Advertisement

Planar Crossover Using Microstrip Patch Antenna for Beamforming Networks

  • Mirav MehtaEmail author
  • K. A. Naveen
  • Vishnu Rajan
  • Rahul R. Pillai
  • Sreedevi K. Menon
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 394)

Abstract

In this paper, a simple planar design for a symmetric four-port crossover is presented. The proposed crossover is derived from a microstrip patch antenna with a set of two orthogonal feeds. Electrical length of the microstrip patch antenna is increased by incorporating slots achieving a frequency shift to the lower side. The slot in the patch antenna is derived from fractal geometry, which allows three stages of iteration. Isolation better than −15 dB and transmission ~0 dB is observed in the frequency range of interest. The proposed crossover is a potential candidate for Butler matrix in beamforming applications.

Keywords

Crossover Microstrip components Sierpinski carpet Four port devices Butler matrix Beamforming 

Notes

Acknowledgments

The project is partially funded by a grant from Information Technology Research Agency (ITRA)-Department of Electronics and Information Technology (Deity), Government of India.

References

  1. 1.
    Chen Y, Poo S-P. A symmetrical 4 port network microstrip coupler for crossover application: IEEE Trans Microwave Theory Tech. 2007;55(11):2434–38.Google Scholar
  2. 2.
    Yao J, Lee C, Yeo SP. Microstrip branch-line couplers for crossover application. IEEE Trans Microwave Theory Tech. 2011;59(1):2227–2232.Google Scholar
  3. 3.
    Henin B, Abbosh A. Design of compact planar crossover using Sierpinski carpet microstrip patch. IET Microwaves, Antenna Propag. 2013;7(1):54–60.Google Scholar
  4. 4.
    Abbosh A, Ibrahim S, Karim M. Ultra-wideband crossover using microstrip-to-coplanar waveguide transition: progress in electromagnetics research, (PIERS-C); 2012.Google Scholar
  5. 5.
    Zhang XY, Guo Q-Y, Wang K-X, Hu B-J, Zhang H-L. Compact filtering crossover using stub-loaded ring resonator. IEEE Microwave Wirel Compon Lett. 2014;24(5):327–9.Google Scholar
  6. 6.
    Kusiek A, Marynowski W, Mazur J. Design of a broadband microstrip crossover for ultra-wideband applications. Micro Opt. Tech. Lett. 2010;52(5):1100–4.CrossRefGoogle Scholar
  7. 7.
    Liu W, Zhang Z, Feng Z, Iskander M. A compact wideband microstrip crossover. IEEE Microwave Wirel Compon Lett. 2012;22(5):254–6.CrossRefGoogle Scholar
  8. 8.
    Balanis CA. Antenna theory analysis and design, 2nd edn. New York: Wiley.Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Mirav Mehta
    • 1
    Email author
  • K. A. Naveen
    • 1
  • Vishnu Rajan
    • 1
  • Rahul R. Pillai
    • 1
  • Sreedevi K. Menon
    • 1
  1. 1.Amrita Vishwa VidyapeethamAmritapuriIndia

Personalised recommendations