Skip to main content

Impacts of Anthropogenic Carbon Dioxide Emissions on Plant-Insect Interactions

  • Chapter
  • First Online:
  • 896 Accesses

Abstract

Human industrialization has steadily raised atmospheric levels of CO2 from 280 ppm prior to industrialization to current levels at 400 ppm and by 2050 are expected levels of 550 ppm. Climate change has important impacts on plant-insect interactions, and gaps in current understanding of plant responses to herbivory exist. Lately new empirical data has started to illuminate the mechanisms of the effects of elevated CO2 in plant-insect interactions. Research has shown that the resource allocation to allelochemicals is interconnected among photosynthesis, genetic regulation, and hormonal signaling. Recent molecular approaches have revealed that insect damage is perceived by plants, and the signal is amplified by the participation of regulatory elements modulated by JA and ET, which induce plant responses to increase chemical defenses against herbivores. Elevated CO2 inhibits JA and ET pathways and increases susceptibility of plants to herbivore attack by decreasing both constitutive and inducible chemical defenses against certain insects. Conversely, enriched atmospheric CO2 increases SA, which increases other chemical defense pathways that are not regulated by JA. Identifying how atmospheres with high CO2 levels moderate resource allocation to secondary metabolism would help to avoid any interference in natural plant defenses. In this chapter, we discuss current understanding of the mechanisms controlling insect herbivory pertaining to the global rise in atmospheric CO2 concentrations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-airCO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–71

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–49

    Article  CAS  Google Scholar 

  • Allmann S, Halitschke R, Schuurink RC, Baldwin IT (2010) Oxylipin channelling in Nicotiana attenuata: lipoxygenase 2 supplies substrates for green leaf volatile production. Plant Cell Environ 33:2028–2040

    Article  CAS  PubMed  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ et al (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballaré CL (2011) Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci 16:249–257

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi CJ, Kimball BA, Quarles DR, Long SP, Ort DR (2007) Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol 143:134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernays EA (1998) Evolution of feeding behavior in insect herbivores. BioScience 48:35–44

    Article  Google Scholar 

  • Bidart-Bouzat MG, Mithen R, Berenbaum MR (2005) Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia 145:415–424

    Article  PubMed  Google Scholar 

  • Bilgin DD, Zavala JA, Zhu JIN, Clough SJ, Ort DR, DeLucia EH (2010) Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ 33:1597–1613

    Article  CAS  PubMed  Google Scholar 

  • Birk Y (2003) Plant protease inhibitors: significance in nutrition, plant protection, cancer prevention and genetic engineering. Springer, Berlin

    Google Scholar 

  • Bolter C, Jongsma MA (1995) Colorado potato beetles (Leptinotarsa decemlineata) adapt to proteinase inhibitors induced in potato leaves by methyl jasmonate. J Insect Physiol 41:1071–1078

    Article  CAS  Google Scholar 

  • Brader G, Tas E, Palva ET (2001) Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol 126:849–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks DM, Bender C, Kunkel BN (2005) The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid dependent defences in Arabidopsis thaliana. Mol Plant Pathol 6:629–639

    Article  CAS  PubMed  Google Scholar 

  • Bryant JP, Chapin FS III, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368

    Article  CAS  Google Scholar 

  • Casteel CL (2010) Impacts of climate change on herbivore induced plant signaling and defenses. Doctoral dissertation, University of Illinois, Urbana-Champaign, USA, p 155

    Google Scholar 

  • Casteel CL, O’Neill BF, Zavala JA, Bilgin DD, Berenbaum MR, DeLucia EH (2008) Transcriptional profiling reveals elevated CO2 and elevated O3 alter resistance of soybean (Glycine max) to Japanese beetles (Popillia japonica). Plant Cell Environ 31:419–434

    Article  CAS  PubMed  Google Scholar 

  • Casteel CL, Segal LM, Niziolek O, Berenbaum MR, DeLucia EH (2012) Elevated carbon dioxide increases salicylic acid in Glycine max. Environ Entomol 41:1435–1442

    Article  CAS  PubMed  Google Scholar 

  • Castro JC, Dohleman FG, Bernacchi CJ, Long SP (2009) Elevated CO2 significantly delays reproductive development of soybean under Free-Air Concentration Enrichment (FACE). J Exp Bot 60:2945–2951

    Article  CAS  PubMed  Google Scholar 

  • Chico JM, Chini A, Fonseca S, Solano R (2008) JAZ repressors set the rhythm in jasmonate signaling. Curr Opin Plant Biol 11:486–494

    Article  CAS  PubMed  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS III (1985) Resource availability and plant antiherbivore defense. Science 230:895–899

    Article  CAS  PubMed  Google Scholar 

  • Curzi MJ, Zavala JA, Spencer JL, Seufferheld MJ (2012) Abnormally high digestive enzyme activity and gene expression explain the contemporary evolution of a Diabrotica biotype able to feed on soybeans. Ecol Evol 2:2005–2017

    Article  PubMed  PubMed Central  Google Scholar 

  • DaMatta FM, Grandis A, Arenque BC, Buckeridge MS (2010) Impacts of climate changes on crop physiology and food quality. Food Res Int 43:1814–23

    Article  Google Scholar 

  • DeLucia EH, Casteel CL, Nabity PD, O’Neill BF (2008) Insects take a bigger bite out of plants in a warmer, higher carbon dioxide world. Proc Natl Acad Sci U S A 105:1781–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLucia EH, Nabity PD, Zavala JA, Berenbaum MR (2012) Climate change: resetting plant-insect interactions. Plant Physiol 160:1677–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demkura PV, Abdala G, Baldwin IT, Ballaré CL (2010) Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol 152:1084–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dermody O, O’Neill BF, Zangerl AR, Berenbaum MR, DeLucia EH (2008) Effects of elevated CO2 and O3 on leaf damage and insect abundance in a soybean agroecosystem. Arthropod Plant Interact 2:125–35

    Article  Google Scholar 

  • Doughty KJ, Porter AJR, Morton AM, Kiddle G, Bock CH, Wallsgrove R (1991) Variation in the glucosinolate content of oilseed rape (Brassica napus L.) leaves. II. Response to infection by Alternaria brassicae (Berk.) Sacc. Ann Appl Biol 118:469–77

    Article  CAS  Google Scholar 

  • Eastburn DM, Degennaro MM, DeLucia EH, Dermody O, Mcelrone AJ (2010) Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Glob Chang Biol 16:320–330

    Article  Google Scholar 

  • Farmer EE (2014) Leaf defence. Oxford University Press, Oxford, p 216

    Book  Google Scholar 

  • Felton GW (2005) Indigestion is a plant’s best defense. Proc Natl Acad Sci U S A 102:18771–18772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felton GW, Korth KL (2000) Trade-offs between pathogen and herbivore resistance. Curr Opin Plant Biol 3:309–314

    Article  CAS  PubMed  Google Scholar 

  • Ferrer JL, Austin MB, Stewart C, Noe JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–70

    Article  CAS  PubMed  Google Scholar 

  • Fornoni J (2011) Ecological and evolutionary implications of plant tolerance to herbivory. Funct Ecol 25:399–407

    Article  Google Scholar 

  • Fu ZQ, Yan S, Saleh A et al (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasemzadeh A, Jaafar H, Rahmat A (2010) Elevated carbon dioxide increases contents of flavonoids and phenolic compounds, and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe.) varieties. Molecules 15:7907–7922

    Article  CAS  PubMed  Google Scholar 

  • Gillespie KM, Rogers A, Ainsworth EA (2011) Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max). J Exp Bot 62:2667–2678

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–27

    Article  CAS  PubMed  Google Scholar 

  • Halitschke R, Baldwin IT (2003) Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata. Plant J 36:794–807

    Article  CAS  PubMed  Google Scholar 

  • Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol 125:711–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton JG, Zangrerl AR, DeLucia EH, Berenbaum MR (2001) The carbon-nutrient balance hypothesis: its rise and fall. Ecol Lett 4:86–95

    Article  Google Scholar 

  • Hamilton JG, Dermody O, Aldea M, Zangerl AR, Rogers A, Berenbaum MR, DeLucia EH (2005) Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environ Entomol 34:479–485

    Article  Google Scholar 

  • Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61

    Article  CAS  PubMed  Google Scholar 

  • Herrick J, Maherali H, Thomas R (2004) Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment. New Phytol 162:387–96

    Article  Google Scholar 

  • Hettenhausen C, Baldwin IT, Wu J (2013) Nicotiana attenuata MPK4 suppresses a novel jasmonic acid (JA) signaling-independent defense pathway against the specialist insect Manduca sexta, but is not required for the resistance to the generalist Spodoptera littoralis. New Phytol 199:787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman-Campo CB, Harborne JB, McCaffery AR (2001) Pre-ingestive and post-ingestive effects of soya bean extracts and rutin on Trichoplusiani growth. Entomol Exp Appl 98:181–94

    Article  Google Scholar 

  • Holton MK, Lindroth RL, Nordheim EV (2003) Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype. Oecologia 137:233–244

    Article  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Ren Q, Sun Y, Ye L, Cao H, Ge F (2012) Lower incidence and severity of tomato virus in elevated CO2 is accompanied by modulated plant induced defence in tomato. Plant Biol 14:905–913

    Article  CAS  PubMed  Google Scholar 

  • Hullé M, Cœurd’Acier A, Bankhead-Dronnet S, Harrington R (2010) Aphids in the face of global changes. C R Biol 333:497–503

    Article  PubMed  Google Scholar 

  • Ichimura K et al (2002) Mitogen-activated protein kinase cascades in plants: A new nomenclature. Trends Plant Sci 7:301–308

    Article  CAS  Google Scholar 

  • IPCC (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Kallenbach M, Alagna F, Baldwin IT, Bonaventure G (2010) Nicotiana attenuata SIPK, WIPK, NPR1, and fatty acid-amino acid conjugates participate in the induction of jasmonic acid biosynthesis by affecting early enzymatic steps in the pathway. Plant Physiol 152:96–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandoth PK, Ranf S, Pancholi SS, Jayanty S, Walla MD, Miller W, Howe GA, Lincoln DE, Stratmann JW (2007) Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects. Proc Natl Acad Sci U S A 104:12205–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JH, Wang L, Giri A, Baldwin IT (2006) Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. Plant Cell 18:3303–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karban R (2008) Plant behaviour and communication. Ecol Lett 11:727–739

    Article  PubMed  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. The University of Chicago Press, Chicago, p 319

    Book  Google Scholar 

  • Karban R, Shiojiri K, Ishizaki S (2010) An air transfer experiment confirms the role of volatile cues in communication between plants. Am Nat 176:381–384

    Article  PubMed  Google Scholar 

  • Kerchev PI, Fenton B, Foyer CH, Hancock RD (2012) Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signaling pathways. Plant Cell Environ 35:441–453

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668

    Article  CAS  PubMed  Google Scholar 

  • Khoury CK, Bjorkman AD, Dempewolf H, Ramirez-villegas J, Guarino L, Jarvis A, Rieseberg LH, Struik PC (2014) Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci U S A 111:4001–4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaiber J, Najar-Rodriguez AJ, Piskorski R, Dorn S (2013) Plant acclimation to elevated CO2 affects important plant functional traits, and concomitantly reduces plant colonization rates by an herbivorous insect. Planta 237:29–42

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M et al (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato ADPH oxidase. Plant Cell 19:1065–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  CAS  PubMed  Google Scholar 

  • Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci U S A 108:3465–3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leakey AD, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Xie QG, Smith-Becker J, Navarre DA, Kaloshian I (2006) Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. Mol Plant Microbe Interact 19:655–64

    Article  CAS  PubMed  Google Scholar 

  • Lindroth RL (2010) Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic Interactions, and ecosystem dynamics. J Chem Ecol 36:2–21

    Article  CAS  PubMed  Google Scholar 

  • Lindroth RL, Kinney KK, Platz CL (1993) Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology 74:763–777

    Article  CAS  Google Scholar 

  • Liu Z, Horstman HD, Braun E, Graham MA, Zhang C, Navarre D, Qiu W, Lee Y, Nettleton D, Hill JH, Whitham SA (2011) Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development. Plant Physiol 157:1363–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nosberger J, Ort DR (2006) Food for thought: lower-than expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–21

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, PiquerasR S-SJJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maffei ME, Bossi S, Spiteller D, Mithofer A, Boland W (2004) Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components. Plant Physiol 134:1752–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maffei ME, Mithofer A, Boland W (2007) Before gene expression: early events in plant-insect interaction. Trends Plant Sci 12:310–16

    Article  CAS  PubMed  Google Scholar 

  • Maischak H, Grigoriev PA, Vogel H, Boland W, Mithofer A (2007) Oral secretions from herbivorous lepidopteran larvae exhibit ion channel–forming activities. FEBS Lett 581:898–904

    Article  CAS  PubMed  Google Scholar 

  • Manavella PA, Dezar CA, Bonaventure G, Baldwin IT, Chan RL (2008) HAHB4, a sunflower HD-Zip protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress responses. Plant J 56:376–388

    Article  CAS  PubMed  Google Scholar 

  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23:1639–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • McKey D (1974) Adaptive patterns in alkaloid physiology. Am Nat 108:305–320

    Article  Google Scholar 

  • Muller C (2013) African lessons on climate change risks for agriculture. Annu Rev Nutr 33:395–411

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–17

    Article  PubMed  Google Scholar 

  • O’Neill BF, Zangerl AR, Dermondy O, Bilgin DD, Casteel CL, Zavala JA, DeLucia EH, Berenbaum MR (2010) Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max L.). J Chem Ecol 36:35–45

    Article  PubMed  CAS  Google Scholar 

  • O’Neill BF, Zangerl AR, DeLucia EH, Berenbaum MR (2008) Longevity and fecundity of Japanese beetle (Popillia japonica) on foliage grown under elevated carbon dioxide. Environ Entomol 37:601–607

    PubMed  Google Scholar 

  • O’Neill BF, Zangerl AR, DeLucia EH, Casteel C, Zavala JA, Berenbaum MR (2011) Leaf Temperature of Soybean grown under elevated CO2 increases Aphis glycines (Hemiptera: Aphididae) population growth. Insect Sci 18:419–425

    Article  Google Scholar 

  • Perez-Lopez U, Robredo A, Lacuesta M, Sgherri C, Munoz-Rueda A, Navari-Izzo F, Mena-Petite A (2009) The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol Plant 135:29–42

    Article  CAS  PubMed  Google Scholar 

  • Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, VanWees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Pimental D (2004) Economic impact of insects. In: Goodman RM (ed) Encyclopedia of plant and crop science. Taylor and Francis, London, pp 407–409

    Chapter  Google Scholar 

  • Pincebourde S, Woods HA (2012) Climate uncertainty on leaf surfaces: the biophysics of leaf microclimates and their consequences for leaf‐dwelling organisms. Funct Ecol 26:844–853

    Article  Google Scholar 

  • Piubelli GC, Hoffmann-Campo CB, Moscardi F, Miyakubo SH, De Oliveira MCN (2005) Are chemical compounds important for soybean resistance to Anticarsia gemmatalis? J Chem Ecol 31:1509–1525

    Article  CAS  PubMed  Google Scholar 

  • Pohnert G, Jung V, Haukioja E, Lempa K, Boland W (1999) New fatty acid amides from regurgitant of lepidopteran (Noctuidae, Geometridae) caterpillars. Tetrahedron 55:11275–80

    Article  CAS  Google Scholar 

  • Pre M, Atallah M, Champion A, De Vos M, Pieterse CMJ, Memelink J (2008) The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol 147:1347–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prather CA, Guazzotti SA, Suess DT, Pastor SH, Coffee K (2001) New insights into the role of aerosols in affecting pollution and global climate change. Abstr Pap Am Chem Ecol Soc 221:U458–U458

    Google Scholar 

  • Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S, Palma K, Suarez-Rodriguez MC, Sandbech-Clausen S, Lichota J, Brodersen P, Grasser KD, Mattsson O, Glazenbrook J, Mundy J, Petersen M (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27:2214–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmann S, Johnson MD, Agrawal AA (2009) Induced responses to herbivory and jasmonate in three milkweed species. J Chem Ecol 35:1326–34

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8:1–8

    Google Scholar 

  • Ren D, Yang H, Zhang S (2002) Cell death mediated by MAPK is associated with the hydrogen peroxide production in Arabidopsis. J Biol Chem 277:559–565

    Article  CAS  PubMed  Google Scholar 

  • Richards LA, Dyer LA, Forister ML, Smilanich AM, Dodson CD, Leonard MD, Jeffrey CS (2015) Phytochemical diversity drives plant-insect community diversity. Proc Natl Acad Sci U S A 112:10973–10978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romeis T, Ludwig AA, Martin R, Jones JD (2001) Calcium-dependent protein kinases play an essential role in a plant defense response. EMBO J 20:5556–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–449

    Article  CAS  Google Scholar 

  • Schaller F, Schaller A, Stintzi A (2005) Biosynthesis and metabolism of jasmonates. J Plant Growth Regul 23:179–99

    Article  CAS  Google Scholar 

  • Schonhof I, Kläring HP, Krumbein A, Schreiner M (2007) Interaction between atmospheric CO2 and glucosinolates in Broccoli. J Chem Ecol 33:105–114

    Article  CAS  PubMed  Google Scholar 

  • Spiteller D, Boland W (2003) N-(15,16-Dihydroxylinoleoyl)-glutamine and N-(15,16-epoxylinoleoyl)-glutamine isolated from oral secretions of lepidopteran larvae. Tetrahedron 59:135–39

    Article  CAS  Google Scholar 

  • Spiteller D, Oldham NJ, Boland W (2004) N-(17-phosphonooxylinolenoyl) glutamine and N-(17-phosphonooxylinoleoyl) glutamine from insect gut: the first backbone-phosphorylated fatty acid derivatives in nature. J Org Chem 69:1104–9

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Loake GJ (2011) Redox-based protein modifications: the missing link in plant immune signaling. Curr Opin s 14:358–364

    Article  CAS  Google Scholar 

  • Spoel SH, Koornnef A, Claessens MC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CMJ (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A 104:18842–18847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta‐analysis of CO2‐mediated changes on plant chemistry and herbivore performance. Glob Chang Biol 13:1823–1842

    Article  Google Scholar 

  • Sun Y, Cao H, Yin J, Kang L, Ge F (2010) Elevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathway. Plant Cell Environ 33:729–739

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Yin J, Cao H, Li C, Kang L, Ge F (2011) Elevated CO2 influences nematode-induced defense responses of tomato genotypes differing in the JA pathway. PLoS One 6, e19751. doi:10.1371/journal.pone.0019751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Guo H, Zhu-Salzman K, Ge F (2013) Elevated CO2 increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses. Plant Sci 210:128–140

    Article  CAS  PubMed  Google Scholar 

  • Taub DR, Miller B, Allen H (2008) Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob Chang Biol 14:565–75

    Article  Google Scholar 

  • Taylor G, Tallis MJ, Giardina CP, Percy KE, Miglietta F, Gupta PS, Giolis B, Calfapietra C, Gielen B, Kubiske ME, Scarascia-Mugnozza GE, Kets K, Long SP, Karnosky DF (2008) Future atmospheric CO2 leads to delayed autumnal senescence. Glob Chang Biol 14:264–275

    Article  Google Scholar 

  • Thines B, Katsir L, Melotto M et al (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665

    Article  CAS  PubMed  Google Scholar 

  • Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 20:955–965

    Article  CAS  PubMed  Google Scholar 

  • Vanette RL, Hunter MD (2011) Genetic variation in the expression of defense phenotype may mediate evolutionary adaptation of Asclepias syriaca to elevated CO2. Glob Chang Biol 17:1277–88

    Article  Google Scholar 

  • Vuorinen T, Reddy GVP, Nerg AM, Holopainen JK (2004a) Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO2 concentration. Atmos Environ 38:675–682

    Article  CAS  Google Scholar 

  • Vuorinen T, Nerg AM, Ibrahim MA, Reddy GVP, Holopainen JK (2004b) Emission of Plutella xylostella-induced compounds from cabbages grown at elevated CO2 and orientation behavior of the natural enemies. Plant Physiol 135:1984–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisser WW, Siemann E (eds) (2008) The various effects of insects on ecosystem functioning. In: Insects and ecosystem function. Springer, Berlin/Heidelberg, pp 3–24

    Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Hettenhausen C, Meldau S, Baldwin IT (2007) Herbivory rapidly activates MAPK signaling in attacked and un attacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19:1096–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshinaga N, Aboshi T, Ishikawa C, Fukui M, Shimoda M et al (2007) Fatty acid amides, previously identified in caterpillars, found in the cricket Teleogryllus taiwanemma and fruit fly Drosophila melanogaster larvae. J Chem Ecol 33:1376–81

    Article  CAS  PubMed  Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silver leaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defences. Plant Physiol 143:866–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavala JA, Baldwin IT (2004) Fitness benefits of trypsin proteinase inhibitor expression in Nicotiana attenuata are greater than their costs when plants are attacked. BMC Ecol 4:11. doi:10.1186/1472-6785-4-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zavala JA, Patankar AG, Gase K, Baldwin IT (2004) Constitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs in Nicotiana attenuata. Proc Natl Acad Sci U S A 101:1607–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavala JA, Casteel CL, DeLucia EH, Berenbaum MR (2008) Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proc Natl Acad Sci U S A 105:5129–5133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavala JA, Casteel CL, Nabity PD, Berenbaum MR, DeLucia EH (2009) Role of cysteine proteinase inhibitors in preference of Japanese beetles (Popillia japonica) for soybean (Glycine max) leaves of different ages and grown under elevated CO2. Oecologia 161:35–41

    Article  PubMed  Google Scholar 

  • Zavala JA, Nabity PD, DeLucia EH (2013) An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu Rev Entomol 58:79–97

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6:520–527

    Article  CAS  PubMed  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, An F, Feng Y et al (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci U S A 108:12539–12544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Zavala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Zavala, J.A., Gog, L. (2015). Impacts of Anthropogenic Carbon Dioxide Emissions on Plant-Insect Interactions. In: Jaiwal, P., Singh, R., Dhankher, O. (eds) Genetic Manipulation in Plants for Mitigation of Climate Change. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2662-8_10

Download citation

Publish with us

Policies and ethics