Carbon Nanomaterials Based on Carbon Nanotubes (CNTs)

  • Ling Bing KongEmail author
  • Weili Yan
  • Yizhong Huang
  • Wenxiu Que
  • Tianshu Zhang
  • Sean Li
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 79)


A new group of nanomaterials, in free-standing form, such as fiber/yarns, paper/sheet and bulk, made of carbon nanotubes (CNTs), has emerged in recent years. These materials have shown special and unique mechanical, thermal and electrical properties, with potential applications in various aspects. This chapter is aimed to summarize the significant progress that has been made and the importance of potential applications of these carbon nanomaterials. CNTs, of single-walled (SW), double-walled (DW) and multiwalled (MW), processing strategies (spinning, filtration, deposition and SPS), morphologies, properties (mechanical, electrical and thermal) and potential applications, as well as their inter-relationships, will be presented and discussed in detail.


Carbon nanotubes Carbon fibres Carbon yarns Spinning Filtration Twisting/rolling Fabrication technologies 



One of the authors (LBK) would like to acknowledge the financial support of SUG (M4080845, 2012) by Nanyang Technological University and AcRF Tier 1 (RG 44/12 (M4011056.070), 2013) by MOE, Singapore.


  1. 1.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)CrossRefGoogle Scholar
  2. 2.
    R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes—the route toward applications. Science 297(5582), 787–792 (2002)CrossRefGoogle Scholar
  3. 3.
    R. Andrews et al., Multiwall carbon nanotubes: synthesis and application. Acc. Chem. Res. 35(12), 1008–1017 (2002)CrossRefGoogle Scholar
  4. 4.
    W.R. Yang et al., Carbon nanotubes for biological and biomedical applications. Nanotechnology 18(41), 412001 (2007)CrossRefGoogle Scholar
  5. 5.
    M. Endo, M.S. Strano, P.M. Ajayan, Potential applications of carbon nanotubes. Carbon Nanotubes 111, 13–61 (2008)CrossRefGoogle Scholar
  6. 6.
    J.M. Schnorr, T.M. Swager, Emerging applications of carbon nanotubes. Chem. Mater. 23(3), 646–657 (2011)CrossRefGoogle Scholar
  7. 7.
    M.F. Yu et al., Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)CrossRefGoogle Scholar
  8. 8.
    P.G. Collins, P. Avouris, Nanotubes for electronics. Sci. Am. 283(6), 62–69 (2000)CrossRefGoogle Scholar
  9. 9.
    Q.W. Li et al., Structure-dependent electrical properties of carbon nanotube fibers. Adv. Mater. 19(20), 3358-336 (2007)Google Scholar
  10. 10.
    A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011)CrossRefGoogle Scholar
  11. 11.
    N. Behabtu, M.J. Green, M. Pasquali, Carbon nanotube-based neat fibers. Nano Today 3(5–6), 24–34 (2008)CrossRefGoogle Scholar
  12. 12.
    L.Q. Liu, W.J. Ma, Z. Zhang, Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications. Small 7(11), 1504–1520 (2011)CrossRefGoogle Scholar
  13. 13.
    K.L. Jiang et al., Superaligned carbon nanotube arrays, films, and yarns: a road to applications. Adv. Mater. 23(9), 1154–1161 (2011)CrossRefGoogle Scholar
  14. 14.
    W.B. Lu et al., State of the art of carbon nanotube fibers: opportunities and challenges. Adv. Mater. 24(14), 1805–1833 (2012)CrossRefGoogle Scholar
  15. 15.
    T.W. Chou et al., An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos. Sci. Technol. 70(1), 1–19 (2010)CrossRefGoogle Scholar
  16. 16.
    A.B. Dalton et al., Super-tough carbon-nanotube fibres. Nature 423(6941), 703-703 (2003)CrossRefGoogle Scholar
  17. 17.
    B. Vigolo et al., Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495), 1331–1334 (2000)CrossRefGoogle Scholar
  18. 18.
    L.M. Ericson et al., Macroscopic, neat, single-walled carbon nanotube fibers. Science 305(5689), 1447–1450 (2004)CrossRefGoogle Scholar
  19. 19.
    N. Behabtu et al., Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116), 182–186 (2013)CrossRefGoogle Scholar
  20. 20.
    X.B. Zhang et al., Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 18(12), 1505–1510 (2006)CrossRefGoogle Scholar
  21. 21.
    M. Zhang, K.R. Atkinson, R.H. Baughman, Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306(5700), 1358–1361 (2004)CrossRefGoogle Scholar
  22. 22.
    K.L. Jiang, Q.Q. Li, S.S. Fan, Nanotechnology: spinning continuous carbon nanotube yarns. Nature 419(6909), 801-801 (2002)CrossRefGoogle Scholar
  23. 23.
    S. Zhang et al., Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition. J. Mater. Sci. 43(13), 4356–4362 (2008)CrossRefGoogle Scholar
  24. 24.
    Y.L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668), 276–278 (2004)CrossRefGoogle Scholar
  25. 25.
    M. Motta et al., High performance fibres from ‘dog bone’ carbon nanotubes. Adv. Mater. 19(21), 3721–3726 (2007)CrossRefGoogle Scholar
  26. 26.
    H.W. Zhu et al., Direct synthesis of long single-walled carbon nanotube strands. Science 296(5569), 884–886 (2002)CrossRefGoogle Scholar
  27. 27.
    H.W. Zhu et al., Co-synthesis of single-walled carbon nanotubes and carbon fibers. Mater. Res. Bull. 37(1), 177–183 (2002)CrossRefGoogle Scholar
  28. 28.
    M. Motta et al., Mechanical properties of continuously spun fibers of carbon nanotubes. Nano Lett. 5(8), 1529–1533 (2005)CrossRefGoogle Scholar
  29. 29.
    L. Ci et al., Multifunctional macroarchitectures of double-walled carbon nanotube fibers. Adv. Mater. 19(13), 1719–1723 (2007)CrossRefGoogle Scholar
  30. 30.
    L.X. Zheng et al., Carbon-nanotube cotton for large-scale fibers. Adv. Mater. 19(18), 2567–2570 (2007)CrossRefGoogle Scholar
  31. 31.
    X.-H. Zhong et al., Fabrication of a multifunctional carbon nanotube “cotton’” yarn by the direct chemical vapor deposition spinning process. Nanoscale 4(18), 5614–5618 (2012)CrossRefGoogle Scholar
  32. 32.
    J. Tang et al., Manipulation and assembly of SWNTS by dielectrophoresis. Abstracts of Papers of the American Chemical Society, vol 227 (2004), p. U1273–U1273Google Scholar
  33. 33.
    J. Tang et al., Assembly of 1D nanostructures into sub-micrometer diameter fibrils with controlled and variable length by dielectrophoresis. Adv. Mater. 15(16), 1352–1355 (2003)CrossRefGoogle Scholar
  34. 34.
    W.J. Ma et al., Monitoring a micromechanical process in macroscale carbon nanotube films and fibers. Adv. Mater. 21(5), 603–608 (2009)CrossRefGoogle Scholar
  35. 35.
    J.M. Feng et al., One-step fabrication of high quality double-walled carbon nanotube thin films by a chemical vapor deposition process. Carbon 48(13), 3817–3824 (2010)CrossRefGoogle Scholar
  36. 36.
    S.J. Zhang, S. Kumar, Carbon nanotubes as liquid crystals. Small 4(9), 1270–1283 (2008)CrossRefGoogle Scholar
  37. 37.
    M.E. Kozlov et al., Spinning solid and hollow polymer-free carbon nanotube fibers. Adv. Mater. 17(5), 614–617 (2005)CrossRefGoogle Scholar
  38. 38.
    J. Steinmetz et al., Production of pure nanotube fibers using a modified wet-spinning method. Carbon 43(11), 2397–2400 (2005)CrossRefGoogle Scholar
  39. 39.
    W. Zhou et al., Single wall carbon nanotube fibers extruded from super-acid suspensions: preferred orientation, electrical, and thermal transport. J. Appl. Phys. 95(2), 649–655 (2004)CrossRefGoogle Scholar
  40. 40.
    V.A. Davis et al., True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. Nanotechnol. 4(12), 830–834 (2009)CrossRefGoogle Scholar
  41. 41.
    V.A. Davis et al., Phase behavior and rheology of SWNTs in superacids. Macromolecules 37(1), 154–160 (2004)CrossRefGoogle Scholar
  42. 42.
    S.J. Zhang et al., Macroscopic fibers of well-aligned carbon nanotubes by wet spinning. Small 4(8), 1217–1222 (2008)CrossRefGoogle Scholar
  43. 43.
    S. Ramesh et al., Dissolution of pristine single walled carbon nanotubes in superacids by direct protonation. J. Phys. Chem. B 108(26), 8794–8798 (2004)CrossRefGoogle Scholar
  44. 44.
    X. Lepro, M.D. Lima, R.H. Baughman, Spinnable carbon nanotube forests grown on thin, flexible metallic substrates. Carbon 48(12), 3621–3627 (2010)CrossRefGoogle Scholar
  45. 45.
    X.F. Zhang et al., Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. Small 3(2), 244–248 (2007)CrossRefGoogle Scholar
  46. 46.
    J. Jia et al., A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon 49(4), 1333–1339 (2011)CrossRefGoogle Scholar
  47. 47.
    L. Zheng, G. Sun, Z. Zhan, Tuning array morphology for high-strength carbon-nanotube fibers. Small 6(1), 132–137 (2010)CrossRefGoogle Scholar
  48. 48.
    M. Miao et al., Poisson’s ratio and porosity of carbon nanotube dry-spun yarns. Carbon 48(10), 2802–2811 (2010)CrossRefGoogle Scholar
  49. 49.
    Q. Zhang et al., Dry spinning yarns from vertically aligned carbon nanotube arrays produced by an improved floating catalyst chemical vapor deposition method. Carbon 48(10), 2855–2861 (2010)CrossRefGoogle Scholar
  50. 50.
    Q. Li et al., Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv. Mater. 18(23), 3160–3163 (2006)CrossRefGoogle Scholar
  51. 51.
    M.D. Lima et al., Biscrolling nanotube sheets and functional guests into yarns. Science 331(6013), 51–55 (2011)CrossRefGoogle Scholar
  52. 52.
    C.P. Huynh et al., Evolution of directly-spinnable carbon nanotube growth by recycling analysis. Carbon 49(6), 1989–1997 (2011)MathSciNetCrossRefGoogle Scholar
  53. 53.
    S. Fang et al., Structure and process-dependent properties of solid-state spun carbon nanotube yarns. J. Phys. Condens. Matter. 22(33) (2010)Google Scholar
  54. 54.
    A.A. Kuznetsov et al., Structural model for dry-drawing of sheets and yarns from carbon nanotube forests. ACS Nano 5(2), 985–993 (2011)CrossRefGoogle Scholar
  55. 55.
    C. Zhu et al., A self-entanglement mechanism for continuous pulling of carbon nanotube yarns. Carbon 49(15), 4996–5001 (2011)CrossRefGoogle Scholar
  56. 56.
    L.J. Ci et al., Preparation of carbon nanofibers by the floating catalyst method. Carbon 38(14), 1933–1937 (2000)CrossRefGoogle Scholar
  57. 57.
    K. Koziol et al., High-performance carbon nanotube fiber. Science 318(5858), 1892–1895 (2007)CrossRefGoogle Scholar
  58. 58.
    J.J. Vilatela, A.H. Windle, Yarn-like carbon nanotube fibers. Adv. Mater. 22(44), 4959–4963 (2010)CrossRefGoogle Scholar
  59. 59.
    X.-H. Zhong et al., Continuous multilayered carbon nanotube yarns. Adv. Mater. 22(6), 692–696 (2010)CrossRefGoogle Scholar
  60. 60.
    L. Song et al., Fabrication and characterization of single-walled carbon nanotube fiber for electronics applications. Carbon 50(15), 5521–5524 (2012)CrossRefGoogle Scholar
  61. 61.
    T. Gong et al., Connection of macro-sized double-walled carbon nanotube strands by bandaging with double-walled carbon nanotube films. Carbon 45(11), 2235–2240 (2007)CrossRefGoogle Scholar
  62. 62.
    H.Z. Geng et al., Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J. Am. Chem. Soc. 129(25), 7758–7759 (2007)CrossRefGoogle Scholar
  63. 63.
    R. Duggal, F. Hussain, M. Pasquali, Self-assembly of single-walled carbon nanotubes into a sheet by drop drying. Adv. Mater. 18(1), 29–34 (2006)CrossRefGoogle Scholar
  64. 64.
    X.L. Li et al., Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc. 129(16), 4890–4891 (2007)CrossRefGoogle Scholar
  65. 65.
    M.C. LeMieux et al., Self-sorted, aligned nanotube networks for thin-film transistors. Science 321(5885), 101–104 (2008)CrossRefGoogle Scholar
  66. 66.
    H.W. Zhu, B.Q. Wei, Assembly and applications of carbon nanotube thin films. J. Mater. Sci. Technol. 24(4), 447–456 (2008)Google Scholar
  67. 67.
    Q. Cao, J.A. Rogers, Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21(1), 29–53 (2009)CrossRefGoogle Scholar
  68. 68.
    G. Gruner, Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 16(35), 3533–3539 (2006)CrossRefGoogle Scholar
  69. 69.
    J. Liu et al., Fullerene pipes. Science 280(5367), 1253–1256 (1998)CrossRefGoogle Scholar
  70. 70.
    Z.C. Wu et al., Transparent, conductive carbon nanotube films. Science 305(5688), 1273–1276 (2004)CrossRefGoogle Scholar
  71. 71.
    F. Hennrich et al., Preparation, characterization and applications of free-standing single walled carbon nanotube thin films. Phys. Chem. Chem. Phys. 4(11), 2273–2277 (2002)CrossRefGoogle Scholar
  72. 72.
    S.M. Cooper et al., Gas permeability of a buckypaper membrane. Nano Lett. 3(2), 189–192 (2003)CrossRefGoogle Scholar
  73. 73.
    X.F. Zhang et al., Properties and structure of nitric acid oxidized single wall carbon nanotube films. J. Phys. Chem. B 108(42), 16435–16440 (2004)CrossRefGoogle Scholar
  74. 74.
    U. Vohrer et al., Carbon nanotube sheets for the use as artificial muscles. Carbon 42(5–6), 1159–1164 (2004)CrossRefGoogle Scholar
  75. 75.
    P.G. Whitten, G.M. Spinks, G.G. Wallace, Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes. Carbon 43(9), 1891–1896 (2005)CrossRefGoogle Scholar
  76. 76.
    A. Kukovecz et al., Controlling the pore diameter distribution of multi-wall carbon nanotube buckypapers. Carbon 45(8), 1696–1698 (2007)CrossRefGoogle Scholar
  77. 77.
    R. Smajda et al., Structure and gas permeability of multi-wall carbon nanotube buckypapers. Carbon 45(6), 1176–1184 (2007)CrossRefGoogle Scholar
  78. 78.
    G.H. Xu et al., The feasibility of producing MWCNT paper and strong MWCNT film from VACNT array. Appl. Phys. A Mater. Sci. Process. 92(3), 531–539 (2008)CrossRefGoogle Scholar
  79. 79.
    L.J. Hall et al., Sign change of Poisson’s ratio for carbon nanotube sheets. Science 320(5875), 504–507 (2008)CrossRefGoogle Scholar
  80. 80.
    J.G. Park et al., The high current-carrying capacity of various carbon nanotube-based buckypapers. Nanotechnology 19(18), 185710 (2008)CrossRefGoogle Scholar
  81. 81.
    J. Boge et al., The effect of preparation conditions and biopolymer dispersants on the properties of SWNT buckypapers. J. Mater. Chem. 19(48), 9131–9140 (2009)CrossRefGoogle Scholar
  82. 82.
    A. Anson-Casaos et al., Surfactant-free assembling of functionalized single-walled carbon nanotube buckypapers. Carbon 48(5), 1480–1488 (2010)CrossRefGoogle Scholar
  83. 83.
    J.W. Zhang, D.Z. Jiang, Influence of geometries of multi-walled carbon nanotubes on the pore structures of Buckypaper. Compos. Part A Appl. Sci. Manuf. 43(3), 469–474 (2012)CrossRefGoogle Scholar
  84. 84.
    R.L.D. Whitby et al., Geometric control and tuneable pore size distribution of buckypaper and buckydiscs. Carbon 46(6), 949–956 (2008)CrossRefGoogle Scholar
  85. 85.
    K. Mukai et al., Highly conductive sheets from millimeter-long single-walled carbon nanotubes and ionic liquids: Application to fast-moving, low-voltage electromechanical actuators operable in air. Adv. Mater. 21(16), 1582–1585 (2009)CrossRefGoogle Scholar
  86. 86.
    J.L. Rigueur et al., Buckypaper fabrication by liberation of electrophoretically deposited carbon nanotubes. Carbon 48(14), 4090–4099 (2010)CrossRefGoogle Scholar
  87. 87.
    M. Zhang et al., Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738), 1215–1219 (2005)CrossRefGoogle Scholar
  88. 88.
    A.E. Aliev et al., Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323(5921), 1575–1578 (2009)CrossRefGoogle Scholar
  89. 89.
    P. Liu et al., Fast high-temperature response of carbon nanotube film and its application as an incandescent display. Adv. Mater. 21(35), 3563–3566 (2009)CrossRefGoogle Scholar
  90. 90.
    W. Fu et al., Super-aligned carbon nanotube films as aligning layers and transparent electrodes for liquid crystal displays. Carbon 48(7), 1876–1879 (2010)CrossRefGoogle Scholar
  91. 91.
    C. Feng et al., Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 20(6), 885–891 (2010)CrossRefGoogle Scholar
  92. 92.
    A.E. Aliev, Y.N. Gartstein, R.H. Baughman, Mirage effect from thermally modulated transparent carbon nanotube sheets. Nanotechnology 22(43), 435704 (2011)CrossRefGoogle Scholar
  93. 93.
    A.A. Kuznetzov et al., Electron field emission from transparent multiwalled carbon nanotube sheets for inverted field emission displays. Carbon 48(1), 41–46 (2010)CrossRefGoogle Scholar
  94. 94.
    D. Wang et al., Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 19(7), 075609 (2008)CrossRefGoogle Scholar
  95. 95.
    L. Song et al., Direct synthesis of a macroscale single-walled carbon nanotube non-woven material. Adv. Mater. 16(17), 1529–1534 (2004)CrossRefGoogle Scholar
  96. 96.
    W. Ma et al., Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett. 7(8), 2307–2311 (2007)CrossRefGoogle Scholar
  97. 97.
    Q. Liu et al., In situ assembly of multi-sheeted Buckybooks from single-walled carbon nanotubes. ACS Nano 3(3), 707–713 (2009)CrossRefGoogle Scholar
  98. 98.
    P.X. Hou et al., Bulk storage capacity of hydrogen in purified multiwalled carbon nanotubes. J. Phys. Chem. B 106(5), 963–966 (2002)CrossRefGoogle Scholar
  99. 99.
    R.Z. Ma et al., Electrical conductivity and field emission characteristics of hot-pressed sintered carbon nanotubes. Mater. Res. Bull. 34(5), 741–747 (1999)CrossRefGoogle Scholar
  100. 100.
    J.L. Li et al., Microstructure and mechanical properties of hot-pressed carbon nanotubes compacted by spark plasma sintering. Carbon 43(13), 2649–2653 (2005)CrossRefGoogle Scholar
  101. 101.
    H.L. Zhang et al., Spark plasma sintering and thermal conductivity of carbon nanotube bulk materials. J. Appl. Phys. 97(11)Google Scholar
  102. 102.
    H.-L. Zhang et al., Electrical and thermal properties of carbon nanotube bulk materials: Experimental studies for the 328-958 K temperature range. Phys. Rev. B. 75(20)Google Scholar
  103. 103.
    C. Qin et al., High temperature electrical and thermal properties of the bulk carbon nanotube prepared by SPS. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 420(1–2), 208–211 (2006)CrossRefGoogle Scholar
  104. 104.
    J.L. Li et al., Surface graphitization and mechanical properties of hot-pressed bulk carbon nanotubes compacted by spark plasma sintering. Carbon 45(13), 2636–2642 (2007)CrossRefGoogle Scholar
  105. 105.
    J. Li et al., Transport properties of hot-pressed bulk carbon nanotubes compacted by spark plasma sintering. Carbon 47(4), 1135–1140 (2009)CrossRefGoogle Scholar
  106. 106.
    J. Li, L. Wang, W. Jiang, Super-hydrophobic surface of bulk carbon nanotubes compacted by spark plasma sintering followed by modification with polytetrofluorethylene. Carbon 48(9), 2668–2671 (2010)CrossRefGoogle Scholar
  107. 107.
    G. Yamamoto et al., Single-walled carbon nanotube-derived novel structural material. J. Mater. Res. 21(6), 1537–1542 (2006)CrossRefGoogle Scholar
  108. 108.
    G. Yamamoto et al., Preparation of single-walled carbon nanotube solids and their mechanical properties. J. Mater. Res. 20(10), 2609–2612 (2005)CrossRefGoogle Scholar
  109. 109.
    G. Yamamoto et al., Mechanical properties of binder-free single-walled carbon nanotube solids. Scripta Mater. 54(2), 299–303 (2006)CrossRefGoogle Scholar
  110. 110.
    C. Laurent et al., Spark plasma sintering of double-walled carbon nanotubes. Carbon 46(13), 1812–1816 (2008)CrossRefGoogle Scholar
  111. 111.
    K. Yang et al., Inter-tube bonding, graphene formation and anisotropic transport properties in spark plasma sintered multi-wall carbon nanotube arrays. Carbon 48(3), 756–762 (2010)CrossRefGoogle Scholar
  112. 112.
    Y. Sato et al., Influence of the structure of the nanotube on the mechanical properties of binder-free multi-walled carbon nanotube solids. Carbon 50(1), 34–39 (2012)CrossRefGoogle Scholar
  113. 113.
    P.D. Bradford et al., Tuning the compressive mechanical properties of carbon nanotube foam. Carbon 49(8), 2834–2841 (2011)CrossRefGoogle Scholar
  114. 114.
    X. Gui et al., Soft, highly conductive nanotube sponges and composites with controlled compressibility. ACS Nano 4(4), 2320–2326 (2010)CrossRefGoogle Scholar
  115. 115.
    X. Gui et al., Carbon nanotube sponges. Adv. Mater. 22(5), 617–621 (2010)CrossRefGoogle Scholar
  116. 116.
    M. Xu et al., Carbon nanotubes with temperature-invariant viscoelasticity from-196 degrees to 1000 degrees C. Science 330(6009), 1364–1368 (2010)CrossRefGoogle Scholar
  117. 117.
    M. Xu et al., Carbon nanotubes with temperature-invariant creep and creep-recovery from-190 to 970 degrees C. Adv. Mater. 23(32), 3686–3691 (2011)CrossRefGoogle Scholar
  118. 118.
    M. Xu et al., Tailoring temperature invariant viscoelasticity of carbon nanotube material. Nano Lett. 11(8), 3279–3284 (2011)CrossRefGoogle Scholar
  119. 119.
    X. Gui et al., Three-dimensional carbon nanotube sponge-array architectures with high energy dissipation. Adv. Mater. 26(8), 1248–1253 (2014)MathSciNetCrossRefGoogle Scholar
  120. 120.
    Z. Zeng et al., Integrated random-aligned carbon nanotube layers: deformation mechanism under compression. Nanoscale 6(3), 1748–1755 (2014)CrossRefGoogle Scholar
  121. 121.
    Z. Zeng et al., Carbon nanotube sponge-array tandem composites with extended energy absorption range. Adv. Mater. 25(8), 1185–1191 (2013)CrossRefGoogle Scholar
  122. 122.
    N. Thongprachan et al., Preparation of macroporous solid foam from multi-walled carbon nanotubes by freeze-drying technique. Mater. Chem. Phys. 112(1), 262–269 (2008)CrossRefGoogle Scholar
  123. 123.
    J.H. Zou et al., Ultralight multiwalled carbon nanotube aerogel. ACS Nano 4(12), 7293–9302 (2010)CrossRefGoogle Scholar
  124. 124.
    K.H. Kim, Y.S. Oh, M.F. Islam, Mechanical and thermal management characteristics of ultrahigh surface area single-walled carbon nanotube aerogels. Adv. Funct. Mater. 23(3), 377–383 (2013)CrossRefGoogle Scholar
  125. 125.
    H.Y. Sun, Z. Xu, C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25(18), 2554–2560 (2013)CrossRefGoogle Scholar
  126. 126.
    R. Orru et al., Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R 63(4–6), 127–287 (2009)CrossRefGoogle Scholar
  127. 127.
    W. Li et al., Densification mechanisms of spark plasma sintering: multi-step pressure dilatometry. J. Mater. Sci. 47(20), 7036–7046 (2012)CrossRefGoogle Scholar
  128. 128.
    K. Hata et al., Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science 306(5700), 1362–1364 (2004)CrossRefGoogle Scholar
  129. 129.
    T. Yamada et al., Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat. Nanotechnol. 1(2), 131–136 (2006)CrossRefGoogle Scholar
  130. 130.
    A.Y. Cao et al., Super-compressible foamlike carbon nanotube films. Science 310(5752), 1307–1310 (2005)CrossRefGoogle Scholar
  131. 131.
    J. Suhr et al., Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nat. Nanotechnol. 2(7), 417–421 (2007)CrossRefGoogle Scholar
  132. 132.
    X. Gui et al., Recyclable carbon nanotube sponges for oil absorption. Acta Mater. 59(12), 4798–4804 (2011)MathSciNetCrossRefGoogle Scholar
  133. 133.
    H. Li et al., Photocatalytic, recyclable CdS nanoparticle-carbon nanotube hybrid sponges. Nano Res. 5(4), 265–271 (2012)CrossRefGoogle Scholar
  134. 134.
    M. Xu et al., Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect. ACS Nano 6(7), 5837–5844 (2012)CrossRefGoogle Scholar
  135. 135.
    X. Gui et al., Controllable synthesis of spongy carbon nanotube blocks with tunable macro- and microstructures. Nanotechnology 24(8), 085705 (2013)CrossRefGoogle Scholar
  136. 136.
    T. Yamada et al., Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett. 8(12), 4288–4292 (2008)CrossRefGoogle Scholar
  137. 137.
    R.J. Mora, J.J. Vilatela, A.H. Windle, Properties of composites of carbon nanotube fibres. Compos. Sci. Technol. 69(10), 1558–1563 (2009)CrossRefGoogle Scholar
  138. 138.
    A.B. Dalton et al., Continuous carbon nanotube composite fibers: properties, potential applications, and problems. J. Mater. Chem. 14(1), 1–3 (2004)CrossRefGoogle Scholar
  139. 139.
    Y. Gao et al., Axial compression of hierarchically structured carbon nanotube fiber embedded in epoxy. Adv. Funct. Mater. 20(21), 3797–3803 (2010)CrossRefGoogle Scholar
  140. 140.
    H. Zhao et al., Carbon nanotube yarn strain sensors. Nanotechnology 21(30) (2010)Google Scholar
  141. 141.
    J.Q. Wei et al., Carbon nanotube filaments in household light bulbs. Appl. Phys. Lett. 84(24), 4869–4871 (2004)CrossRefGoogle Scholar
  142. 142.
    R.M. Sundaram, K.K.K. Koziol, A.H. Windle, Continuous direct spinning of fibers of single-walled carbon nanotubes with metallic chirality. Adv. Mater. 23(43), 5064–5068 (2011)CrossRefGoogle Scholar
  143. 143.
    Y. Zhao et al., Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci. Rep. 1, 83 (2011)CrossRefGoogle Scholar
  144. 144.
    Z. Zhu et al., Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor. Nanotechnology 21(16), 165501 (2010)CrossRefGoogle Scholar
  145. 145.
    F. Cai, T. Chen, H. Peng, All carbon nanotube fiber electrode-based dye-sensitized photovoltaic wire. J. Mater. Chem. 22(30), 14856–14860 (2012)CrossRefGoogle Scholar
  146. 146.
    T. Chen et al., High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Sci. Rep. 4 (2014)Google Scholar
  147. 147.
    T. Chen et al., Polymer photovoltaic wires based on aligned carbon nanotube fibers. J. Mater. Chem. 22(44), 23655–23658 (2012)CrossRefGoogle Scholar
  148. 148.
    X. Chen et al., Smart, stretchable supercapacitors. Adv. Mater. 26(26), 4444 (2014)Google Scholar
  149. 149.
    X. Fang et al., Core-sheath carbon nanostructured fibers for efficient wire-shaped dye-sensitized solar cells. Adv. Mater. 26(11), 1694–1698 (2014)CrossRefGoogle Scholar
  150. 150.
    Z. Yang et al., A highly stretchable, fiber-shaped-supercapacitor. Angew. Chem. Int. Ed. 52(50), 13453–13457 (2013)CrossRefGoogle Scholar
  151. 151.
    Y. Zhang et al., Super-stretchy lithium-ion battery based on carbon nanotube fiber. J. Mater. Chem. A 2(29), 11054–11059 (2014)CrossRefGoogle Scholar
  152. 152.
    R.H. Baughman et al., Carbon nanotube actuators. Science 284(5418), 1340–1344 (1999)CrossRefGoogle Scholar
  153. 153.
    J. Foroughi et al., Torsional carbon nanotube artificial muscles. Science 334(6055), 494–497 (2011)CrossRefGoogle Scholar
  154. 154.
    M.D. Lima et al., Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 338(6109), 928–932 (2012)CrossRefGoogle Scholar
  155. 155.
    L. Xiao et al., Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 8(12), 4539–4545 (2008)CrossRefGoogle Scholar
  156. 156.
    G. Zheng et al., Nanostructured paper for flexible energy and electronic devices. MRS Bull. 38(4), 320–325 (2013)CrossRefGoogle Scholar
  157. 157.
    G. Zheng et al., Paper supercapacitors by a solvent-free drawing method. Energy Environ. Sci. 4(9), 3368–3373 (2011)CrossRefGoogle Scholar
  158. 158.
    K.H. An et al., Supercapacitors using single-walled carbon nanotube electrodes. Adv. Mater. 13(7), 497–500 (2001)CrossRefGoogle Scholar
  159. 159.
    K.H. An et al., Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 11(5), 387–392 (2001)CrossRefGoogle Scholar
  160. 160.
    V.L. Pushparaj et al., Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. USA 104(34), 13574–13577 (2007)CrossRefGoogle Scholar
  161. 161.
    A. Izadi-Najafabadi et al., Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv. Mater. 22(35), E235–E241 (2010)CrossRefGoogle Scholar
  162. 162.
    A.A. Zakhidov et al., Electrochemically tuned properties for electrolyte-free carbon nanotube sheets. Adv. Funct. Mater. 19(14), 2266–2272 (2009)CrossRefGoogle Scholar
  163. 163.
    M. Yu et al., High density, vertically-aligned carbon nanotube membranes. Nano Lett. 9(1), 225–229 (2009)CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Ling Bing Kong
    • 1
    Email author
  • Weili Yan
    • 1
  • Yizhong Huang
    • 1
  • Wenxiu Que
    • 2
  • Tianshu Zhang
    • 3
  • Sean Li
    • 4
  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Electronic Materials Research Laboratory, School of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  3. 3.Anhui Target Advanced Ceramics Technology Co. Ltd.HefeiPeople’s Republic of China
  4. 4.School of Materials Science and EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations