Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 394))

  • 1874 Accesses

Abstract

Low-density parity check (LDPC) codes are the capacity approaching codes having better decoding performance closer to Shannon’s limit. The performance of the LDPC codes depends on the block length, code rate, structure of parity check matrix (H-matrix), and on the decoding process. Various code construction methods are structured including Quasi-cyclic-irregular parity check matrix to improve the performance of the LDPC codes. Cellular Automata are a computational method that realizes the complex computational blocks into simple, regular, and modular structures. In this paper, the cellular automata-based LDPC parity check matrix with hierarchical diagonal parity check matrix structure has been incorporated in the decoder design. Error performance improvement of 0.0417 dB is obtained with HDPCM-based LDPC decoder using cellular automata. Performance analysis on increased code length validates the proposed LDPC decoder with the improved decoding performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gallager RG. Low density parity check codes. IRE Trans Inf Theory 1962;IT-8:21–28.

    Google Scholar 

  2. Davey MC, Mackay DJC. Low density parity check codes GF (q). IEEE Commun Lett. 1998;2(6):165–7.

    Article  Google Scholar 

  3. Ma X. On constructing low density parity–check codes. PhD thesis, University of Waterloo, Ontario, Canada; 2007.

    Google Scholar 

  4. Barnault L, Declercq D. Fast decoding algorithm for LDPC over GF(2q). Inf Theory Workshop 2003;2003:70–73.

    Google Scholar 

  5. Zhou B, Kang J, Song S, Lin S, Abdel-Ghaffar K, Xu M. Construction of non-binary quasi-cyclic LDPC codes by arrays and array dispersions. IEEE Trans Commun 2009;57(6):1652, 1662.

    Google Scholar 

  6. Song H, Cruz JR. Reduced-complexity decoding of Q-ary LDPC codes for magnetic recording. IEEE Trans Magn. 2003;39(2):1081–1087.

    Google Scholar 

  7. Hong H, Sun Z. An improved decoding algorithm of non binary LDPC code. In: 2011 International Conference on Information Technology, Computer Engineering and Management Sciences (ICM), vol 3; 2011. p. 104,107, 24–25.

    Google Scholar 

  8. Koroglu ME, Şiap I, Akın H. Cellular automata based byte error correcting codes over finite fields. In: American Institute of Physics Conference Proceedings, 2012, p. 183.

    Google Scholar 

  9. Cho S-J, Choi U-S, Heo S-H. Design of double error correcting codes based on cellular automata. J Appl Math Comput. 2006;21(1–2):545–53.

    Google Scholar 

  10. Sasidhar K, Chattopadhyay S, Chaudhuri PP. CAA decoder for cellular automata based byte error correcting code. IEEE Trans Comput. 1996;45(9):1003–16.

    Article  MATH  Google Scholar 

  11. Das Debasis, Ray Abhishek. A parallel encryption algorithm for block ciphers based on reversible programmable cellular automata. J Comput Sci Eng. 2010;1(1):82–90.

    MathSciNet  Google Scholar 

  12. Corsonello P, Spezzano G, Staino G, Talia D. Efficient implementation of cellular algorithms on reconfigurable hardware. In: Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing, 2002, p. 211, 218.

    Google Scholar 

  13. Wolfram. Theory and applications of cellular automata. In: Advanced series on complex systems, vol 1. Singapore: World Scientific, 1986. p. 485–557.

    Google Scholar 

  14. Tomassini M, Sipper M, Zolla M, Perrenoud M. Generating high-quality random numbers in parallel by cellular automata. Future Gener Comput Syst. 1999;16:291–305.

    Google Scholar 

  15. Carrasco RA, Johnston M. Non-binary error control coding for wireless communication and data storage. London: Wiley; 2008.

    Google Scholar 

  16. Tanner RM. A recursive approach to low complexity codes. IEEE Trans Inf Theory 1981;533–547.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Abisha Queen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Abisha Queen, C., Anbuselvi, M., Salivahanan, S. (2016). Cellular Automata-Based LDPC Decoder. In: Dash, S., Bhaskar, M., Panigrahi, B., Das, S. (eds) Artificial Intelligence and Evolutionary Computations in Engineering Systems. Advances in Intelligent Systems and Computing, vol 394. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2656-7_80

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2656-7_80

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2654-3

  • Online ISBN: 978-81-322-2656-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics