x glasses. Thin Solid Films 170, 15 (1989)CrossRefGoogle Scholar
  110. 110.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon, Oxford, 1979), p. 428Google Scholar
  111. 111.
    E.A. Davis, Electronic and Structural Properties of Amorphous Semiconductors (Academic Press, London, 1973), p. 425Google Scholar
  112. 112.
    J. Nishi, S. Morimoto, I. Ingawa, R. Iizuka, T. Yamashita, Recent advances and trends in chalcogenide glass fiber technology: a review. J. Non-Crys. Solids 140, 199 (1992)CrossRefGoogle Scholar
  113. 113.
    J.A. Savage, Infrared Opical Materials and their Anti-reflection Coatings (Adam Hilger, Bristol, 1985)Google Scholar
  114. 114.
    A.B. Seddon, M.A. Hemingway, Thermal characterisation of infrared-transmitting gesi glasses. J. Non-Crys. Solids 161, 323 (1993)CrossRefGoogle Scholar
  115. 115.
    W. Leung, N.W. Cheung, Studies of Ag photodoping in GexSe1-x glass using microlithography techniques. Appl. Phys. Lett. 46, 481 (1985)CrossRefGoogle Scholar
  116. 116.
    J. Feinleib, J.P. De Neufville, S.C. Moss, S.R. Ovshinsky, Rapid reversible light-induced crystallization of amorphous semiconductors. Appl. Phys. Lett. 18, 254 (1971)CrossRefGoogle Scholar
  117. 117.
    J.P. Deneufville, S.C. Moss, S.R. Ovshinsky, Photostructural transformations in amorphous As2Se3 and As2S3 films. J. Non-Crys. Solids 13, 191 (1973)CrossRefGoogle Scholar
  118. 118.
    B. Singh, S. Rajagopalan, P.K. Bhatt, D.K. Pandey, K.L. Chopra, Photocontraction effect in amorphous in Se1−XGex films. Solid State Commun. 29, 167 (1979)CrossRefGoogle Scholar
  119. 119.
    K.L. Chopra, S. Harshvardhan, S. Rajagopalan, L.K. Malhotra, On the origin of photocontraction effect in amorphous chalcogenide films. Solid State Commun. 40, 387 (1981)CrossRefGoogle Scholar
  120. 120.
    T. Okabe, S. Endu, S. Saito, Simultaneous crystallization of both elements in amorphous GeSb and GeAl eutectic alloys. J. Non-Cryst. Solids 222, 117 (1990)Google Scholar
  121. 121.
    J.M. Del Pozo, M.P. Herrero, Crystallization behavior of amorphous Ge(1−x)Sb1−x thin-films. J. Non-Crys. Solids 185, 183 (1995)CrossRefGoogle Scholar
  122. 122.
    T. Rajagopalen, G.B. Reddy, Effect of annealing rate on the crystallization process in Ge5Bi18Se77 films. Thin Solid Films 353, 254 (1999)CrossRefGoogle Scholar
  123. 123.
    J.M. Del Pozo, L. Diaz, Optical study of Ge(1−x)Sb1−x crystallization. J. Non-Crys. Solids 243, 45 (1999)CrossRefGoogle Scholar
  124. 124.
    A.H. Moharram, M.S. Rasheedy, A simple method for crystallization kinetics determination and its application to Ge10Te35As55 glass. Phys. Stat. Sol. (A) 169, 33 (1998)CrossRefGoogle Scholar
  125. 125.
    M. Chen, K.A. Rubin, R.W. Barton, Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 9, 502 (1986)CrossRefGoogle Scholar
  126. 126.
    Z.H. Khan, M. Zulfequar, M. Husain, Effect on Sb on Transport Properties of a-Se80−xGa20Sbx thin films. Jpn. J. Appl. Phys. 37, 23 (1998)CrossRefGoogle Scholar
  127. 127.
    M. Abkowitz, G.M.T. Foley, J.M. Morkovics, A.C. Palumbo, Etastable photoenhanced thermal generation in a-SeTe alloys. AIP Conf. Proc. 120, 117 (1984)CrossRefGoogle Scholar
  128. 128.
    N. Afify, Calorimetric study on the crystallization of a Se0.8Te0.2 chalcogenide glass. J. Non-Crys. Solids 142, 247 (1992)CrossRefGoogle Scholar
  129. 129.
    N. Afify, Kinetics study of non-isothermal crystallization in Se0.7Te0.3 chalcogenide glass. J. Non-Crys. Solids 136, 67 (1991)CrossRefGoogle Scholar
  130. 130.
    A.K. Agnihotri, A. Kumar, A.N. Nigam, The X-ray K-absorption studies in glassy Se80Te20 and Se80Te10Sb10. J. Non-Crys. Solids 101, 127 (1988)CrossRefGoogle Scholar
  131. 131.
    V. Damodara Das, P. Jansi Lakshmi, ‘‘Explosive’’ crystallization of amorphous Se80Te20 alloy thin films and oriented growth of crystallites. Phys. Rev. B 37, 720 (1988)CrossRefGoogle Scholar
  132. 132.
    S. Mahadevan, A. Giridhar, A.K. Singh, Calorimetric measurements on As–Sb–Se glasses. J. Non-Cryst. Solids 88, 11 (1986)CrossRefGoogle Scholar
  133. 133.
    H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957)CrossRefGoogle Scholar
  134. 134.
    M.A. Abdel-Rahim, M. Abu El-Oyoun, A.A. Abu-Sehly, Calorimetric study of the chalcogenide Se72.5Te20Sb7.5 glass. J. Phys. D Appl. Phys. 34, 2541 (2001)CrossRefGoogle Scholar
  135. 135.
    J. Vazquez, P.L. Lopez-Alemany, P. Villares, R. Jimenez-Garay, Generalization of the Avrami equation for the analysis of non-isothermal transformation kinetics. Application to the crystallization of the Cu0.20As0.30Se0.50 alloy. J. Phys. Chem. Solids 61, 493 (2000)CrossRefGoogle Scholar
  136. 136.
    A. El-Salam, M. Abousehly, Activation energy of Se2Ge0.2Sb0.8 chalcogenide glass by differential scanning calorimetry. J Thermal Anal 46, 177–186 (1996)CrossRefGoogle Scholar
  137. 137.
    M.J. Strink, A.M. Zahra, Determination of the transformation exponent s from experiments at constant heating rate. Thermochim. Acta 298, 179 (1997)CrossRefGoogle Scholar
  138. 138.
    W.A. Johnson, K.F. Mehl, Crystallization kinetics of the chalcogenide Bi10Se90 glass. Trans. Inst. Mining Met. Eng. 135, 315 (1981)Google Scholar
  139. 139.
    M. Avrami, Interfacial electrochemistry: theory: experiment, and applications. J. Chem. Phys. 7, 103 (1939)CrossRefGoogle Scholar
  140. 140.
    M. Avrami, Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212 (1940)CrossRefGoogle Scholar
  141. 141.
    M. Avrami, Kinetics of phase change. III. granulation, phase change, and microstructure. J Chem. Phys 9, 177 (1941)CrossRefGoogle Scholar
  142. 142.
    F. Liu, F. Sommer, E.J. Mittemeijerr, An analytical model for isothermal and isochronal transformation kinetics. J. Mater. Sci. 39, 1621 (2004)CrossRefGoogle Scholar
  143. 143.
    A.A. Abou-Sehly, S.N. Alamri, A.A. Joraid, Measurements of DSC isothermal crystallization kinetics in amorphous selenium bulk samples. J. Alloys Compd. 476, 348 (2009)CrossRefGoogle Scholar
  144. 144.
    S. Vyazovkin, On the phenomenon of variable activation energy for condensed phase reactions. New J. Chem. 24, 913 (2000)CrossRefGoogle Scholar
  145. 145.
    K. Matusita, T. Konatsu, R. Yokota, Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J. Mater. Sci. 19, 291 (1984)CrossRefGoogle Scholar
  146. 146.
    T. Ozawa, A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn 38, 188 (1965)CrossRefGoogle Scholar
  147. 147.
    C.T. Moynihan, A.J. Easteal, J. Wilder, J. Tucker, Dependence of the fictive temperature of glass on cooling rate. J. Phys. Chem. 78, 2673 (1974)CrossRefGoogle Scholar
  148. 148.
    F.A. Al-Agel, E.A. Al-Arfaj, F.M. Al-Marzouki, Shamshad A. Khan, A.A. Al-Ghamdi, Study of phase separation in Ga25Se75−xTex chalcogenide thin films. Prog. Nat. Sci. Mater. Int. 23, 139 (2013)CrossRefGoogle Scholar
  149. 149.
    F.A. Al-Agel, E.A. Al-Arfaj, F.M. Al-Marzouki, S.A. Khan, Z.H. Khan, A.A. Al-Ghamdi, Phase transformation kinetics and optical properties of Ga–Se–Sb phase-change thin films. Mater. Sci. Semicond. Process. 16, 884 (2013)CrossRefGoogle Scholar
  150. 150.
    F.A. Al-Agel, Crystallization kinetics and effect of thermal annealing on optical constants in a-Ge25Se75−xtex glasses. J. Alloys Compd. 568, 92 (2013)CrossRefGoogle Scholar
  151. 151.
    Zishan H. Khan, N. Salah, Sami Habib, S.A. Khan, Kinetics of non-isothermal crystallization in Ga15Se76Pb9 chalcogenide glasses by differential scanning calorimeter (DSC). Chalcogenide Lett. 8, 615 (2011)Google Scholar
  152. 152.
    Shamshad A. Khan, J.K. Lal, F.A. Al-Agel, M.A. Alvi, Non-isothermal crystallization in Ga–Se–Ag chalcogenide glass by differential scanning calorimetry. J. Alloy. Compd. 554, 227 (2013)CrossRefGoogle Scholar
  153. 153.
    Z.H. Khan, S.A. Khan, M.A. Alvi, Study of glass transition and crystallization behaviour in Ga15Se80−xpbx (0 ≤ x ≤ 6). Acta Phys. Pol. A, 201, 123(1)Google Scholar
  154. 154.
    A.S. Farid, H.E. Atiya, Glass transition and crystallization study of Te additive Se Bi chalcogenide glass. J. Non-Cryst. Solids 408, 123 (2015)CrossRefGoogle Scholar
  155. 155.
    R. Svoboda, P. Bezdička, J. Gutwirth, J. Málek, Crystallization processes in Ge2Sb2Se4Te glass. Maters. Res. Bull. 61, 207 (2015)CrossRefGoogle Scholar
  156. 156.
    A. Dahshan, K.A. Aly, Characterization of new quaternary Ge20Se60Sb20−xAgx (0 ≤ x ≤ 20 at.%) glasses. J. Non-Cryst. Solids 408, 62 (2015)CrossRefGoogle Scholar
  157. 157.
    M.I. Abd-Elrahman, R.M. Khafagy, S.A. Zaki, M.M. Hafiz, Characterization of optical constants of Se30Te70 thin film: effect of the thickness. Thermochim. Acta 575, 285 (2014)CrossRefGoogle Scholar
  158. 158.
    O.A. Lafi, M.M.A. Imran, N.I. Abu-Shaweesh, F.M. Al-Kurdi, I.K. Khatatbeh, Effect of chemical ordering on the crystallization behavior of Se90Te10−xSnx (x = 2, 4, 6, and 8) chalcogenide glasses. J. Phys. Chem. Solids 75(6), 790 (2014)CrossRefGoogle Scholar
  159. 159.
    B. Bhoi, V. Srinivas, V. Singh, Evolution of microstructure and magnetic properties of nanocrystalline Fe70−xCuxCo30 alloy prepared by mechanical alloying. J. Alloy. Compd. 496, 423 (2010)CrossRefGoogle Scholar
  160. 160.
    F.A. Al-Agel, Z.H. Khan, F.M. Al-Marzouki, S.A. Khan, A.A. Al-Ghamdi, Kinetics of phase transformation in nanostructured GaSeTe glasses. J. Nanosci. Nanotechnol. 13, 2001 (2013)CrossRefGoogle Scholar
  161. 161.
    M. Abu El-Oyoun, DSC studies on the transformation kinetics of two separated crystallization peaks of Si12.5Te87.5 chalcogenide glass: an application of the theoretical method developed and isoconversional method. Mater. Chem. Phys. 131(1–2), 495 (2011)CrossRefGoogle Scholar
  162. 162.
    B.S. Patial, N. Thakur, S.K. Tripathi, On the crystallization kinetics of In additive Se–Te chalcogenide glasses. Thermochim. Acta 513(1–2), 1 (2011)CrossRefGoogle Scholar
  163. 163.
    S. Kumar, K. Singh, The effect of Indium additives on crystallization kinetics and thermal stability of Se–Te–Sn chalcogenide glasses. Phys. B 406(8), 1519 (2011)CrossRefGoogle Scholar
  164. 164.
    A.F. Kozmidis-Petrović, S.R. Lukić, G.R. Štrbac, Calculation of non-isothermal crystallization parameters for the Cu15 (As2Se3)85 metal-chalcogenide glass. J. Non-Cryst. Solids 356(41–42), 2151 (2010)CrossRefGoogle Scholar
  165. 165.
    O.A. Lafi, Glass transition kinetics and crystallization mechanism in Se90Cd8Bi2 and Se90Cd6Bi4 chalcogenide glasses. J. Alloy. Compd. 519, 123 (2012)CrossRefGoogle Scholar
  166. 166.
    M. Abu El-Oyoun, Evaluation of the transformation kinetics of Ga7.5Se92.5 chalcogenide glass using the theoretical method developed and isoconversional analyses. J. Alloy. Compd. 507(1), 6 (2010)CrossRefGoogle Scholar
  167. 167.
    F.A. Al-Agel, S.A. Khan, E.A. Al-Arfaj, A.A. Al-Ghamdi, Kinetics of non-isothermal crystallization and glass transition phenomena in Ga10Se87Pb3 and Ga10Se84Pb6 chalcogenide glasses by DSC. J. Non-Cryst. Solids 358, 564–570 (2012)CrossRefGoogle Scholar
  168. 168.
    A.M. Abd Elnaeim, K.A. Aly, N. Afify, A.M. Abousehlly, Glass transition and crystallization kinetics of Inx(Se0.75Te0.25)100−x chalcogenide glasses. J. Alloy. Compd. 491(1–2), 85 (2010)CrossRefGoogle Scholar
  169. 169.
    M.M.A. Imran, Thermal characterization of Se85−xSb15Snx (10 ≤ x ≤ 13) chalcogenide glasses. Phys. B 406(22), 4289 (2011)CrossRefGoogle Scholar
  170. 170.
    M.M. Abd El-Raheem, H.M. Ali, Crystallization kinetics determination of Pb15Ge27Se58 chalcogenide glass by using the various heating rates (VHR) method. J. Non-Cryst. Solids 356(2), 77 (2010)CrossRefGoogle Scholar
  171. 171.
    C.M. Muiva, S.T. Sathiaraj, J.M. Mwabora, Crystallization kinetics, glass forming ability and thermal stability in some glassy Se100−xInx chalcogenide alloys. J. Non-Cryst. Solids 357(22–23), 3726 (2011)CrossRefGoogle Scholar
  172. 172.
    A.A. Al-Ghamdi, M.A. Alvi, S.A. Khan, Non-isothermal crystallization kinetic study on Ga15Se85−xAgx chalcogenide glasses by using differential scanning calorimetry. J. Alloy. Compd. 509(5), 2087 (2011)CrossRefGoogle Scholar
  173. 173.
    A.S. Soltan, A study of DSC non-isothermal pre-crystallization kinetics of Pb10Se90 glass using isoconversional kinetic analysis. Phys. B 405(3), 965 (2010)MathSciNetCrossRefGoogle Scholar
  174. 174.
    F. Abdel-Wahab, Observation of phase separation in some Se–Te–Sn chalcogenide glasses. Physica B 406(5), 1053 (2011)CrossRefGoogle Scholar
  175. 175.
    M. Abu El-Oyoun, The effect of addition of gallium on the thermal stability and crystallization kinetic parameters of GaxSe100−x glass system. J. Non-Cryst. Solids 357(7), 1729 (2011)CrossRefGoogle Scholar
  176. 176.
    M. Shapaan, E.R. Shaaban, Studying the crystallization behavior of the Se85S10Sb5 chalcogenide semiconducting glass by DSC and X-ray diffraction. J. Phys. Chem. Solids 71(9), 1301 (2010)CrossRefGoogle Scholar
  177. 177.
    S. Kumar, K. Singh, Glass transition, thermal stability and glass-forming tendency of Se90−xTe5Sn5Inx multicomponent chalcogenide glasses. Thermochim. Acta 528, 32 (2012)CrossRefGoogle Scholar
  178. 178.
    M. Abu El-Oyoun, The effect of addition of gallium on the thermal stability and crystallization kinetic parameters of GaxSe100−x glass system. Phys. B 406, 125 (2011)CrossRefGoogle Scholar
  179. 179.
    A.A. Abu-Sehly, Kinetics of the glass transition in As22S78 chalcogenide glass: activation energy and fragility index. Mater. Chem. Phys. 125(3), 672 (2011)CrossRefGoogle Scholar
  180. 180.
    M.M.A. Imran, Crystallization kinetics, glass transition kinetics, and thermal stability of Se70−xGa30Inx (x = 5, 10, 15, and 20) semiconducting glasses. Phys. B 406(3), 482 (2011)CrossRefGoogle Scholar
  181. 181.
    S. Kumar, K. Singh, Composition dependence UV-visible and MID-FTIR properties of Se98−xZn2Inx (X = 0, 2, 4, 6 and 10) chalcogenide glasses. Phys. B 405(15), 3135 (2010)CrossRefGoogle Scholar
  182. 182.
    J.C. Qiao, J.M. Pelletier, Isochronal and isothermal crystallization in Zr55Cu30Ni5Al10 bulk metallic glass. Trans. Nonferrous Met. Soc. China 22, 577 (2012)CrossRefGoogle Scholar
  183. 183.
    T. Zhang, Z. Song, B. Liu, S.F. Bomy, Investigation of phase change Si2Sb2Te5 material and its application in chalcogenide random access memory. Chem. Solid-State Electron. 51(6), 950 (2007)CrossRefGoogle Scholar
  184. 184.
    Y. Jialin, B. Liu, T. Zhang, Z. Song, S. Feng, B. Chen, Effects of Ge doping on the properties of Sb2Te3 phase-change thin films. Appl. Surf. Sci. 253(14), 6125 (2007)CrossRefGoogle Scholar
  185. 185.
    A.V. Kolobov, P. Fons, M. Krbal, J. Tominaga, A thermal component of amorphisation in phase-change alloys and chalcogenide glasses. J. Non-Cryst. Solids 17, 358 (2012). doi: 10.1016/j.jnoncrysol.2011.10.024 Google Scholar
  186. 186.
    M.H.R. Lankhorst, Modelling glass transition temperatures of chalcogenide glasses. Applied to phase-change optical recording materials. J. Non-Cryst. Solids 297(2–3), 210 (2002)CrossRefGoogle Scholar
  187. 187.
    A. Abrutis, V. Plausinaitiene, M. Skapas, C. Wiemer, O. Salicio, M. Longo, A. Pirovano, J. Siegel, W. Gawelda, S. Rushworth, C. Giesen, Chemical vapor deposition of chalcogenide materials for phase-change memories. Microelectron. Eng. 85(12), 2338 (2008)CrossRefGoogle Scholar
  188. 188.
    K. Takata, H. Maekawa, H. Endo, Thermal strain imaging of chalcogenide in a phase change memory. Cur. App. Phys. 11(3), 731 (2011)CrossRefGoogle Scholar
  189. 189.
    N. Mehta, A. Kumar, Observation of phase separation in some Se–Te–Ag chalcogenide glasses. Mater. Chem. Phys. 96(1), 73 (2006)CrossRefGoogle Scholar
  190. 190.
    N.S. Saxena, Phase transformation kinetics and related thermodynamic and optical properties in chalcogenide glasses. J. Non-Cryst. Solids 345–346, 161 (2004)CrossRefGoogle Scholar
  191. 191.
    M.M. Hafiz, O. El-Shazly, N. Kinawy, Reversible phase change in BiXSe100−X chalcogenide thin films for using as optical recording medium. Appl. Surf. Sci. 171(3–4), 231 (2001)CrossRefGoogle Scholar
  192. 192.
    M.N. Kozicki, M. Mitkova, J. Zhu, M. Park, Nanoscale phase separation in Ag–Ge–Se glasses. Eng. 63(1–3), 155 (2002)Google Scholar
  193. 193.
    S. Kumar, D. Singh, S. Sandhu, R. Thangaraj, Characterization of phase transition in silver photo-diffused Ge2Sb2Te5 thin films. Vacuum 86(10), 1443 (2012)CrossRefGoogle Scholar
  194. 194.
    A.L. Lacaita, D. Ielmini, D. Mantegazza, Status and challenges of phase change memory modeling. Solid-State Elect. 52, 1443 (2008)CrossRefGoogle Scholar
  195. 195.
    H. Fritzsche, Why are chalcogenide glasses the materials of choice for Ovonic switching devices? J. Phys. Chem. Solids 68, 878 (2007)CrossRefGoogle Scholar
  196. 196.
    Z.H. Khan, Glass transition kinetics in ball milled amorphous GaxTe100−x nanoparticles. J. Non-Cryst. Solids 380, 109–113 (2013)CrossRefGoogle Scholar
  197. 197.
    Z.H. Khan, A.A. Al-Ghamdi, F.A. Al-Agel, Crystallization kinetics in as-synthesis high yield of a-Se100−xTex nanorods. Mater. Chem. Phys. 134, 260 (2012)CrossRefGoogle Scholar
  198. 198.
    Z.H. Khan, Non-isothermal crystallization in amorphous GaxSe100−x nanorods. Jpn. J. Appl. Phys. 50, 105603 (2011)Google Scholar
  199. 199.
    Z.H. Khan, Glass transition kinetics of a-SexTe100−x nanoparticles. Sci. Adv. Maters. 4, 1 (2012)CrossRefGoogle Scholar
  200. 200.
    S. Lay, Tech. Dig. Int. Electron Devices Meet p. 255 (2003)Google Scholar
  201. 201.
    D.J. Gravesteijn, C.J. van der Poel, P.M.L.O. Scholte, C.M.J. van Uijen, Phase change optical recording. Philips Tech. Rev. 44, 250 (1989)Google Scholar
  202. 202.
    N. Yamada, Erasable phase-change optical materials. MRS Bull. 21, 48 (1996)Google Scholar
  203. 203.
    H.J. Borg, R. Van Woudenberg, Trends in optical recording. J. Magn. Magn. Mater. 193, 521 (1999)CrossRefGoogle Scholar
  204. 204.
    S. Ovshinsky, Amorphous materials—the key to new devices. IEEE Proc. CAS 1, 33 (1998)Google Scholar
  205. 205.
    P. Boolchand, D.G. Georgiev, T. Qu, F. Wang, L. Chai, Nanoscale phase separation effects near r = 2.4 and 2.67, and rigidity transitions in chalcogenide glasses. C.R. Chem. 5, 713 (2002)CrossRefGoogle Scholar
  206. 206.
    N. Yamada, E. Ohno, K. Nishiuchi, M. Takao, Rapid-phase transitions of GeTe–Sb2, Te3, pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849 (1991)CrossRefGoogle Scholar
  207. 207.
    J.H. Coombs, A.P.J.M. Jongenelis, W. Van Es-Spiekman, B.A.J. Jacobs, Laser-induced crystallization phenomena in GeTe-based alloys. … of nucleation and growth. J. Appl. Phys. 78, 4906 (1995)CrossRefGoogle Scholar
  208. 208.
    C. Peng, L. Cheng, M. Mansuripur, Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media. J. Appl. Phys. 82, 4183 (1997)CrossRefGoogle Scholar
  209. 209.
    K. Nakayama, K. Kojima, F. Hayakawa, Y. Imai, A. Kitagawa, M. Suzuki, Reversible and irreversible … Based on phase transitions in chalcogenide thin films. Jpn. J. Appl. Phys 39, 6157 (2000)CrossRefGoogle Scholar
  210. 210.
    S. Lai, T. Lowrey, Tech. Dig. Int. Electron Dev. Meeting 1, 803 (2001)Google Scholar
  211. 211.
    S.M. Yoon, N.Y. Lee, S.O. Ryu, K.J. Chio, Y.S. Park, S.Y. Lee, B.G. Yu, M.J. Kang, S.Y. Chio, M. Wuttig, Se-based phase-change memory device with lower power and higher speed operations. IEEE Electron Device Lett. 27, 445 (2006)CrossRefGoogle Scholar
  212. 212.
    P. Arun, A.G. Vedeshwar, Mater. Res. Bull. 34, 203 (1999)CrossRefGoogle Scholar
  213. 213.
    H. Tashiro, M. Harigaya, Y. Kageyama, K. Ito, M. Shinotsuka, K. Tani, A. Watada, N. Yiwata, Y. Nakata, S. Emura, Structural Analysis of Ag–In–Sb–Te phase-change material. Jpn. J. Appl. Phys. 41, 3758 (2002)CrossRefGoogle Scholar
  214. 214.
    J. Li, F. Gan, Optical properties of Ag8In14Sb55Te23 phase-change films. Thin Solid Films 40, 232 (2002)CrossRefGoogle Scholar
  215. 215.
    G.A. Prinz, Magnetoelectronics. Science 282, 1660 (1998)CrossRefGoogle Scholar
  216. 216.
    G.R. Fox, F. Chu, T. Davenport, Current and future ferroelectric nonvolatile memory technology. J. Vac. Sci. Technol., B 19, 1967 (2001)CrossRefGoogle Scholar
  217. 217.
    F. Pellizzer et al., Phase-change memory technology for embedded applications. in Proceedings of the IEEE Symposium on VLSI Technology, Digest of Technical Papers (unpublished), vol. 3.1, p. 18 (2004)Google Scholar
  218. 218.
    S.H. Lee et al., in Proceeding of the IEEE Symposium on VLSI Technology, Digest of Technical Papers (unpublished), p. 20 (2004)Google Scholar
  219. 219.
    K.L. Chopra, Dielectric properties of zns films. J. Appl. Phys. 36, 184 (1965)CrossRefGoogle Scholar
  220. 220.
    A. Beck, J.G. Bednorz, Ch. Gerber, C. Rossel, D. Widmer, Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139 (2000)CrossRefGoogle Scholar
  221. 221.
    A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85, 4073 (2004)CrossRefGoogle Scholar
  222. 222.
    X. Chen, N. Wu, J. Strozier, A. Ignatiev, Spatially extended nature of resistance switching in perovskite oxide thin films. Appl. Phys. Lett. 89, 063507 (2006)CrossRefGoogle Scholar
  223. 223.
    A. Ignatiev, N.J. Wu, X. Chen, S.Q. Liu, C. Papagianni, J. Strozier, Resistance switching in perovskite thin films. Phys. Status Solidi B 243, 2089 (2006)CrossRefGoogle Scholar
  224. 224.
    K. Szot, R. Dittmann, W. Speier, R. Waser, Nanoscale resistive switching in SrTio3 thin films. Phys. Status Solidi (RRL) 1, 86 (2007)CrossRefGoogle Scholar
  225. 225.
    Y. Hirose, H. Hirose, Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films. J. Appl. Phys. 47, 2767 (1976)CrossRefGoogle Scholar
  226. 226.
    K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Quantized conductance atomic switch. Nature 433, 47 (2005)CrossRefGoogle Scholar
  227. 227.
    T. Sakamoto, NEC J. Adv. Tech. 2, 260 (2005)Google Scholar
  228. 228.
    M.N. Kozicki, M. Park, M. Mitkova, Nanoscale memory elements based on solid-state electrolytes. IEEE Trans. Nanotechnol. 4, 331 (2005)CrossRefGoogle Scholar
  229. 229.
    C.J. Kim, S.G. Yoon, J. Vac. Sci. Technol., B 24, 721 (2006)CrossRefGoogle Scholar
  230. 230.
    Y. Yin, H. Sone, S. Hosaka, Memory effect in metal–chalcogenide–metal structures for ultrahigh-density nonvolatile memories. Jpn. J. Appl. Phys. 1(45), 4951 (2006)CrossRefGoogle Scholar
  231. 231.
    J.F. Gibbons, W.E. Beadle, Switching properties of thin Nio films. Solid-State Electron. 7, 785 (1964)CrossRefGoogle Scholar
  232. 232.
    W.R. Hiatt, T.W. Hickmott, Appl. Phys. Lett. 6, 106 (1965)CrossRefGoogle Scholar
  233. 233.
    F. Argall, Switching phenomena in titanium oxide thin films. Solid-State Electron. 11, 535 (1968)CrossRefGoogle Scholar
  234. 234.
    T.W. Hickmott, J. Vac. Sci. Technol. 6, 828 (1969)CrossRefGoogle Scholar
  235. 235.
    J.C. Bruyere, B.K. Chakraverty, Switching and negative resistance in thin films of nickel oxide. Appl. Phys. Lett. 16, 40 (1970)CrossRefGoogle Scholar
  236. 236.
    Y. Ogimoto, Y. Tamai, M. Kawasaki, Y. Tokura, Resistance switching memory device with a nanoscale confined current path. Appl. Phys. Lett. 90, 143515 (2007)CrossRefGoogle Scholar
  237. 237.
    Y. Watanabe, J.G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, A. Beck, Appl. Phys. Lett. 78, 3738 (2001)CrossRefGoogle Scholar
  238. 238.
    C.J. Kim, I.W. Chen, Resistance switching of Al/(Pr, Ca)Mno3 thin films. Jpn. J. Appl. Phys. Part 2 44, 525 (2005)CrossRefGoogle Scholar
  239. 239.
    K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single crystalline SrTiO3. Nat. Mater. 5, 312 (2006)CrossRefGoogle Scholar
  240. 240.
    S.Q. Liu, N.J. Wu, A. Ignatiev, Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749 (2000)CrossRefGoogle Scholar
  241. 241.
    W.W. Zhuang et al., Tech. Dig.—Int. Electron Devices Meet 193 (2002)Google Scholar
  242. 242.
    K. Terabe, T. Nakayama, T. Hasegawa, M. Aono, Formation and disappearance of a nanoscale silver cluster realized by solid electrochemical reaction. J. Appl. Phys. 91, 10110 (2002)CrossRefGoogle Scholar
  243. 243.
    M.N. Kozicki, M. Mitkova, M. Park, M. Balakrishnan, C. Gopalan, Information storage using nanoscale electrodeposition of metal in solid electrolytes. Superlattices Microstruct. 34, 459 (2003)CrossRefGoogle Scholar
  244. 244.
    A.L. Greer, N. Mathur, Changing face of the chameleon. Nature (News and Views) 437, 1246 (2005)CrossRefGoogle Scholar
  245. 245.
    S.K.M. Dehaldhar, S.P. Sengupta, Ind. J. Pure Appl. Phys. 17, 422 (1979)Google Scholar
  246. 246.
    W. Beyer, H. Mell, J. Phys. Status Solidi B 45, 153 (1971)CrossRefGoogle Scholar
  247. 247.
    N. Klein, Switching and breakdown in films. Thin Solid Films 7, 149 (1971)CrossRefGoogle Scholar
  248. 248.
    S.R. Ovshinsky, in Disordered Materials: Science and Technology, ed. by D. Alder (Amorphous Institute Press, New York, 1982)Google Scholar
  249. 249.
    K.W. Boer, S.R. Ovshinsky, Electrothermal Initiation of an electronic switching mechanism in semiconducting glasses. J. Appl. Phys. 41, 2675 (1970)CrossRefGoogle Scholar
  250. 250.
    D. Alder, M.S. Shur, M. Silver, S.R. Ovshinsky, Threshold switching in chalcogenide-glass thin films. J. Appl. Phys. 51, 3289 (1980)CrossRefGoogle Scholar
  251. 251.
    K.S. Hong, R.F. Speyer, J. Non-Cryst. Solids 116, 191 (1990)CrossRefGoogle Scholar
  252. 252.
    T. Ohta, S.R. Ovshinsky, in Photo-Induced Metastability in Amorphous Semiconductors, (Chapter 18), ed. by A.V. Kolobov (Wiley, Berlin, 2003), pp. 310–326CrossRefGoogle Scholar
  253. 253.
    S.R. Ovshinsky, D. Strand, J. Optoelectron. Adv. Mater. 7, 1679 (2005)Google Scholar
  254. 254.
    D. Adler, H.K. Henisch, N.F. Mott, Rev. Mod. Phys. 50, 209 (1978)CrossRefGoogle Scholar
  255. 255.
    T. Lowrey, S. Hudgens, W. Czubatyj, C. Dennison, S. Kostylev, G. Wicker, Mater. Res. Soc. Symp. Proc. 803, 101 (2004)Google Scholar
  256. 256.
    R. Aravinda Narayanan, S. Asokan, A. Kumar, Influence of chemical disorder on electrical switching in chalcogenide glasses. Phys. Rev. B 63, 092203 (2001)CrossRefGoogle Scholar
  257. 257.
    S.R. Ovshinsky, H. Fritzsche, Amorphous semiconductors for switching, memory, and imaging applications. IEEE Trans. Elect. Dev. 20(2), 91 (1973)CrossRefGoogle Scholar
  258. 258.
    H. Fritzsche, Electronic phenomena in amorphous semiconductors. Annu. Rev. Mater. Sci. 2, 697 (1972)CrossRefGoogle Scholar
  259. 259.
    S. Tyson, G. Wicker, T. Lowrey, S. Hudgens, K. Hunt, Nonvolatile, high density, high performance phase change memory. in Proceedings 2000 IEEE Aerospace Conference, Big Sky MT, Mar 2000, p.18Google Scholar
  260. 260.
    A. Pirovano, A.L. Lacaita, A. Benvenuti, Electronic switching in phase-change memories. IEEE Trans. Electron Devices 53, 452 (2004)CrossRefGoogle Scholar
  261. 261.
    S.R. Ovshinsky, S.J. Hudgens, W. Czubatyj, D.A. Strand, G.C. Wicker, Electrically erasable memory elements having improved set resistance stability. US Patent 5, p. 414, 1995Google Scholar
  262. 262.
    J. Hernandez, B. Chao, D. Strand, S.R. Ovshinsky, D. Pawlik, P. Gasiorowski, The relationship between crystal structure and performance as 58 optical recording media in Te–Ge–Sb thin films. Appl. Phys. Comm. 11(4), 557 (1992)Google Scholar
  263. 263.
    D. Adler, B.H. Schwartz, M.C. Steele (eds.), Physical Properties of Amorphous Materials (Plenum, New York, 1985)Google Scholar
  264. 264.
    A.D. Pearson, Memory and switching in semiconducting glasses: a review. J. Non-Cryst. Solids 2, 1 (1970)CrossRefGoogle Scholar
  265. 265.
    C. Mattheck, Phys. Stat. Sol. A 11, 117 (1971)CrossRefGoogle Scholar
  266. 266.
    H.K. Henisch, W.R. Smith, Switching in organic polymer films. Appl. Phys. Lett. 24, 589 (1974)CrossRefGoogle Scholar
  267. 267.
    H.K. Henisch, E.A. Fagen, S.R. Ovshinsky, A qualitative theory of electrical switching processes in monostable amorphous structures. J. Non-Cryst. Solids 4, 538 (1970)CrossRefGoogle Scholar
  268. 268.
    N.F. Mott, Conduction in non-crystalline systems VII. Non-ohmic behaviour and switching. Philos. Mag. 24, 911 (1971)CrossRefGoogle Scholar
  269. 269.
    A. Alegria, A. Arruabarrena, F. Sanz, J. Non-Cryst, Solids 58, 17 (1983)Google Scholar
  270. 270.
    S. Lukić, D. Petrović, Complex noncrystaline chalcogenides (University of Novi Sad,Faculty of Sciences, Novi Sad, 2002), p. 8Google Scholar
  271. 271.
    M. Popescu, Disordered Chalcogenide Optoelectronic Materials: Phenomena and Applications. J. Optoelectron. Adv. Mater. 7, 2189 (2005)Google Scholar
  272. 272.
    B. Stričić, M. Živanov, M. Slankamenac, 8th International Symposium Young People and Multidisciplinary Research. Timisoara, Romania 2, 257 (2006)Google Scholar
  273. 273.
    M. Slankamenac, M. Živanov, Research people and actual tasks on multidisciplinary sciences. Loznec, Bulgaria 2, 304 (2007)Google Scholar
  274. 274.
    T. Ivetić, M.V. Nikolić, M. Slankamenac, M. Živanov, D. Minić, P.M. Nikolić, M.M. Ristić, Influence of Bi2O3 on microstructure and electrical properties of ZnO–SnO2 ceramics. Sci. Sinter. 39, 229 (2007)CrossRefGoogle Scholar
  275. 275.
    S.R. Lukić, D.M. Petrović, A.F. Petrović, Effect of copper on conductivity of amorphous asse yi z. J. Non-Cryst. Solids 75, 241–245 (1998)Google Scholar
  276. 276.
    M. Slankamenac, S.R. Lukić, INDEL. Banja Luka 6, 20 (2006)Google Scholar
  277. 277.
    S. Prakash, S. Asokan, D.B. Ghare, Electrical switching behaviour of semiconducting aluminium telluride glasses. Semicond. Sci. Technol. 9, 1484 (1994)CrossRefGoogle Scholar
  278. 278.
    S.S.K. Titus, R. Chatterjee, S. Asokan, A. Kumar, Electrical switching and short-range order in As–Te glasses. Phys. Rev. B 48, 1650 (1993)CrossRefGoogle Scholar
  279. 279.
    N.A. Hegab, M. Fadel, K.A. Sharaf, Switching effects InSe90−xSbxBi10 thin-films. Vacuum 46, 1351 (1995)CrossRefGoogle Scholar
  280. 280.
    M.F. Kotkata, M.A. Afifi, H.H. Habib, N.A. Hegab, M.M. Abdel-Aziz, Memory switching in amorphous GeSeTe chalcogenide semiconductor films. Thin Solid Films 240, 143 (1994)CrossRefGoogle Scholar
  281. 281.
    R. Aravinda, S. Narayanan, A.K. Asokan, Influence of chemical disorder on electrical switching in chalcogenide glasses. Phys. Rev. B 63, 2203 (2001)Google Scholar
  282. 282.
    C. Das, R. Lokesh, G.M. Rao, S. Asokan, Electrical switching behavior of amorphous Al23Te77 thin film sample. J. Non-Cryst. Solids 356, 2203 (2010)CrossRefGoogle Scholar
  283. 283.
    H.E. Atyia, A.E. Bekheet, Switching phenomenon and optical properties of Se85Te10Bi5 films. Phys. B 403, 3130 (2008)CrossRefGoogle Scholar
  284. 284.
    K.S. Bang, S.-Y. Lee, 한국진공학회지 23.1, 34–39 (2014)Google Scholar
  285. 285.
    M.J. Lee, D. Lee, S.-H. Cho, J.-H. Hur, S.-M. Lee, D.H. Seo, D.-S. Kim, M.-S. Yang, S. Lee, E. Hwang, Nat. Commun. 4, 3629 (2013)Google Scholar
  286. 286.
    C. Das, G.M. Rao, S. Asokan, Electrical switching behavior of amorphous Ge15Te85−xSix thin films with phase change memory applications. Mater. Res. Bull. 49, 388 (2014)CrossRefGoogle Scholar
  287. 287.
    B.J. Madhu a, H.S. Jayanna a, S. Asokan, The composition dependence of electrical switching behavior of Ge7Se93−xSbx glasses. J. Non-Cryst. Solids 355, 2630 (2009)CrossRefGoogle Scholar
  288. 288.
    S.R. Gunti, S. Asokan, Thermal and electrical switching studies on Ge20Se80−xBix (1 ≤ x ≤ 13) ternary chalcogenide glassy system. J. Non-Cryst. Solids 356, 1637 (2010)CrossRefGoogle Scholar
  289. 289.
    B.J. Madhu, H.S. Jayanna, S. Asokan, The composition dependence of electrical switching behavior of Ge7Se93−xSbx glasses. J. Non-Cryst. Solids 355, 459 (2009)CrossRefGoogle Scholar
  290. 290.
    S.B.B. Prashanth, S. Asokan, Effect of antimony addition on the thermal and electrical-switching behavior of bulk Se–Te glasses. J. Non-Cryst. Solids 355, 164–368 (2009)CrossRefGoogle Scholar
  291. 291.
    R.T.A. Kumar, C. Das, P.C. Lekha, S. Asokan, C. Sanjeeviraja, P. Padiyan, Enhancement in threshold voltage with thickness in memory switch fabricated using GeSe1.5S0.5 thin films. J. Alloys Compd. 615, 629–635 (2014)CrossRefGoogle Scholar
  292. 292.
    G. Sreevidya Varma, D.V.S. Muthu, A.K. Sood, S. Asokan, Electrical switching, SET-RESET, and Raman scattering studies on Ge15Te80−xIn5Agx glasses. J. Appl. Phys. 115, 164505 (2014)CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Zishan H. Khan
    • 1
    Email author
  • Shamshad A. Khan
    • 2
  • Faisal A. Agel
    • 3
  • Numan A. Salah
    • 4
  • M. Husain
    • 5
    • 6
  1. 1.Department of Applied Sciences and HumanitiesJamia Millia IslamiaNew DelhiIndia
  2. 2.Department of PhysicsSt. Andrews PG CollegeGorakhpurIndia
  3. 3.Department of PhysicsUniversity of HailHailKingdom of Saudi Arabia
  4. 4.Center of NanotechnologyKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  5. 5.Department of PhysicsJamia Millia IslamiaNew DelhiIndia
  6. 6.MJP Rohilkhand UniversityBareillyIndia

Personalised recommendations