Recent Trends of Gelatin Nanoparticles in Biomedical Applications

  • Prem Prakash Sharma
  • Anshu Sharma
  • Pratima R. SolankiEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 79)


Today’s scenario is nanoscience and nanotechnology performing significant contributions of protein nanoparticles (PNPs) for delivery of various life savings biomolecules. Among the various PNPs, gelatin nanoparticles (GNPs) exhibit good capabilities for biomedical application because of their biodegradability, biocompatibility, non-toxicities and its cost-effectiveness. In this chapter, we have discussed different methods for GNPs preparation and their functionalization for target delivery of drugs and genes  for a range of diseases like cancer, malarial and infectious. We also discussed ocular, pulmonary drugs as well as nutraceutical, proteins and peptides delivery. We also come across their application in tissue engineering.


Gelatin nanoparticles Drug delivery Diseases Tissue engineering 


  1. 1.
    N.M. Molino, S.W. Wang, Caged protein nanoparticles for drug delivery. Curr. Opin. Biotechnol. 28, 75–82 (2014)CrossRefGoogle Scholar
  2. 2.
    W. Lohcharoenkal, L. Wang, Y.C. Chen, Y. Rojanasakul, Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed. Res. Int. 2014, 12 (2014)CrossRefGoogle Scholar
  3. 3.
    K.D. Schwenke, The science and technology of gelatin. Herausgegeben von A. G. Ward u. A. Courts, XVI und 564 Seiten mit zahlreichen Abb. u. Tab. (Academic Press London, New York, San Francisco 1977). Preis: 18,00 £; 39,50 $. Food/Nahrung 22(4), 444–445 (1978)Google Scholar
  4. 4.
    H. Shah, F. Yusof, Gelatin as an ingredient in food and pharmaceutical products: an Islamic perspective. Adv. Environ. Biol. 8(3), 7 (2014)Google Scholar
  5. 5.
    C. Pena, K. de la Caba, A. Eceiza, R. Ruseckaite, I. Mondragon, Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresour. Technol. 101(17), 6836–6842 (2010)CrossRefGoogle Scholar
  6. 6.
    R. Schrieber, H. Gareis, Gelatine Handbook: Theory and Industrial Practice (New York, Wiley, 2007)Google Scholar
  7. 7.
    R. Kaintura, P. Sharma, S. Singh, K. Rawat, P.R. Solanki, Gelatin nanoparticles as a delivery system for proteins. J. Nanomed. Res. 2(1), 00018 (2015)Google Scholar
  8. 8.
    K. Rawat, P.R. Solanki, K. Arora, H.B. Bohidar, Response of gelatin modified electrode towards sensing of different metabolites. Appl. Biochem. Biotechnol. 174(3), 1032–1042 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Mahapatro, D. Singh, Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J. Nanobiotechnol. 9(1), 55 (2011)Google Scholar
  10. 10.
    K. Singh, A. Mishra, Gelatin nanoparticle: preparation, characterization and application in drug delivery. Int. J. Pharm. Sci. Res. 5(6), 2149–2157 (2014)Google Scholar
  11. 11.
    L. Jeong, W.H. Park, Preparation and characterization of gelatin nanofibers containing silver nanoparticles. Int. J. Mol. Sci. 15(4), 6857–6879 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Heydarkhan-Hagvall, K. Schenke-Layland, A.P. Dhanasopon, F. Rofail, H. Smith, B.M. Wu, R. Shemin, R.E. Beygui, W.R. MacLellan, Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 29(19), 2907–2914 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Azarmi, Y. Huang, H. Chen, S. McQuarrie, D. Abrams, W. Roa, W.H. Finlay, G.G. Miller, R. Lobenberg, Optimization of a two-step desolvation method for preparing gelatin nanoparticles and cell uptake studies in 143B osteosarcoma cancer cells. J. Pharm. Pharm. Sci. Publ. Can. Soc. Pharm. Sci. Soc. Can. Des Sci. Pharm. 9(1), 124–132 (2006)Google Scholar
  14. 14.
    B. Mohanty, V.K. Aswal, J. Kohlbrecher, H.B. Bohidar, Synthesis of gelatin nanoparticles via simple coacervation. J. Surface Sci. Technol. 21(3–4), 12 (2005)Google Scholar
  15. 15.
    C. Pinto Reis, R.J. Neufeld, A.J. Ribeiro, F. Veiga, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2(1), 8–21 (2006)Google Scholar
  16. 16.
    A.O. Elzoghby, Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J. Controlled Release 172(3), 1075–1091 (2013)CrossRefGoogle Scholar
  17. 17.
    G. Kaul, M. Amiji, Biodistribution and targeting potential of poly (ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J. Drug Target. 12(9–10), 585–591 (2004)CrossRefGoogle Scholar
  18. 18.
    Z. Lu, T.K. Yeh, M. Tsai, J.L. Au, M.G. Wientjes, Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy. Clin. Cancer Res. Official J. Am. Assoc. Cancer Res. 10(22), 7677–7684 (2004)CrossRefGoogle Scholar
  19. 19.
    J. Madan, N. Dhiman, S. Sardana, R. Aneja, R. Chandra, A. Katyal, Long-circulating poly (ethylene glycol)-grafted gelatin nanoparticles customized for intracellular delivery of noscapine: preparation, in-vitro characterization, structure elucidation, pharmacokinetics, and cytotoxicity analyses. Anti-cancer Drugs 22(6), 543–555 (2011)CrossRefGoogle Scholar
  20. 20.
    E. Leo, M. Angela Vandelli, R. Cameroni, F. Forni, Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde: involvement of the drug in the cross-linking process. Int. J. Pharm. 155(1), 75–82 (1997)Google Scholar
  21. 21.
    M.G. Cascone, L. Lazzeri, C. Carmignani, Z. Zhu, Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J. Mater. Sci. Mater. Med. 13(5), 523–526 (2002)CrossRefGoogle Scholar
  22. 22.
    A.K. Bajpai, J. Choubey, In vitro release dynamics of an anticancer drug from swellable gelatin nanoparticles. J. Appl. Polym. Sci. 101(4), 2320–2332 (2006)CrossRefGoogle Scholar
  23. 23.
    W.-M. Li, D.-M. Liu, S.-Y. Chen, Amphiphilically-modified gelatin nanoparticles: self-assembly behavior, controlled biodegradability, and rapid cellular uptake for intracellular drug delivery. J. Mater. Chem. 21(33), 12381–12388 (2011)CrossRefGoogle Scholar
  24. 24.
    Y.-W. Won, S.-M. Yoon, C.H. Sonn, K.-M. Lee, Y.-H. Kim, Nano self-assembly of recombinant human gelatin conjugated with α-tocopheryl succinate for Hsp90 inhibitor, 17-AAG, delivery. ACS Nano 5(5), 3839–3848 (2011)CrossRefGoogle Scholar
  25. 25.
    H. Ai, S. Jones, Y. Lvov, Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles. Cell Biochem. Biophys. 39(1), 23–43 (2003)CrossRefGoogle Scholar
  26. 26.
    A. Saxena, K. Sachin, H.B. Bohidar, A.K. Verma, Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano-particles. Colloids Surf., B 45(1), 42–48 (2005)CrossRefGoogle Scholar
  27. 27.
    S. Karthikeyan, N. Rajendra Prasad, A. Ganamani, E. Balamurugan, Anticancer activity of resveratrol-loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells. Biomed. Prev. Nutr. 3(1), 64–73 (2013)Google Scholar
  28. 28.
    D. Ding, Z. Zhu, Q. Liu, J. Wang, Y. Hu, X. Jiang, B. Liu, Cisplatin-loaded gelatin-poly (acrylic acid) nanoparticles: synthesis, antitumor efficiency in vivo and penetration in tumors. Eur. J. Pharm. Biopharm. 79(1), 142–149 (2011)CrossRefGoogle Scholar
  29. 29.
    S. Harsha, Pharmaceutical suspension containing both immediate/sustained-release amoxicillin-loaded gelatin nanoparticles: preparation and in vitro characterization. Drug Des. Dev. Ther. 7, 1027–1033 (2013)CrossRefGoogle Scholar
  30. 30.
    N. Kuntworbe, R. Al-Kassas, Design and in vitro haemolytic evaluation of cryptolepine hydrochloride-loaded gelatine nanoparticles as a novel approach for the treatment of malaria. AAPS PharmSciTech 13(2), 568–581 (2012)CrossRefGoogle Scholar
  31. 31.
    L.-L. Li, J.-H. Xu, G.-B. Qi, X. Zhao, F. Yu, H. Wang, Core-shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery. ACS Nano 8(5), 4975–4983 (2014)CrossRefGoogle Scholar
  32. 32.
    B. Azimi, P. Nourpanah, M. Rabiee, S. Arbab, Producing gelatin nanoparticles as delivery system for bovine serum albumin. Iran. Biomed. J. 18(1), 34 (2014)Google Scholar
  33. 33.
    C. Coester, P. Nayyar, J. Samuel, In vitro uptake of gelatin nanoparticles by murine dendritic cells and their intracellular localisation. Eur. J. Pharm. Biopharm. 62(3), 306–314 (2006)CrossRefGoogle Scholar
  34. 34.
    M.S. Sudheesh, S.P. Vyas, D.V. Kohli, Nanoparticle-based immunopotentiation via tetanus toxoid-loaded gelatin and aminated gelatin nanoparticles. Drug Delivery 18(5), 320–330 (2011)CrossRefGoogle Scholar
  35. 35.
    F.M. Chen, Z.W. Ma, G.Y. Dong, Z.F. Wu, Composite glycidyl methacrylated dextran (Dex-GMA)/gelatin nanoparticles for localized protein delivery. Acta Pharmacol. Sin. 30(4), 485–493 (2009)CrossRefGoogle Scholar
  36. 36.
    G. Kaul, M. Amiji, Tumor-targeted gene delivery using poly (ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm. Res. 22(6), 951–961 (2005)CrossRefGoogle Scholar
  37. 37.
    G. Kaul, M. Amiji, Long-circulating poly (ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm. Res. 19(7), 1061–1067 (2002)CrossRefGoogle Scholar
  38. 38.
    P. Magadala, M. Amiji, Epidermal growth factor receptor-targeted gelatin-based engineered nanocarriers for DNA delivery and transfection in human pancreatic cancer cells. AAPS J. 10(4), 565–576 (2008)CrossRefGoogle Scholar
  39. 39.
    K. Zwiorek, C. Bourquin, J. Battiany, G. Winter, S. Endres, G. Hartmann, C. Coester, Delivery by cationic gelatin nanoparticles strongly increases the immunostimulatory effects of CpG oligonucleotides. Pharm. Res. 25(3), 551–562 (2008)CrossRefGoogle Scholar
  40. 40.
    G. Kaul, C. Lee-Parsons, M. Amiji, Poly (ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm. Eng. 23(5), 108–117 (2003)Google Scholar
  41. 41.
    S. Kommareddy, M. Amiji, Poly (ethylene glycol)-modified thiolated gelatin nanoparticles for glutathione-responsive intracellular DNA delivery. Nanomed. Nanotechnol. Biol. Med. 3(1), 32–42 (2007)CrossRefGoogle Scholar
  42. 42.
    J. Vandervoort, A. Ludwig, Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. Eur. J. Pharm. Biopharm. 57(2), 251–261 (2004)CrossRefGoogle Scholar
  43. 43.
    G. Konat Zorzi, L. Contreras-Ruiz, J.E. Párraga, A. López-García, R. Romero Bello, Y. Diebold, B. Seijo, A. Sánchez, Expression of MUC5AC in ocular surface epithelial cells using cationized gelatin nanoparticles. Mol. Pharm. 8(5), 1783–1788 (2011)Google Scholar
  44. 44.
    G.K. Zorzi, J.E. Párraga, B. Seijo, A. Sánchez, Hybrid nanoparticle design based on cationized gelatin and the polyanions dextran sulfate and chondroitin sulfate for ocular gene therapy. Macromol. Biosci. 11(7), 905–913 (2011)Google Scholar
  45. 45.
    J.S. Patil, S. Sarasija, Pulmonary drug delivery strategies: a concise, systematic review. Lung India Official Organ Indian Chest Soc. 29(1), 44–49 (2012)CrossRefGoogle Scholar
  46. 46.
    C.-L. Tseng, W.-Y. Su, K.-C. Yen, K.-C. Yang, F.-H. Lin, The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials 30(20), 3476–3485 (2009)CrossRefGoogle Scholar
  47. 47.
    J.O.H. Sham, Y. Zhang, W.H. Finlay, W.H. Roa, R. Löbenberg, Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int. J. Pharm. 269(2), 457–467 (2004)CrossRefGoogle Scholar
  48. 48.
    S. Fuchs, J. Klier, A. May, G. Winter, C. Coester, H. Gehlen, Towards an inhalative in vivo application of immunomodulating gelatin nanoparticles in horse-related preformulation studies. J. Microencapsul. 29(7), 615–625 (2012)CrossRefGoogle Scholar
  49. 49.
    J. Klier, S. Fuchs, A. May, U. Schillinger, C. Plank, G. Winter, H. Gehlen, C. Coester, A nebulized gelatin nanoparticle-based CpG formulation is effective in immunotherapy of allergic horses. Pharm. Res. 29(6), 1650–1657 (2012)CrossRefGoogle Scholar
  50. 50.
    Y.-C. Chen, S.-H. Yu, G.-J. Tsai, D.-W. Tang, F.-L. Mi, Y.-P. Peng, Novel technology for the preparation of self-assembled catechin/gelatin nanoparticles and their characterization. J. Agric. Food Chem. 58(11), 6728–6734 (2010)CrossRefGoogle Scholar
  51. 51.
    T.G. Shutava, S.S. Balkundi, P. Vangala, J.J. Steffan, R.L. Bigelow, J.A. Cardelli, D.P. O’Neal, Y.M. Lvov, Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano 3(7), 1877–1885 (2009)CrossRefGoogle Scholar
  52. 52.
    H. Zhou, X. Sun, L. Zhang, P. Zhang, J. Li, Y.-N. Liu, Fabrication of biopolymeric complex coacervation core micelles for efficient tea polyphenol delivery via a green process. Langmuir 28(41), 14553–14561 (2012)CrossRefGoogle Scholar
  53. 53.
    T. Zou, S.S. Percival, Q. Cheng, Z. Li, C.A. Rowe, L. Gu, Preparation, characterization, and induction of cell apoptosis of cocoa procyanidins–gelatin–chitosan nanoparticles. Eur. J. Pharm. Biopharm. 82(1), 36–42 (2012)CrossRefGoogle Scholar
  54. 54.
    Z. Gan, T. Zhang, Y. Liu, D. Wu, Temperature-triggered enzyme immobilization and release based on cross-linked gelatin nanoparticles. PLoS ONE 7(10), e47154 (2012)Google Scholar
  55. 55.
    S. Palanisamy, S. Cheemalapati, S.-M. Chen, Enzymatic glucose biosensor based on multiwalled carbon nanotubes-zinc oxide composite. Int. J. Electrochem. Sci. 7, 8394 (2012)Google Scholar
  56. 56.
    M.C. Chang, C.-C. Ko, W.H. Douglas, Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 24(17), 2853–2862 (2003)CrossRefGoogle Scholar
  57. 57.
    C.-K. Chiu, J. Ferreira, T.-J. Luo, H. Geng, F.-C. Lin, C.-C. Ko, Direct scaffolding of biomimetic hydroxyapatite-gelatin nanocomposites using aminosilane cross-linker for bone regeneration. J. Mater. Sci. Mater. Med. 23(9), 2115–2126 (2012)CrossRefGoogle Scholar
  58. 58.
    X. Yang, L. Zhu, S. Tada, D. Zhou, T. Kitajima, T. Isoshima, Y. Yoshida, M. Nakamura, W. Yan, Y. Ito, Mussel-inspired human gelatin nanocoating for creating biologically adhesive surfaces. Int. J. Nanomed. 9, 2753–2765 (2014)Google Scholar
  59. 59.
    T. Taguchi, Y. Endo, Crosslinking liposomes/cells using cholesteryl group-modified tilapia gelatin. Int. J. Mol. Sci. 15(7), 13123–13134 (2014)CrossRefGoogle Scholar
  60. 60.
    Y. Yang, H. Tang, A. Köwitsch, K. Mäder, G. Hause, J. Ulrich, T. Groth, Novel mineralized heparin–gelatin nanoparticles for potential application in tissue engineering of bone. J. Mater. Sci. Mater. Med. 25(3), 669–680 (2014)CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Prem Prakash Sharma
    • 1
  • Anshu Sharma
    • 1
    • 2
  • Pratima R. Solanki
    • 1
    Email author
  1. 1.Special Centre for Nano SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations