Skip to main content

Plant Breeding for Flood Tolerance: Advances and Limitations

  • Chapter
  • First Online:
Book cover Genetic Manipulation in Plants for Mitigation of Climate Change

Abstract

Over 17 million km2 of land surface is affected by flooding every year, resulting in severe damage to plants and associated losses in agricultural production around the globe. While importance of plant breeding for waterlogging stress tolerance has been long on the agenda, the progress in the field is handicapped by the physiological and genetic complexity of this trait. In this chapter, we summarise the recent knowledge about the major constraints affecting plant performance in waterlogged soils and discuss the mechanisms employed by plants to deal with the stress. The topics covered include oxygen availability in flooded soils; whole-plant responses to oxygen deprivation; biochemical alterations in hypoxic roots; mechanisms of aerenchyma formation; the role of ethylene signalling and programmed cell death in hypoxic roots; oxygen transport from shoot to root; formation of ROL barrier and control of oxygen loss; changes in soil redox potential under flooding; Mn and Fe toxicity in waterlogged plants; secondary metabolite toxicity and plant adaptation to organic phytotoxins; MAS approach to plant breeding for flooding stress tolerance; and emerging areas such as elucidating the role of membrane transporters in flooding tolerance, developing high-throughput technology platforms for fine QTL mapping and understanding ROS signalling in flooding stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abiko T, Kotula L, Shiono K, Malik AI, Colmer TD, Nakazono M (2012a) Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant Cell Environ 35:1618–1630

    Article  CAS  PubMed  Google Scholar 

  • Abiko T, Obara M, Abe F, Kawaguchi K, Oyanagi A, Yamauchi T, Nakazono M (2012b) Screening of candidate genes associated with constitutive aerenchyma formation in adventitious roots of the teosinte Zea nicaraguensis. Plant Roots 6:19–27

    Article  CAS  Google Scholar 

  • Agarwal S, Grover A (2006) Molecular biology, biotechnology and genomics of flooding-associated low O stress response in plants. Crc Cr Rev Plant Sci 25:1–21

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Anschütz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol 171:670–687

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arbona V, Hossain Z, López-Climent MF, Pérez-Clemente RM, Gómez-Cadenas A (2008) Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol Plant 132:452–466

    Article  CAS  PubMed  Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. Adv Bot Res 7:225–332

    Article  CAS  Google Scholar 

  • Armstrong J, Armstrong W (1999) Phragmites die-back: toxic effects of propionic, butyric and caproic acids in relation to pH. New Phytol 142:201–217

    Article  CAS  Google Scholar 

  • Armstrong J, Armstrong W (2001) Rice and Phragmites: effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere. Am J Bot 88:1359–1370

    Article  CAS  PubMed  Google Scholar 

  • Armstrong J, Armstrong W (2005) Rice: sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann Bot 96:625–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong J, Armstrong W, Armstrong IB, Pittaway GR (1996) Senescence, and phytotoxin, insect, fungal and mechanical damage: factors reducing convective gas-flows in Phragmites australis. Aquat Bot 54:211–226

    Article  CAS  Google Scholar 

  • Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 126:696–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baba I, Inada K, Takijima K (1965) Mineral nutrition and the occurrence of physiological diseases. In: Baltimore MD (ed) The mineral nutrition of the rice plant. Johns Hopkins University Press, Baltimore, pp 295–326

    Google Scholar 

  • Bailey-Serres J, Voesenek L (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Fukao T, Gibbs DJ, Holdsworth MJ, Lee SC, Licausi F, Perata P, Voesenek LACJ, van Dongen JT (2012) Making sense of low oxygen sensing. Trends Plant Sci 17:129–138

    Article  CAS  PubMed  Google Scholar 

  • Banti V, Mafessoni F, Loreti E, Alpi A, Perata P (2010) The heat-inducible transcription factor hsfa2 enhances anoxia tolerance in Arabidopsis. Plant Physiol 152:1471–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banti V, Giuntoli B, Gonzali S, Loreti E, Magneschi L, Novi G, Paparelli E, Parlanti S, Pucciariello C, Santaniello A, Perata P (2013) Low oxygen response mechanisms in green organisms. Int J Mol Sci 14:4734–4761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barret-Lennard EG, Shabala S (2013) The waterlogging/salinity interaction in higher plants revisited – focusing on the hypoxia-induced disturbance to K+ homeostasis. Funct Plant Biol 40:872–882

    Google Scholar 

  • Barrett-Lennard EG (2003) The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant Soil 253:35–54

    Article  CAS  Google Scholar 

  • Barrett-Lennard EG, Leighton PD, Buwalda F, Gibbs J, Armstrong W, Thomson CJ, Greenway H (1988) Effects of growing wheat in hypoxic nutrient solutions and of subsequent transfer to aerated solutions. I. Growth and carbohydrate status of shoots and roots. Funct Plant Biol 15:585–598

    CAS  Google Scholar 

  • Baxter-Burrell A, Yang ZB, Springer PS, Bailey-Serres J (2002) RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296:2026–2028

    Article  CAS  PubMed  Google Scholar 

  • Becker D, Hoth S, Ache P, Wenkel S, Roelfsema MRG, Meyerhoff O, Hartung W, Hedrich R (2003) Regulation of the ABA-sensitive Arabidopsis potassium channel gene GORK in response to water stress. FEBS Lett 554:119–126

    Article  CAS  PubMed  Google Scholar 

  • Beckett PM, Armstrong W, Justin SHFW, Armstrong J (1988) On the relative importance of convective and diffusive gas flows in plant aeration. New Phytol 110:463–468

    Article  Google Scholar 

  • Begg CBM, Kirk GJD, Mackenzie AF, Neue H-U (1994) Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol 128:469–477

    Article  CAS  Google Scholar 

  • Benjamin LR, Greenway H (1979) Effects of a range of O2 concentrations on porosity of barley roots and on their sugar and protein concentrations. Ann Bot 43:383–391

    Article  CAS  Google Scholar 

  • Beyer P, Al-Babili S, Ye XD, Lucca P, Schaub P, Welsch R, Potrykus I (2002) Golden rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr 132:506S–510S

    PubMed  Google Scholar 

  • Booker FL, Blum U, Fiscus EL (1992) Short-term effects of ferulic acid on ion uptake and water relations in cucumber seedlings. J Exp Bot 43:649–655

    Article  CAS  Google Scholar 

  • Branco-Price C, Kaiser KA, Jang CJH, Larive CK, Bailey-Serres J (2008) Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. Plant J 56:743–755

    Article  CAS  PubMed  Google Scholar 

  • Broughton S, Zhou GF, Teakle LN, Matsuda R, Zhou MX, O’Leary AR, Colmer DT, Li CD (2015) Water logging tolerance is associated with root porosity in barley (Hordeum vulgare L.). Mol Breed 35:27. doi:10.1007/S11032-015-0243-3

    Article  Google Scholar 

  • Brown JC, Chaney RL (1971) Effect of iron on the transport of citrate into the xylem of soybeans and tomatoes. Plant Physiol 47:836–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruening G, Lyons JM (2000) The case of the FLAVR SAVR tomato. Calif Agric 54:6–7

    Article  Google Scholar 

  • Burgos S, Stamp P, Schmid JE (2001) Agronomic and physiological study of cold and flooding tolerance of spelt (Triticum spelta L.) and wheat (Triticum aestivum L.). J Agron Crop Sci 187:195–202

    Article  Google Scholar 

  • Cailliatte R, Schikora A, Briat J-F, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22:904–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carystinos GD, MacDonald HR, Monroy AF, Dhindsa RS, Poole RJ (1995) Vacuolar H+-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiol 108:641–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang WW, Huang L, Shen M, Webster C, Burlingame AL, Roberts JK (2000) Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiol 122:295–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Fujii Y, Yamaji N, Masuda S, Takemoto Y, Kamiya T, Yusuyin Y, Iwasaki K, S-i K, Maeshima M, Ma JF, Ueno D (2013) Mn tolerance in rice is mediated by MTP8.1, a member of the cation diffusion facilitator family. J Exp Bot 64:4375–4387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng N-h, Pittman JK, Shigaki T, Hirschi KD (2002) Characterization of CAX4, an Arabidopsis H/cation antiporter. Plant Physiol 128:1245–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark RB (1982) Plant response to mineral element toxicity and deficiency. In: Christiansen MN, Lewis CF (eds) Breeding plants for less favorable environments. Wiley, New York

    Google Scholar 

  • Clarkson DT (1988) The uptake and translocation of manganese by plant roots. In: Manganese in soils and plants. Springer

    Google Scholar 

  • Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collaku A, Harrison SA (2005) Heritability of waterlogging tolerance in wheat. Crop Sci 45:722–727

    Article  Google Scholar 

  • Colmer TD (2002) Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.). Ann Bot 91:301–309

    Article  CAS  Google Scholar 

  • Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    Article  CAS  Google Scholar 

  • Colmer TD, Greenway H (2010) Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot 62:39–57

    Article  PubMed  CAS  Google Scholar 

  • Colmer TD, Pedersen O (2008) Under water photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. New Phytol 177:918–926

    Article  CAS  PubMed  Google Scholar 

  • Colmer TD, Voesenek LACJ (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681

    Article  Google Scholar 

  • Colmer TD, Munns R, Flowers TJ (2005) Improving salt tolerance of wheat and barley: future prospects. Aust J Exp Agric 45:1425–1443

    Article  CAS  Google Scholar 

  • Colmer TD, Cox MCH, Voesenek LACJ (2006) Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatization. New Phytol 170:767–778

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Alonso J, Le Jean M, Ecker J, Briat J (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat J-F, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe (III) uptake. Nature 409:346–349

    Article  CAS  PubMed  Google Scholar 

  • Delhaize E, Gruber BD, Pittman JK, White RG, Leung H, Miao Y, Jiang L, Ryan PR, Richardson AE (2007) A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J 51:198–210

    Article  CAS  PubMed  Google Scholar 

  • Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR (2003) Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell 15:1131–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demidchik V, Maathuis FJM (2010) Ion channels and plant stress responses. Springer, Heidelberg, p 237

    Book  Google Scholar 

  • Demidchik V, Shabala SN, Davies JM (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant J 49:377–386

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D (2001) Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52:1969–1980

    Article  CAS  PubMed  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    Article  CAS  PubMed  Google Scholar 

  • Drew MC, Lynch JM (1980) Soil anaerobiosis, microorganisms, and root function. Annu Rev Phytopathol 18:37–66

    Article  CAS  Google Scholar 

  • Drew MC, Sisworo EJ (1977) Early effects of flooding on nitrogen deficiency and leaf chlorosis in barley. New Phytol 79:567–571

    Article  CAS  Google Scholar 

  • Drew MC, Jackson MB, Giffard SC, Campbell R (1981) Inhibition by silver ions of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency. Planta 153:217–224

    Article  CAS  PubMed  Google Scholar 

  • Drew MC, Saglio PH, Pradet A (1985) Larger adenylate energy charge and ATP/ADP ratios in aerenchymatous roots of Zea mays in anaerobic media as a consequence of improved internal oxygen transport. Planta 165:51–58

    Article  CAS  PubMed  Google Scholar 

  • Dreyer I, Uozumi N (2011) Potassium channels in plant cells. FEBS J 278:4293–4303

    Article  CAS  PubMed  Google Scholar 

  • Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144:197–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Jaoual T, Cox D (1998) Manganese toxicity in plants. J Plant Nutr 21:353–386

    Article  CAS  Google Scholar 

  • Emdadul Haque M, Kawaguchi K, Komatsu S (2011) Analysis of proteins in aerenchymatous seminal roots of wheat grown in hypoxic soils under waterlogged conditions (supplementary material). Protein Pept Lett 18:912–924

    Article  Google Scholar 

  • Epstein E (1961) Mineral metabolism of halophytes. In: Rorison IH (ed) Eccological aspects of the mineral nutrition of plants. Blackwell, Oxford/Edinburg

    Google Scholar 

  • Evans DE (2004) Aerenchyma formation. New Phytol 161:35–49

    Article  Google Scholar 

  • Evans HJ, Sorger GJ (1966) Role of mineral elements with emphasis on the univalent cations. Annu Rev Plant Physiol 17:47–76

    Article  CAS  Google Scholar 

  • Fageria N, Santos A, Barbosa Filho M, Guimaraes C (2008) Iron toxicity in lowland rice. J Plant Nutr 31:1676–1697

    Article  CAS  Google Scholar 

  • Fagerstedt KV (2010) Programmed cell death and aerenchyma formation under hypoxia. In: Mancuso S, Shabala S (eds) Waterlogging signalling and tolerance in plants. Springer, Heidelberg, pp 99–118

    Chapter  Google Scholar 

  • Fang W-C, Kao CH (2000) Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc. Plant Sci 158:71–76

    Article  CAS  PubMed  Google Scholar 

  • Fecht-Christoffers MM, Braun H-P, Lemaitre-Guillier C, VanDorsselaer A, Horst WJ (2003) Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol 133:1935–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felle HH (2005) pH regulation in anoxic plants. Ann Bot 96:519–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK (2011) Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J Exp Bot 62:2001–2011

    Article  CAS  PubMed  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566

    Article  CAS  Google Scholar 

  • Gambrell RP, Delaune RD, Patrick WH (1991) Redox processes in soils following oxygen depletion, plant life under oxygen deprivation. In: Jackson MB, Davies DD, Lambers H (eds) Ecology, physiology and biochemistry. SPB Academic, The Hague

    Google Scholar 

  • Garthwaite AJ, von Bothmer R, Colmer TD (2003) Diversity in root aeration traits associated with waterlogging tolerance in the genus Hordeum. Funct Plant Biol 30:875–889

    Article  Google Scholar 

  • Garthwaite AJ, Steudle E, Colmer TD (2006) Water uptake by roots of Hordeum marinum: formation of a barrier to radial O2 loss does not affect root hydraulic conductivity. J Exp Bot 57:655–664

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite AJ, Armstrong W, Colmer TD (2008) Assessment of O2 diffusivity across the barrier to radial O2 loss in adventitious roots of Hordeum marinum. New Phytol 179:405–416

    Article  CAS  PubMed  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Geisler-Lee J, Caldwell C, Gallie DR (2010) Expression of the ethylene biosynthetic machinery in maize roots is regulated in response to hypoxia. J Exp Bot 61:857–871

    Article  CAS  PubMed  Google Scholar 

  • Gibberd MR, Colmer TD, Cocks PS (1999) Root porosity and oxygen movement in waterlogging-tolerant Trifolium tomentosum and -intolerant Trifolium glomeratum. Plant Cell Environ 22:1161–1168

    Article  Google Scholar 

  • Gibberd MR, Gray JD, Cocks PS, Colmer TD (2001) Waterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and ‘aerotropic rooting’. Ann Bot 88:579–589

    Article  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  CAS  Google Scholar 

  • Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J, Holdsworth MJ (2011) Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479:415–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass ADM (1973) Influence of phenolic acids on ion uptake. 1. Inhibition of phosphate uptake. Plant Physiol 51:1037–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass ADM (1974) Influence of phenolic acids upon ion uptake. 3. Inhibition of potassium absorption. J Exp Bot 25:1104–1113

    Article  CAS  Google Scholar 

  • Green LS, Rogers EE (2004) FRD3 controls iron localization in Arabidopsis. Plant Physiol 136:2523–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenway H, Gibbs J (2003) Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol 30:999–1036

    Article  CAS  Google Scholar 

  • Greenway H, Armstrong W, Colmer TD (2006) Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Ann Bot 98:9–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Haroldsen VM, Paulino G, Chi-Ham CL, Bennett AB (2012) Research and adoption of biotechnology strategies could improve California fruit and nut crops. Calif Agric 66:62–69

    Article  Google Scholar 

  • Hattori Y, Nagai K, Ashikari M (2010) Rice growth adapting to deep-water. Curr Opin Plant Biol 14:100–105

    Article  PubMed  Google Scholar 

  • He C-J, Morgan PW, Drew MC (1992) Enhanced sensitivity to ethylene in nitrogen- or phosphate-starved roots of Zea mays L. during aerenchyma formation. Plant Physiol 98:137–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He C-J, Finlayson SA, Drew MC, Jordan WR, Morgan PW (1996a) Ethylene biosynthesis during aerenchyma formation in roots of maize subjected to mechanical impedance and hypoxia. Plant Physiol 112:1679–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He C-J, Morgan PW, Drew MC (1996b) Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiol 112:463–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551

    CAS  PubMed  Google Scholar 

  • Henriques R, Jásik J, Klein M, Martinoia E, Feller U, Schell J, Pais MS, Koncz C (2002) Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Mol Biol 50:587–597

    Article  CAS  PubMed  Google Scholar 

  • He Y, Zhang J, Ma H, Tu Y, Chen J, Chen F, Xu H, Song Z, Cai D, Xue X (2012) Aerenchyma formation and increased accumulation of free proline in roots of xerophytic Aloe vera L. cultured in nutrient solutions. J Med Plants 6:243–252

    CAS  Google Scholar 

  • Horiguchi T (1987) Mechanism of manganese toxicity and tolerance of plant. II. Deposition of oxidized manganese in plant tissues. Soil Sci Plant Nutr 33:595–606

    Article  CAS  Google Scholar 

  • Horst WJ (1988) The physiology of Mn toxicity. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer Academic, Dordrecht

    Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012

    Google Scholar 

  • Huang X, Shabala S, Shabala L, Rengel Z, Wu XJ, Zhang GP, Zhou MX (2014) Linking waterlogging tolerance with Mn2+ toxicity: a case study for barley. Plant Biol 17:26-33

    Google Scholar 

  • Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) A rice FRD3-like (OsFRDL1) gene is expressed in the cells involved in long-distance transport. Soil Sci Plant Nutr 50:1133–1140

    Article  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe -phytosiderophore and as Fe. Plant J 45:335–346

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK (2010) Rice metalnicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Bashir K, Nakanishi H, Nishizawa NK (2012a) OsNRAMP5, a major player for constitutive iron and manganese uptake in rice. Plant Signal Behav 7:763–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T (2012b) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Scientific reports 2

    Google Scholar 

  • Izaguirre-Mayoral ML, Sinclair TR (2005) Variation in manganese and iron accumulation among soybean genotypes growing on hydroponic solutions of differing manganese and nitrate concentrations. J Plant Nutr 28:521–535

    Article  CAS  Google Scholar 

  • Jackson MB (1985) Ethylene and responses of plants to soil waterlogging and submergence. Annu Rev Plant Biol 36:145–174

    Article  CAS  Google Scholar 

  • Jackson MB (2002) Long-distance signalling from roots to shoots assessed: the flooding story. J Exp Bot 53:175–181

    Article  CAS  PubMed  Google Scholar 

  • Jackson MB, Armstrong W (1999) Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol 1:274–287

    Article  CAS  Google Scholar 

  • Jackson MB, Hall KC (1987) Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in the absence of foliar water deficits. Plant Cell Environ 10:121–130

    CAS  Google Scholar 

  • Jackson M, Dobson C, Herman B, Merryweather A (1984) Modification of 3,5-diiodo-4-hydroxybenzoic acid (DIHB) activity and stimulation of ethylene production by small concentrations of oxygen in the root environment. Plant Growth Regul 2:251–262

    Article  CAS  Google Scholar 

  • Jiang Z, Song X-F, Zhou Z-Q, Wang L-K, Li J-W, Deng X-Y, Fan H-Y (2010) Aerenchyma formation: programmed cell death in adventitious roots of winter wheat (Triticum aestivum) under waterlogging. Funct Plant Biol 37:748–755

    Article  Google Scholar 

  • John CD (1977) The structure of rice roots grown in aerobic and anaerobic environments. Plant Soil 47:269–274

    Article  Google Scholar 

  • Joshi R, Kumar P (2012) Lysigenous aerenchyma formation involves non-apoptotic programmed cell death in rice (Oryza sativa L.) roots. Physiol Mol Biol Plants 18:1–9

    Article  PubMed  Google Scholar 

  • Joshi R, Shukla A, Mani SC, Kumar P (2010) Hypoxia induced non-apoptotic cellular changes during aerenchyma formation in rice (Oryza sativa L.) roots. Physiol Mol Biol Plants 16:99–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung J, Lee S, Choi H-K (2008) Anatomical patterns of aerenchyma in aquatic and wetland plants. J Plant Biol 51:428–439

    Article  Google Scholar 

  • Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol 465–495

    Google Scholar 

  • Karuppanapandian T, Moon J-C, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709–725

    CAS  Google Scholar 

  • Kawase M, Whitmoyer RE (1980) Aerenchyma development in waterlogged plants. Am J Bot 67:18–22

    Article  Google Scholar 

  • Kearsey MJ (1998) The principles of QTL analysis (a minimal mathematics approach). J Exp Bot 49:1619–1623

    Article  CAS  Google Scholar 

  • Kemp PJ, Peers C (2007) Oxygen sensing by ion channels. In: Peers C (ed) Oxygen sensing and hypoxia-induced responses, vol 43, Essays in biochemistry. Portland Press, London, pp 77–90

    Google Scholar 

  • Kenward KD, Brandle J, McPherson J, Davies PL (1999) Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance. Transgenic Res 8:105–117

    Article  CAS  PubMed  Google Scholar 

  • Khabaz-Saberi H, Setter TL, Waters I (2006) Waterlogging induces high to toxic concentrations of iron, aluminum, and manganese in wheat varieties on acidic soil. J Plant Nutr 29:899–911

    Article  CAS  Google Scholar 

  • Khabaz-Saberi H, Rengel Z (2010) Aluminum, manganese, and iron tolerance improves performance of wheat genotypes in waterlogged acidic soils. J Plant Nutr Soil Sci 173:461–468

    Article  CAS  Google Scholar 

  • Khabaz-Saberi H, Barker SJ, Rengel Z (2012) Tolerance to ion toxicities enhances wheat (Triticum aestivum L.) grain yield in waterlogged acidic soils. Plant Soil 354:371–381

    Article  CAS  Google Scholar 

  • Kirk GJD, Bajita JB (1995) Root-induced iron oxidation, pH changes and zinc solubilization in the rhizosphere of lowland rice. New Phytol 131:129–137

    Article  CAS  Google Scholar 

  • Kirk G, Solivas J, Alberto M (2003) Effects of flooding and redox conditions on solute diffusion in soil. Eur J Soil Sci 54:617–624

    Article  CAS  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal‐nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424

    Article  CAS  PubMed  Google Scholar 

  • Koizumi Y, Hara Y, Yazaki Y, Sakano K, Ishizawa K (2011) Involvement of plasma membrane H+-ATPase in anoxic elongation of stems in pondweed (Potamogeton distinctus) turions. New Phytol 190:421–430

    Article  CAS  PubMed  Google Scholar 

  • Koren’kov V, Park S, Cheng N-H, Sreevidya C, Lachmansingh J, Morris J, Hirschi K, Wagner G (2007) Enhanced Cd -selective root-tonoplasttransport in tobaccos expressing Arabidopsis cation exchangers. Planta 225:403–411

    Article  PubMed  CAS  Google Scholar 

  • Kotula L, Steudle E (2009) Measurements of oxygen permeability coefficients of rice (Oryza sativa L.) roots using a new perfusion technique. J Exp Bot 60:567–580

    Article  CAS  PubMed  Google Scholar 

  • Kotula L, Ranathunge K, Schreiber L, Steudle E (2009a) Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. J Exp Bot 60:2155–2167

    Article  CAS  PubMed  Google Scholar 

  • Kotula L, Ranathunge K, Steudle E (2009b) Apoplastic barriers effectively block oxygen permeability across outer cell layers of rice roots under deoxygenated conditions: roles of apoplastic pores and of respiration. New Phytol 184:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kotula L, Colmer TD, Nakazono M (2014) Effects of organic acids on the formation of the barrier to radial oxygen loss in roots of Hordeum marinum. Funct Plant Biol 41:187–202

    Article  CAS  Google Scholar 

  • Kumutha D, Ezhilmathi K, Sairam RK, Srivastava GC, Deshmukh PS, Meena RC (2009) Waterlogging induced oxidative stress and antioxidant activity in pigeon pea genotypes. Biol Plant 53:75–84

    Article  CAS  Google Scholar 

  • Laohavisit A, Davies JM (2007) The gas that opens gates: calcium channel activation by ethylene. New Phytol 174:470–473

    Article  CAS  PubMed  Google Scholar 

  • Laurie S, Tancock N, McGrath S, Sanders J (1995) Influence of EDTA complexation on plant uptake of manganese (II). Plant Sci 109:231–235

    Article  CAS  Google Scholar 

  • Licausi F (2011) Regulation of the molecular response to oxygen limitations in plants. New Phytol 190:550–555

    Article  CAS  PubMed  Google Scholar 

  • Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, Voesenek L, Perata P, van Dongen JT (2011) Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479:419–422

    Article  CAS  PubMed  Google Scholar 

  • Licausi F, Pucciariello C, Perata P (2013) New role for an old rule: N-end rule-mediated degradation of ethylene responsive factor proteins governs low oxygen response in plants. J Int Plant Biol 55:31–39

    Article  CAS  Google Scholar 

  • Li H, Vaillancourt R, Mendham N, Zhou M (2008) Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.). BMC Genomics 9:401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lynch JM (1977) Phytotoxicity of acetic-acid produced in anaerobic decomposition of wheat straw. J Appl Bacteriol 42:81–87

    Article  CAS  PubMed  Google Scholar 

  • MacEwan RJ, Gardner WK, Ellington A, Hopkins DG, Bakker AC (1992) Tile and mole drainage for control of waterlogging in duplex soils of southeastern Australia. Aust J Exp Agric 32:865–878

    Article  Google Scholar 

  • Mark M, Gavin T, Susanne S (1999) The genetics of metal tolerance and accumulation in higher plants. In: Phytoremediation of contaminated soil and water. CRC Press

    Google Scholar 

  • Malik AI, Colmer TD, Lambers H, Schortemeyer M (2001) Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Aust J Plant Physiol 28:1121–1131

    Google Scholar 

  • Malik AI, Colmer TD, Lambers H, Setter TL, Schortemeyer M (2002) Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytol 153:225–236

    Article  Google Scholar 

  • Malik AI, Colmer TD, Lambers H, Schortemeyer M (2003) Aerenchyma formation and radial O2 loss along adventitious roots of wheat with only the apical root portion exposed to O2 deficiency. Plant Cell Environ 26:1713–1722

    Article  Google Scholar 

  • Malik AI, English JP, Colmer TD (2009) Tolerance of Hordeum marinum accessions to O2 deficiency, salinity and these stresses combined. Ann Bot 103:237–248

    Google Scholar 

  • Mano Y, Omori F (2008) Verification of QTL controlling root aerenchyma formation in a maize x teosinte “Zea nicaraguensis” advanced backcross population. Breed Sci 58:217–223

    Article  Google Scholar 

  • Mano Y, Omori F (2009) High-density linkage map around the root aerenchyma locus Qaer1.06 in the backcross populations of maize Mi29 x teosinte “Zea nicaraguensis”. Breed Sci 59:427–433

    Article  CAS  Google Scholar 

  • Mano Y, Omori F (2013a) Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays). Ann Bot 112:1125–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mano Y, Omori F (2013b) Relationship between constitutive root aerenchyma formation and flooding tolerance in Zea nicaraguensis. Plant Soil 370:447–460

    Article  CAS  Google Scholar 

  • Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B (2005) Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica 142:33–42

    Article  Google Scholar 

  • Mano Y, Muraki M, Takamizo T (2006a) Identification of QTL controlling flooding tolerance in reducing soil conditions in maize (Zea mays L.) seedlings. Plant Prod Sci 9:176–181

    Article  CAS  Google Scholar 

  • Mano Y, Omori F, Takamizo T, Kindiger B, Bird RM, Loaisiga CH (2006b) Variation for root aerenchyma formation in flooded and non-flooded maize and teosinte seedlings. Plant Soil 281:269–279

    Article  CAS  Google Scholar 

  • Mano Y, Omori F, Takamizo T, Kindiger B, Bird RM, Loaisiga CH, Takahashi H (2007) QTL mapping of root aerenchyma formation in seedlings of a maize x rare teosinte “Zea nicaraguensis” cross. Plant Soil 295:103–113

    Article  CAS  Google Scholar 

  • Mano Y, Omori F, Kindiger B, Takahashi H (2008) A linkage map of maize x teosinte Zea luxurians and identification of QTLs controlling root aerenchyma formation. Mol Breed 21:327–337

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Mcdonald MP, Galwey NW, Colmer TD (2001) Waterlogging tolerance in the tribe Triticeae: the adventitious roots of Critesion marinum have a relatively high porosity and a barrier to radial oxygen loss. Plant Cell Environ 24:585–596

    Article  Google Scholar 

  • McDonald MP, Galwey NW, Colmer TD (2002) Similarity and diversity in adventitious root anatomy as related to root aeration among a range of wetland and dryland grass species. Plant Cell Environ 25:441–451

    Article  Google Scholar 

  • Menegus F, Cattaruzza L, Mattana M, Beffagna N, Ragg E (1991) Response to anoxia in rice and wheat seedlings. Plant Physiol 95:760–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mino Y, Ishida T, Ota N, Inoue M, Nomoto K, Takemoto T, Tanaka H, Sugiura Y (1983) Mugineic acid-iron (III) complex and its structurally analogous cobalt (III) complex: characterization and implication for absorption and transport of iron in gramineous plants. J Am Chem Soc 105:4671–4676

    Article  CAS  Google Scholar 

  • Moellenbeck DJ, Peters ML, Bing JW, Rouse JR, Higgins LS, Sims L, Nevshemal T, Marshall L, Ellis RT, Bystrak PG, Lang BA, Stewart JL, Kouba K, Sondag V, Gustafson V, Nour K, Xu DP, Swenson J, Zhang J, Czapla T, Schwab G, Jayne S, Stockhoff BA, Narva K, Schnepf HE, Stelman SJ, Poutre C, Koziel M, Duck N (2001) Insecticidal proteins from Bacillus thuringiensis protect corn from corn rootworms. Nat Biotechnol 19:668–672

    Article  CAS  PubMed  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Mugnai S, Marras AM, Mancuso S (2011) Effect of hypoxic acclimation on anoxia tolerance in Vitis roots: response of metabolic activity and K+ fluxes. Plant Cell Physiol 52:1107–1116

    Article  CAS  PubMed  Google Scholar 

  • Muhlenbock P, Plaszczyca M, Plaszczyca M, Mellerowicz E, Karpinski S (2007) Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1. Plant Cell 19:3819–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata Y, Ma JF, Yamaji N, Ueno D, Nomoto K, Iwashita T (2006) A specific transporter for iron (III)–phytosiderophore in barley roots. Plant J 46:563–572

    Article  CAS  PubMed  Google Scholar 

  • Nandi S, Subudhi PK, Senadhira D, Manigbas NL, SenMandi S, Huang N (1997) Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet 255:1–8

    Article  CAS  PubMed  Google Scholar 

  • Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. BBA-Mol Cell Res 1763:609–620

    CAS  Google Scholar 

  • Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M (2012) Mechanisms for coping with submergence and waterlogging in rice. Rice 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446–5454

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa H, Tsujii H, Ohkawa Y (1999) The use of cytochrome P450 genes to introduce herbicide tolerance in crops: a review. Pest Sci 55:867–874

    Article  CAS  Google Scholar 

  • Overmyer K, Brosche M, Kangasjarvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342

    Article  CAS  PubMed  Google Scholar 

  • Pang J, Shabala S (2010) Membrane transporters and waterlogging tolerance. In: Mancuso S, Shabala S (eds) Waterlogging signalling and tolerance in plants. Springer, Heidelberg, pp 197–219

    Chapter  Google Scholar 

  • Pang J, Zhou M, Mendham N, Shabala S (2004) Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust J Agr Res 55:895–906

    Article  Google Scholar 

  • Pang JY, Newman I, Mendham N, Zhou M, Shabala S (2006) Microelectrode ion and O2 fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ 29:1107–1121

    Article  CAS  PubMed  Google Scholar 

  • Pang J, Cuin T, Shabala L, Zhou M, Mendham N, Shabala S (2007a) Effect of secondary metabolites associated with anaerobic soil conditions on ion fluxes and electrophysiology in barley roots. Plant Physiol 145:266–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang J, Ross J, Zhou M, Mendham N, Shabala S (2007b) Amelioration of detrimental effects of waterlogging by foliar nutrient sprays in barley. Funct Plant Biol 34:221–227

    Article  CAS  Google Scholar 

  • Paterson AH, Deverna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S (2008) Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol 148:455–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen O, Rich SM, Colmer TD (2009) Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. Plant J 58:147–156

    Article  CAS  PubMed  Google Scholar 

  • Perata P, Voesenek L (2007) Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends Plant Sci 12:43–46

    Article  CAS  PubMed  Google Scholar 

  • Peschke VM, Sachs MM (1994) Characterization and expression of transcripts induced by oxygen deprivation in maize (Zea mays L.). Plant Physiol 104:387–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pezeshki S (2001) Wetland plant responses to soil flooding. Environ Exp Bot 46:299–312

    Article  Google Scholar 

  • Pezeshki S, DeLaune R (1998) Responses of seedlings of selected woody species to soil oxidation-reduction conditions. Environ Exp Bot 40:123–133

    Article  Google Scholar 

  • Pittman JK (2005) Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytol 167:733–742

    Article  CAS  PubMed  Google Scholar 

  • Qiu F, Zheng Y, Zhang Z, Xu S (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann Bot 99:1067–1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol 190:351–368

    Article  CAS  PubMed  Google Scholar 

  • Ranathunge K, Kotula L, Steudle E, Lafitte R (2004) Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores. J Exp Bot 55:433–447

    Article  CAS  PubMed  Google Scholar 

  • Ranathunge K, Lin J, Steudle E, Schreiber L (2011) Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. Plant Cell Environ 34:1223–1240

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe RG (1997) In vivo NMR studies of the metabolic response of plant tissues to anoxia. Ann Bot 79:39–48

    Article  CAS  Google Scholar 

  • Raven JA (2008) Not drowning but photosynthesizing: probing plant plastrons. New Phytol 177:841–845

    Article  CAS  PubMed  Google Scholar 

  • Rellán-Álvarez R, Giner-Martínez-Sierra J, Orduna J, Orera I, Rodríguez-Castrillón JÁ, García-Alonso JI, Abadía J, Álvarez-Fernández A (2010) Identification of a tri-iron (III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. Plant Cell Physiol 51:91–102

    Article  PubMed  CAS  Google Scholar 

  • Rengel Z (2000) Manganese uptake and transport in plants. Met Ions Biol Syst 37:57–87

    CAS  PubMed  Google Scholar 

  • Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca -calmodulin in Cd toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ 20:600–608

    Article  CAS  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo-Moreno A, Andreas-Colas N, Poschenrieder C, Gunse B, Pellarrubia L, Shabala S (2013a) Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: linking copper transport with cytosolic hydroxyl radical production. Plant Cell Environ 36:844–855

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo-Moreno A, Poschenrieder C, Shabala S (2013b) Transition metals: a double edge sward in ROS generation and signaling. Plant Signal Behav 8:e23425.23421–e23425.23425

    Article  CAS  Google Scholar 

  • Rogers EE, Guerinot ML (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14:1787–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan PR, Tyerman SD, Sasaki T, Furuichi T, Yamamoto Y, Zhang WH, Delhaize E (2011) The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J Exp Bot 62:9–20

    Article  CAS  PubMed  Google Scholar 

  • Saab IN, Sachs MM (1996) A flooding-induced xyloglucan Endo-transglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma. Plant Physiol 112:385–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sairam RK, Kumutha D, Ezhilmathi K, Deshmukh PS, Srivastava GC (2008) Physiology and biochemistry of waterlogging tolerance in plants. Biol Plant 52:401–412

    Article  CAS  Google Scholar 

  • Samad A, Meisner C, Saifuzzaman M, van Ginkel M (2001) Waterlogging tolerance. application of physiology in wheat breeding. In: Reynolds MP, Ortiz-Monasterio JI, McNab A (eds) Application of physiology in wheat breeding. CIMMYT, Mexico, pp 136–144

    Google Scholar 

  • Sasaki A, Yamaji N, Xia J, Ma JF (2011) OsYSL6 is involved in the detoxification of excess manganese in rice. Plant Physiol 157:1832–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaaf G, Catoni E, Fitz M, Schwacke R, Schneider A, Nv W, Frommer W (2002) A putative role for the vacuolar calcium/manganese proton antiporter AtCAX2 in heavy metal detoxification. Plant Biol 4:612–618

    Article  CAS  Google Scholar 

  • Schaaf G, Erenoglu BE, von Wirén N (2004) Physiological and biochemical characterization of metal-phytosiderophore transport in graminaceous species. Soil Sci Plant Nutr 50:989–995

    Article  CAS  Google Scholar 

  • Seago J, Marsh L, Stevens K, Soukup A, Votrubova O, Enstone DE (2005) A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma. Ann Bot 96:565–579

    Article  PubMed  Google Scholar 

  • Setter T, Waters I (2003) Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 253:1–34

    Article  CAS  Google Scholar 

  • Setter TL, Burgess P, Waters I, Kuo J (1999) Genetic diversity of barley and wheat for waterlogging tolerance in Western Australia. In: 9th Australian Barley technical symposium, Melbourne, Australia, pp 2.17.1–2.17.7

    Google Scholar 

  • Setter TL, Waters I, Sharma SK, Singh KN, Kulshreshtha N, Yaduvanshi NPS, Ram PC, Singh BN, Rane J, McDonald G et al (2009) Review of wheat improvement for waterlogging tolerance in Australia and India: the importance of anaerobiosis and element toxicities associated with different soils. Ann Bot 103:221–235

    Article  CAS  PubMed  Google Scholar 

  • Shabala S (2011) Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol 190:289–298

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Bose J (2012) Application of non-invasive microelectrode flux measurements in plant stress physiology. In: Volkov AG (ed) Plant electrophysiology: methods and cell electrophysiology. Springer, Berlin/Heidelberg, pp 91–126

    Google Scholar 

  • Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant 151:257–279. doi:10.1111/ppl.12165

    Article  CAS  PubMed  Google Scholar 

  • Shabala L, Ross T, McMeekin T, Shabala S (2006) Non-invasive microelectrode ion flux measurements to study adaptive responses of microorganisms to the environment. FEMS Microbiol Rev 30:472–486

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Cuin TA, Prismall L, Nemchinov LG (2007) Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress. Planta 227:189–197

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Shabala L, Newman IA (2012) Studying membrane transport processes by non-invasive microelectrodes: basic principles and methods. In: Volkov AG (ed) Plant electrophysiology: methods and cell electrophysiology. Springer, Berlin/Heidelberg, pp 167–186

    Chapter  Google Scholar 

  • Shabala S, Shabala L, Barcelo J, Poschenrieder C (2014) Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. Plant Cell Environ 37(10):2216–2233

    CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Shaw RE, Meyer WS, McNeill A, Tyerman SD (2013) Waterlogging in Australian agricultural landscapes: a review of plant responses and crop models. Crop Pasture Sci 64:549–562

    Article  Google Scholar 

  • Shigaki T, Pittman JK, Hirschi KD (2003) Manganese specificity determinants in the Arabidopsis metal/H antiporter CAX2. J Biol Chem 278:6610–6617

    Article  CAS  PubMed  Google Scholar 

  • Shimamura S, Yoshida S, Mochizuki T (2007) Cortical aerenchyma formation in hypocotyl and adventitious roots of Luffa cylindrica subjected to soil flooding. Ann Bot 100:1431–1439

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimamura S, Yamamoto R, Nakamura T, Shimada S, Komatsu S (2010) Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Ann Bot 106:277–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiono K, Takahashi H, Colmer TD, Nakazono M (2008) Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci 175:52–58

    Article  CAS  Google Scholar 

  • Shiono K, Ogawa S, Yamazaki S, Isoda H, Fujimura T, Nakazono M, Colmer TD (2011) Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann Bot 107:89–99

    Article  CAS  PubMed  Google Scholar 

  • Siangliw M, Toojinda T, Tragoonrung S, Vanavichit A (2003) Thai jasmine rice carrying QTLch9 (SubQTL) is submergence tolerant. Ann Bot 91:255–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starkey RL (1966) Oxidation and reduction of sulphur compounds in soils. Soil Sci 101:297–306

    Article  CAS  Google Scholar 

  • Steffens B, Geske T, Sauter M (2010) Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytol 190:369–378

    Article  PubMed  CAS  Google Scholar 

  • Striker GG, Insausti P, Grimoldi AA, Vega AS (2007) Trade-off between root porosity and mechanical strength in species with different types of aerenchyma. Plant Cell Environ 30:580–589

    Article  CAS  PubMed  Google Scholar 

  • Suralta RR, Yamauchi A (2008) Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging. Environ Exp Bot 64:75–82

    Article  CAS  Google Scholar 

  • Teakle NL, Armstrong J, Barrett-Lennard EG, Colmer TD (2011) Aerenchymatous phellem in hypocotyl and roots enables O2 transport in Melilotus siculus. New Phytol 190:340–350

    Article  CAS  PubMed  Google Scholar 

  • Teakle NL, Bazihizina N, Shabala S, Colmer TD, Barrett-Lennard EG, Rodrigo-Moreno A, Läuchli AE (2013) Differential tolerance to combined salinity and O2 deficiency in the halophytic grasses Puccinellia ciliata and Thinopyrum ponticum: the importance of K+ retention in roots. Environ Exp Bot 87:69–78

    Article  CAS  Google Scholar 

  • Thomas AL, Guerreiro SMC, Sodek L (2005) Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann Bot 96:1191–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson CJ, Armstrong W, Waters I, Greenway H (1990) Aerenchyma formation and associated oxygen movement in seminal and nodal roots of wheat. Plant Cell Environ 13:395–403

    Article  Google Scholar 

  • Tiffin LO (1966) Iron translocation I. Plant culture, exudate sampling, iron-citrate analysis. Plant Physiol 41:515–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Trought MCT, Drew MC (1980) The development of waterlogging damage in wheat seedlings (Triticum aestivum L.). Plant Soil 54:77–94

    Article  CAS  Google Scholar 

  • Tsukamoto T, Nakanishi H, Kiyomiya S, Watanabe S, Matsuhashi S, Nishizawa NK, Mori S (2006) 52Mn translocation in barley monitored using a positron-emitting tracer imaging system. Soil Sci Plant Nutr 52:717–725

    Article  CAS  Google Scholar 

  • Tsukamoto T, Nakanishi H, Uchida H, Watanabe S, Matsuhashi S, Mori S, Nishizawa NK (2009) 52Fe translocation in barley as monitored by a positron-emitting tracer imaging system (PETIS): evidence for the direct translocation of Fe from roots to young leaves via phloem. Plant Cell Physiol 50:48–57

    Article  CAS  PubMed  Google Scholar 

  • Varotto C, Maiwald D, Pesaresi P, Jahns P, Salamini F, Leister D (2002) The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant J 31:589–599

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Barberon M, Zelazny E, Séguéla M, Briat J-F, Curie C (2009) Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229:1171–1179

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Briat JF, Curie C (2001) Arabidopsis IRT2 gene encodes a root‐periphery iron transporter. Plant J 26:181–189

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat J-F, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visser EJW, Bögemann GM (2003) Measurement of porosity in very small samples of plant tissue. Plant Soil 253:81–90

    Article  CAS  Google Scholar 

  • Visser EJW, Colmer TD, Blom C, Voesenek L (2000) Changes in growth, porosity, and radial oxygen loss from adventitious roots of selected mono- and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ 23:1237–1245

    Article  Google Scholar 

  • Voesenek L, Sasidharan R (2013) Ethylene – and oxygen signalling – drive plant survival during flooding. Plant Biol 15:426–435

    Article  CAS  PubMed  Google Scholar 

  • Voesenek LACJ, Armstrong W, Bogemann GM, McDonald MP, Colmer TD (1999) A lack of aerenchyma and high rates of radial oxygen loss from the root base contribute to the waterlogging intolerance of Brassica napus. Aust J Plant Physiol 26:87–93

    Article  Google Scholar 

  • Voesenek L, Colmer TD, Pierik R, Millenaar FF, Peeters AJM (2006) How plants cope with complete submergence. New Phytol 170:213–226

    Article  CAS  PubMed  Google Scholar 

  • Wang YX, Wu P, Wu YR, Yan XL (2002) Molecular marker analysis of manganese toxicity tolerance in rice under greenhouse conditions. Plant Soil 238:227–233

    Article  CAS  Google Scholar 

  • Ward JM (2001) Identification of novel families of membrane proteins from the model plant Arabidopsis thaliana. Bioinformatics 17:560–563

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Pei ZM, Schroeder JI (1995) Roles of ion channels in initiation of signal-transduction in higher-plants. Plant Cell 7:833–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson ER, Lapins P, Barron RJW (1976) Effect of waterlogging on the growth, grain and straw yield of wheat, barley and oats. Aust J Exp Agric 16:114–122

    Article  Google Scholar 

  • Webb J, Jackson MB (1986) A transmission and cryo-scanning electron microscopy study of the formation of aerenchyma (cortical gas-filled space) in adventitious roots of rice (Oryza sativa). J Exp Bot 37:832–841

    Article  Google Scholar 

  • Wegner LH (2010) Oxygen transport in waterlogged plants. In: Mancuso S, Shabala S (eds) Waterlogging signalling and tolerance in plants. Springer, Heidelberg, pp 3–22

    Chapter  Google Scholar 

  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135:1447–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Mackill D (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breed 2:219–224

    Article  CAS  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  CAS  PubMed  Google Scholar 

  • Xue DW, Zhou MX, Zhang XQ, Chen S, Wei K, Zeng FR, Mao Y, Wu FB, Zhang GP (2010) Identification of QTLs for yield and yield components of barley under different growth conditions. J Zhejiang Univ Sci B 11:169–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi T, Shimamura S, Nakazono M, Mochizuki T (2013) Aerenchyma formation in crop species: a review. Field Crop Res 152:8–16

    Article  Google Scholar 

  • Yamauchi T, Watanabe K, Fukazawa A, Mori H, Abe F, Kawaguchi K, Oyanagi A, Nakazono M (2014) Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. J Exp Bot 65:261–273

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Dai Q, Liu X, Huang S, Wang Z (1996) Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil 179:261–268

    Article  CAS  Google Scholar 

  • Yang M, Zhang W, Dong H, Zhang Y, Lv K, Wang D, Lian X (2013) OsNRAMP3 is a vascular bundles-specific manganese transporter that is responsible for manganese distribution in rice. PLoS One 8, e83990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin D, Chen S, Chen F, Jiang J (2013) Ethylene promotes induction of aerenchyma formation and ethanolic fermentation in waterlogged roots of Dendranthema spp. Mol Biol Rep 40:4581–4590

    Article  CAS  PubMed  Google Scholar 

  • Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149:297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yordanova RY, Popova LP (2001) Photosynthetic response of barley plants to soil flooding. Photosynthetica 39:515–520

    Article  Google Scholar 

  • Yordanova RY, Uzunova AN, Popova LP (2005) Effects of short-term soil flooding on stomata behaviour and leaf gas exchange in barley plants. Biol Plant 49:317–3199

    Article  Google Scholar 

  • Young ND, Zamir D, Ganal MW, Tanksley SD (1988) Use of isogenic lines and simultaneous probing to identify dna markers tightly linked to the tm-2-alpha gene in tomato. Genetics 120:579–585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Rengel Z (1999) Waterlogging influences plant growth and activities of superoxide dismutases in narrow-leafed lupin and transgenic tobacco plants. J Plant Physiol 155:431–438

    Article  CAS  Google Scholar 

  • Zaharieva T, Römheld V (2000) Specific Fe2+ uptake system in strategy I plants inducible under Fe deficiency. J Plant Nutr 23:1733–1744

    Article  CAS  Google Scholar 

  • Zeng F, Shabala L, Zhou M, Zhang GP, Shabala S (2013) Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity. Front Plant Physiol 4:313. doi:10.3389/fpls.2013.00313

    Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang X (1994) Can early wilting of old leaves account for much of the ABA accumulation in flooded pea plants? J Exp Bot 45:1335–1342

    Article  CAS  Google Scholar 

  • Zhang J, Van Toai T, Huynh L, Preiszner J (2000) Development of flooding-tolerant Arabidopsis thaliana by autoregulated cytokinin production. Mol Breed 6:135–144

    Article  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci U S A 98:12832–12836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M-G, Tian Q-Y, Zhang W-H (2007) Ethylene activates a plasma membrane Ca2+-permeable channel in tobacco suspension cells. New Phytol 174:507–515

    Article  CAS  PubMed  Google Scholar 

  • Zhou MX (2010) Improvement of plant waterlogging tolerance. In: Mancuso S, Shabala S (eds) Waterlogging signalling and tolerance in plants. Springer, Berlin/Heidelberg, pp 267–286

    Chapter  Google Scholar 

  • Zhou M (2011) Accurate phenotyping reveals better QTL for waterlogging tolerance in barley. Plant Breed 130:203–208

    Article  CAS  Google Scholar 

  • Zhou W, Zhao D, Lin X (1997) Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and mixtalol in winter rape (Brassica napus L.). J Plant Growth Regul 16:47–53

    Article  CAS  Google Scholar 

  • Zhou M, Johnson P, Zhou G, Li C, Lance R (2012) Quantitative trait loci for waterlogging tolerance in a barley cross of Franklin × YuYaoXiangTian Erleng and the relationship between waterlogging and salinity tolerance. Crop Sci 52:2082–2088

    Article  Google Scholar 

  • Zhou MX, Li HB, Mendham NJ (2007) Combining ability of waterlogging tolerance in barley. Crop Sci 47:278–284

    Article  Google Scholar 

  • Zhou G, Delhaize E, Zhou M, Ryan PR (2013) The barley MATE gene, HvAACT1, increases citrate efflux and Al-3 tolerance when expressed in wheat and barley. Ann Bot 112:603–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann S, Ehrhardt T, Plesch G, Muller-Rober B (1999) Ion channels in plant signalling. Cell Mol Life Sci 55:183–203

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council Discovery (DP120101482) and Linkage (LP120200516) grants to Sergey Shabala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Shabala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Zhang, X., Huang, X., Zhou, M., Shabala, L., Koutoulis, A., Shabala, S. (2015). Plant Breeding for Flood Tolerance: Advances and Limitations. In: Jaiwal, P., Singh, R., Dhankher, O. (eds) Genetic Manipulation in Plants for Mitigation of Climate Change. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2662-8_3

Download citation

Publish with us

Policies and ethics