Skip to main content

Optical Coherence Tomography as Glucose Sensor in Blood

  • Chapter
  • First Online:
Book cover Advances in Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 79))

Abstract

Optical coherence tomography is a modern imaging modality that can visualize the biological tissues on micron levels. This chapter describes the use of OCT technique for measuring glucose in liquid phantoms, whole blood (in vitro and in vivo) based on temporal dynamics of light scattering. Whole blood smears imaged with microscope reveal the effect of red blood cells deformation and aggregation with white light microscope for animal and human blood. We found the changes in the shape of individual cells from biconcave discs to spherical shapes and eventually the lysis of the cells at optimum concentration of glucose. The increase of glucose in blood causes the changes in diffusion coefficients and shapes of the erythrocytes of glucose in stagnant and flowing fluids. The relative contributions of these competing effects have been studied by examining the motion dynamics of deformable asymmetrical RBCs and non deformable symmetrical PMS as flowing scattering particles. These systematic studies are aimed at eventual in vivo tissue imaging scenarios with speckle-variance OCT to visualize normal and malignant blood microvasculature in three and two dimensions and to monitor the glucose levels in blood by analyzing the Brownian motion of the red blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.A. Puliafito, M.R. Hee, J.S. Schuman, J.G. Fujimoto, Optical Coherence Tomography of Ocular Diseases, 2nd, illustrated ed. (SLACK Inc., New Jersey, 2004), p. 714

    Google Scholar 

  2. M.M.K.V. Larin, M.S. Eledrisi, R.O. Esenaliev, Noninvasive blood glucose monitoring with optical coherence tomography, a pilot study in human subjects. Diabetes Care 25, 2263–2267 (2002)

    Article  Google Scholar 

  3. P.A.M.W. Lindner, F. Kiesewetter, G. Häusler, Hand book of Optical Coherence Tomography, ed. by B. Bouma, E. Tearney (Marcel Dekker Inc., New York, 2002)

    Google Scholar 

  4. M. Atif, H. Ullah, M.Y. Hamza, M. Ikram, Catheters for optical coherence tomography. Laser Phys. Lett. 8(9), 629–646 (2011)

    Google Scholar 

  5. M.E. Brezinski, G.J. Tearney, N.J. Weissman, S.A. Boppart, B.E. Bouma, M.R. Hee, A.E. Weyman, E.A. Swanson, J.F. Southern, J.G. Fujimoto, Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart 77(5), 397 (1997)

    Article  Google Scholar 

  6. G.J. Tearney, M.E. Brezinski, J.F. Southern, B.E. Bouma, S.A. Boppart, J.G. Fujimoto, Optical biopsy in human gastrointestinal tissue using optical coherence tomography. Am. J. Gastroenterol. 92(10), 1800–4 (1997)

    Google Scholar 

  7. C. Pitris, M.E. Brezinski, B.E. Bouma, G.J. Tearney, J.F. Southern, J.G. Fujimoton, High resolution imaging of the upper respiratory tract with optical coherence tomography. A feasibility study. Am. J. Respir. Crit. Care Med. 157(5), 1640 (1998)

    Article  Google Scholar 

  8. G.J. Tearney, M.E. Brezinski, J.F. Southern, B.E. Bouma, S.A. Boppart, J.G. Fujimoto, Optical biopsy in human urologic tissue using optical coherence tomography. J. Urol. 157(5), 1915 (1997)

    Article  Google Scholar 

  9. C.A. Jesser, S.A. Boppart, C. Pitris, D.L. Stamper, G.P. Nielsen, M.E. Brezinski, J.G. Fujimoto, High resolution imaging of transitional cell carcinoma with optical coherence tomography: Feasibility for the evaluation of bladder pathology. Br. J. Radiol. 72(864), 1170 (1999)

    Article  Google Scholar 

  10. C. Pitris, A.K. Goodman, S.A. Boppart, J.J. Libus, J.G. Fujimoto, M.E. Brezinski, High resolution imaging of cervical and uterine malignancies using optical coherence tomography. Obstect. Gyn. 93, 135 (1999)

    Article  Google Scholar 

  11. J.B.W. Colston, M.J. Everett, L.B. Da Silva, L.L. Otis, P. Stroeve, H. Nathel, Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography. Appl. Opt. 37(16), 3582 (1998)

    Article  Google Scholar 

  12. X.-J. Wang, T.E. Milner, J.F. de Boer, Y. Zhang, D.H. Pashley, J.S. Nelson, Characterization of Dentin and Enamel by use of Optical Coherence Tomography. Appl. Opt. 38(10), 2092 (1999)

    Google Scholar 

  13. P. Zakharov, M.S. Talary, I. Kolm, A. Caduff, Full-field optical coherence tomography for the rapid estimation of epidermal thickness: study of patients with diabetes mellitus type 1. Physiol. Meas. 31(2), 193 (2010)

    Article  Google Scholar 

  14. O.S. Khalil, Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium. Diabetes Technology & Therapeutics 6(5), 660–697 (2004)

    Article  MathSciNet  Google Scholar 

  15. C. Ok Kyung, Y.O. Kim, H. Mitsumaki, K. Kuwa, Noninvasive measurement of glucose by metabolic heat conformation method. Clin. Chem. 50, 1894–1898 (2004)

    Article  Google Scholar 

  16. E.-H. Yoo, S.-Y. Lee, Glucose biosensors: an overview of use in clinical practice. Sensors 10, 4558–4576 (2010)

    Article  Google Scholar 

  17. M.G. Ghosn, V.V. Tuchin, K.V. Larin, Depth-resolved monitoring of glucose diffusion in tissues by using optical coherence tomography. Opt. Lett. 31(15), 2314–2316 (2006)

    Article  Google Scholar 

  18. G.L. Cote, M.D. Fox, R.B. Northrop, Noninvasive optical polarimetric glucose sensing using a true phase measurement technique. IEEE Trans.Biomed. Eng. 39(7), 752–756 (1992)

    Article  Google Scholar 

  19. M.R. Prausnitz, J.S. Noonan, Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J. Pharm. Sci. 87(12), 1479–1488 (1998)

    Article  Google Scholar 

  20. R.A. Gabbay, S. Sivarajah, Optical coherence tomography-based continuous noninvasive glucose monitoring in patients with diabetes. Diabet. Technol. Ther. 10(3), 188–193 (2008)

    Article  Google Scholar 

  21. H. Xiong, Z. Guo, C. Zeng, L. Wang, Y. He, S. Liu, Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice. J. Biomed. Opt. 14(2), 024029 (2009)

    Article  Google Scholar 

  22. M. Kohl, M. Cope, M. Essenpreis, D. Böcker, Influence of glucose concentration on light scattering in tissue-simulating phantoms. Opt. Lett. 19(24), 2170–2172 (1994)

    Article  Google Scholar 

  23. M. Brezinski, Optical Coherence Tomography: Principles and Applications. (Academic Press, Cambridge, 2009)

    Google Scholar 

  24. U. Hafeez, Imaging of Biological Tissues using Diffuse Reflectance and Optical Coherence Tomography. (Department of Physics, Pakistan Institute of Engineering and Applied Sciences, Islamabad, 2012), p. 152

    Google Scholar 

  25. H. Ullah, M. Ikram, Optical Coherence Tomography for Glucose Monitoring in Blood. (LAP Lambert Academic Publishing, Saarbrücken, 2012)

    Google Scholar 

  26. K.V. Larin, M.G. Ghosn, S.N. Ivers, A. Tellez, J.F. Granada, Quantification of glucose diffusion in arterial tissues by using optical coherence tomography. Laser Phys. Lett. 4(4), 312–317 (2007)

    Article  Google Scholar 

  27. H. Ullah, M. Atif, S. Firdous, M.S. Mehmood, M. Ikram, C. Kurachi, C. Grecco, G. Nicolodelli, V.S. Bagnato, Femtosecond light distribution at skin and liver of rats: analysis for use in optical diagnostics. Laser Phys. Lett. 7(12), 889–898 (2010)

    Article  Google Scholar 

  28. K.V. Larin, M.G. Ghosn, S.N. Ivers, A. Tellez, J.F. Granada, Quantification of glucose diffusion in arterial tissues by using optical coherence tomography. Laser Phys. Lett. 4(4), 312 (2007)

    Article  Google Scholar 

  29. K.V. Larin, V.V. Tuchin, Functional imaging and assessment of the glucose diffusion rate in epithelial tissues in optical coherence tomography. Quantum Electron. 38(6), 551 (2008)

    Article  Google Scholar 

  30. H. Ullah, G. Gilanie, M. Attique, M. Hamza, M. Ikram, M-mode swept source optical coherence tomography for quantification of salt concentration in blood: an in vitro study. Laser Phys. 22(5), 1002–1010 (2012)

    Google Scholar 

  31. H. Ullah, A. Mariampillai, M. Ikram, I. Vitkin, Can temporal analysis of optical coherence tomography statistics report on dextrorotatory-glucose levels in blood? Laser Phys. 21(11), 1962–1971 (2011)

    Article  Google Scholar 

  32. S. Prahl. Mie Scattering Calculator (2011), (cited 11 Apr 2011), Available from: http://omlc.ogi.edu/calc/mie_calc.html

  33. X. Guo, Z.Y. Guo, H.J. Wei, H.Q. Yang, Y.H. He, S.S. Xie, G.Y. Wu, H.Q. Zhong, L.Q. Li, Q.L. Zhao, In vivo quantification of propylene glycol, glucose and glycerol diffusion in human dkin with optical coherence tomography. Laser Phys. 20, 1849–1855 (2010)

    Article  Google Scholar 

  34. Y.L. Jin, J.Y. Chen, L. Xu, P.N. Wang, Refractive index measurement for biomaterial samples by total internal reflection. Phys. Med. Biol. 51(20), N371 (2006)

    Article  Google Scholar 

  35. M. Brezinski, Optical coherence tomography principles and applications (Elsevier, San Diego, USA, 2006)

    Google Scholar 

  36. B.J. Berne, R. Pecora, dynamic light scattering with applications to chemistry, biology, and physics (Dover Publications, Inc., Mineola, New York, 2000)

    Google Scholar 

  37. website. Physical characteristics of water (at the atmospheric pressure). (2011) (cited 22 Feb 2011), Available from: http://www.thermexcel.com/english/tables/eau_atm.htm

  38. Telisa, J. Telis-Romeroa, H.B. Mazzottia, A.L. Gabasb, Viscosity of aqueous carbohydrate solutions at different temperatures and concentrations. Int. J. Food Prop. 10(1), 185–195 (2007)

    Article  Google Scholar 

  39. S. Kim, S. Yang, D. Lim, Effect of dextran on rheological properties of rat blood. J. Mech. Sci. Technol. 23(3), 868–873 (2009)

    Article  Google Scholar 

  40. N. Dobrovol’skii, Y. Lopukhin, A. Parfenov, A. Peshkov, A blood viscosity analyzer. Biomed. Eng. 31(3), 140–143 (1997)

    Article  Google Scholar 

  41. (2011) (cited 2011 28th January), Available from: http://www.epakmachinery.com/products/viscosity-chart

  42. O.S. Zhernovaya, V.V. Tuchin, I.V. Meglinski, Monitoring of blood proteins glycation by refractive index and spectral measurements. Laser Phys. Lett. 5(6), 460–464 (2008)

    Article  Google Scholar 

  43. G. Barshtein, I. Tamir, S. Yedgar, Red blood cell rouleaux formation in dextran solution: dependence on polymer conformation. Eur. Biophys. J. 27(2), 177–181 (1998)

    Article  Google Scholar 

  44. A.A. Bednov, E.V. Savateeva, A.A. Oraevsky. Opto-acoustic monitoring of blood optical properties as a function of glucose concentration (2003)

    Google Scholar 

  45. T.W. Secomb, B. Styp-Rekowska, A.R. Pries, Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels. Ann. Biomed. Eng. 35, 755–765 (2007)

    Article  Google Scholar 

  46. R. Skalak, P.R. Zarda, K.M. Jan, S. Chien, Mechanics of Rouleau formation. Biophys. J. 35(3), 771–781 (1981)

    Article  Google Scholar 

  47. H. Ullah, F. Hussain, M.A. Abdul, J. Malik, M.A. Sial, E. Ahmed, Durr-e-Sabeeh, Qualitative monitoring of glucose, salt and distilled water in whole blood: an in vitro study. Unpublished data (2015)

    Google Scholar 

  48. A.I. Joseph, S. Yazdanfar, V. Westphal, S. Radhakrishan, A.M. Rollins, Real-time and functional optical coherence tomography. In IEEE, p. 110 (2002)

    Google Scholar 

  49. H. Ullah, A. Mariampillai, M. Ikram, I.A. Vitkin, Can temporal analysis of optical coherence tomography statistics report on dextrorotatory-glucose levels in blood? Laser Phys. 21(11), 1962–1971 (2011)

    Article  Google Scholar 

  50. A.A. Bednov, A.A. Karabutov, E.V. Savateeva, W.F. March, A.A. Oraevsky. Monitoring glucose in vivo by measuring laser-induced acoustic profiles (2000)

    Google Scholar 

  51. H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, I.A. Vitkin, Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography. Laser Phys. 22(4), 797–804 (2012)

    Article  Google Scholar 

  52. V.V. Tuchin, Laser Fiber Optics in Biomedical Research. (Saratov State Univ. Publ., Russia, 1998), 383p

    Google Scholar 

  53. J.A. Jacquez, Red blood cell as glucose carrier: significance for placental and cerebral glucose transfer. Am. J. Physiol. Regul. Integr. Comparative Physiol. 246(3), R289–R298 (1984)

    Google Scholar 

  54. J.D. Ramshaw, Brownian motion in flowing fluids. Phys. Fluids 22, 1595–1601 (1979)

    Article  MATH  Google Scholar 

  55. D.B. Kunimasa Miyazaki, Brownian motion in a fluid in simple shear flow. Phys. A 217, 53–74 (1995)

    Article  Google Scholar 

  56. M. Ninck, M. Untenberger, T. Gisler, Diffusing-wave spectroscopy with dynamic contrast variation: disentangling the effects of blood flow and extravascular tissue shearing on signals from deep tissue. Biomed. Opt. Express 1(5), 1502–1513 (2010)

    Article  Google Scholar 

  57. B.D.H. Ullah, A. Mariampillai, G. Hussain, M. Ikram, I.A. Vitkin, Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography. Laser Phy. (2011, article in press)

    Google Scholar 

  58. H. Ullah, B. Davoudi, A. Mariampillai, G. Hussain, M. Ikram, I. Vitkin, Quantification of glucose levels in flowing blood using M-mode swept source optical coherence tomography. Laser Phys. 22(4), 797–804 (2012)

    Google Scholar 

  59. M. Kinnunen, R. Myllyla, S. Vainio, Detecting glucose-induced changes in in vitro and in vivo experiments with optical coherence tomography. J. Biomed. Opt. 13(2), 021111–021117 (2008)

    Article  Google Scholar 

  60. J. Moger, S.J. Matcher, C.P. Winlove, A. Shore, Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography. J. Biomed. Opt. 9(5), 982–994 (2004)

    Article  Google Scholar 

  61. R. Darby, Chemical Engineering Fluid Mechanics. (Marcel Dekker, Inc., New York, NY 2001), p. 10016

    Google Scholar 

  62. D. Rusu, D. Genoe, P. van Puyvelde, E. Peuvrel-Disdier, P. Navard, G.G. Fuller, Dynamic light scattering during shear: measurements of diffusion coefficients. Polymer 40(6), 1353–1357 (1999)

    Article  Google Scholar 

  63. Z. Li, H. Li, J. Li, X. Lin, Feasibility of glucose monitoring based on Brownian dynamics in time-domain optical coherence tomography. Laser Phys. 21(11), 1995–1998 (2011)

    Article  Google Scholar 

  64. H. Ullah, E. Ahmed, M. Ikram, Human cervical carcinoma detection and glucose monitoring in blood micro vasculatures with swept source OCT. JETP Lett. 97(12), 690–696 (2013)

    Article  Google Scholar 

  65. M.L. Hans-Anton Lehr, Michael D. Menger, Dirk Nolte, Konrad Messmer, Dorsal Skinfold Chamber Technique for Intravital Microscopy in Nude Mice. Am. J. Pathol. 143(4), 1055–1062 (1993)

    Google Scholar 

  66. S.J. Md Menger, P. Walter, F. Hammersen, K. Messmer, A novel technique for studies on the microvasculature of transplanted islets of Langerhans in vivo. Int. J. Microcirc. Clin. Exp. 9, 109–117 (1990)

    Google Scholar 

  67. A. Mariampillai, B.A. Standish, E.H. Moriyama, M. Khurana, N.R. Munce, M.K.K. Leung, J. Jiang, A. Cable, B.C. Wilson, I.A. Vitkin, V.X.D. Yang, Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt. Lett. 33(13), 1530–1532 (2008)

    Article  Google Scholar 

  68. N. Sudheendran, S.H. Syed, M.E. Dickinson, I.V. Larina, K.V. Larin, Speckle variance OCT imaging of the vasculature in live mammalian embryos. Laser Phys. Lett. 8(3), 247–252 (2011)

    Article  Google Scholar 

  69. G. Hüttmann, Optical coherence tomography (OCT) for early diagnosis of tumors and online-control of photodynamic therapy (PDT). Photodiagn. Photodyn. Ther. 8(2), 152 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Our own contributions in this chapter were supported by Higher Education Commission Pakistan, Islamabad, Pakistan and Canadian Institutes of Health Research, Ottawa, Canada. We would like to acknowledge all those authors whose results are included/cited in this work. We specially pay our thanks to Dr. Prof. Alex Vitkin, Department of Medical Biophysics, University of Toronto, Canada, who allowed me to conduct the experiments and discussed the results about the quantification of glucose levels in blood in his OCT laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafeez Ullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Ullah, H., Ahmad, E., Hussain, F. (2016). Optical Coherence Tomography as Glucose Sensor in Blood. In: Husain, M., Khan, Z. (eds) Advances in Nanomaterials. Advanced Structured Materials, vol 79. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2668-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2668-0_12

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2666-6

  • Online ISBN: 978-81-322-2668-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics